びdoubtnut

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS

(HINGLISH)

UNITS, DIMENSION \& MEASUREMENTS

Others

1. Light year is a unit of
A. Time
B. Mass
C. Distance
D. Energy

Answer: C

- Watch Video Solution

2. The magnitude of any physical quantity
A. Depends on the method of measurement
B. Does not depend on the method of measurement
C. Is more in SI system than in CGS system
D. Directly proportional to the fundamental units of mass, length and time

Answer: B

3. Which of the following is not equal to watt?
A. Joule/second
B. Ampere \times volt
C. (Ampere) \times ohm
D. Ampere/volt

Answer: D

- Watch Video Solution

4. Newton - second is the unit of
A. Velocity
B. Angular momentum
C. Momentum
D. Energy

Answer: C

(D) Watch Video Solution

5. Which of the following is not represented in correct unit
A. $\frac{\text { Stress }}{\text { Strain }}=N / m^{2}$
B. Surface tension $=N / m$
C. Energy $=\mathrm{kg}-\mathrm{m} / \mathrm{sec}$
D. Pressure $=N / m^{2}$

Answer: C

6. One second is equal to

A. 1650763-73 time periods of Kr clock
B. 652189.63 time periods of Kr clock
C. 1650763.73 time periods of Cs clock
D. 9192631770 time periods of Cs block

Answer: D

D Watch Video Solution

7. One nanometre is equal to
A. $10^{9} \mathrm{~mm}$
B. $10^{-6} \mathrm{~cm}$
C. $10^{-7} \mathrm{~cm}$
D. $10^{-9} \mathrm{~cm}$

Answer: C

- Watch Video Solution

8. A micron is related to centimetre as
A. 1 micron $=10^{-8} \mathrm{~cm}$
B. 1 micron $=10^{-6} \mathrm{~cm}$
C. 1 micron $=10^{-5} \mathrm{~cm}$
D. 1 micron $=10^{-4} \mathrm{CM}$

Answer: D

9. The unit of power is
A. Joule
B. Joule per second only
C. Joule per secoind and watt both
D. Only watt

Answer: C

D Watch Video Solution

10. A suitable unit for gravitational constant is
A. $k g-m \sec ^{-1}$
B. $N m^{-1} \mathrm{sec}$
C. $N m^{2} k g^{-2}$
D. $k g m \sec ^{-1}$

Answer: C

(D) Watch Video Solution

11. SI unit of pressure is
A. Pascal
B. Dynes $/ \mathrm{cm}^{2}$
C. cm of Hg
D. Atmosphere

Answer: A

12. The unit of angular acceleration in the SI system is
A. $N k g^{-1}$
B. $m s^{-2}$
C. $r a d s^{-2}$
D. $m k g^{-1} K$

Answer: C

D Watch Video Solution

13. The unit of Stefan's constant σ is
A. $W m^{-2} K^{-1}$
B. $W m^{2} K^{-4}$
C. $W m^{-2} K^{-4}$
D. $W m^{-2} K^{4}$

Answer: C

- Watch Video Solution

14. Which of the following is not a unit of energy
A. $W-s$
B. $k g-m / s e c$
C. $N-m$
D. Joule

Answer: B

15. In $S=a+b t+c t^{2} . S$ is measured in metres and t in seconds.

The unit of c is
A. None
B. m
C. $m s^{-1}$
D. $m s^{-2}$

Answer: D

- Watch Video Solution

16. Joule-second is the unit of
A. Work
B. Momentum
C. Pressure
D. Angular momentum

Answer: D

D Watch Video Solution

17. Unit of energy is SI system is
A. Erg
B. Calorie
C. Joule
D. Electron volt

Answer: C

- Watch Video Solution

18. A cube has numerically equal volume and surface area. The volume of such a cube is
A. 216 units
B. 1000 units
C. 2000 units
D. 3000 units

Answer: A
19. Wavelength of ray of light is 0.00006 m . It is equal to
A. 6 microns
B. 60 microns
C. 600 microns
D. 0.6 microns

Answer: B

- Watch Video Solution

20. Elector volt is a unit of
A. Charge
B. Potential difference
C. Momentum
D. Energy

Answer: D

- Watch Video Solution

21. Temperature can be expressed as a derived quantity in terms
of any of the following
A. Length and mass
B. Mass and time
C. Length, mass and time
D. None of these

Answer: D

22. Unit of power is
A. Kilowatt
B. Kilowatt-hour
C. Dyne
D. Joule

Answer: A

D Watch Video Solution

23. Density of wood is $0.5 \mathrm{~g} / \mathrm{cc}$ in the CGS system of units. The corresponding value in MKS units is
A. 500
B. 5
C. 0.5
D. 5000

Answer: A

- Watch Video Solution

24. Unit of energy is SI system is
A. J/sec
B. Watt-day
C. Kilowatt
D. $\mathrm{gm}-\mathrm{cm} / \mathrm{sec}^{2}$
25. Which is the correct unit for measuring nuclear radii
A. Micron
B. Millimetre
C. Angstrom
D. Fermi

Answer: D

- Watch Video Solution

26. One Mach number of equal to
A. Velocity of light
B. Velocity of sound ($332 \mathrm{~m} / \mathrm{sec}$)
C. 1km/sec
D. $1 \mathrm{~m} / \mathrm{sec}$

Answer: B

- Watch Video Solution

27. The unit for nuclear dose given to a patient is
A. Fermi
B. Rutherford
C. Curie
D. Roentgen
28. Volt/metre is the unit of
A. Potential
B. Work
C. Force
D. Electric intensity

Answer: D

- Watch Video Solution

29. Newton / metre 2 is the unit of
A. Energy
B. Momentum
C. Force
D. Pressure

Answer: D

- Watch Video Solution

30. The unit of surface tension in SI system is
A. Dyne $/ \mathrm{cm}^{2}$
B. Newton / m
C. Dyne /cm
D. Newton $/ m^{2}$
31. The unit of reduction factor of tangent galvanometer is
A. Ampere
B. Gauss
C. Radian
D. None of these

Answer: A

- Watch Video Solution

32. The unit of self inductance of a coil is
A. Farad
B. Henry
C. Weber
D. Tesla

Answer: B

- Watch Video Solution

33. Henry ohm canbe expressed in
A. Second
B. Coulomb
C. Mho
D. Metre
34. The SI unit of momentum is
A. $\frac{k g}{m}$
B. $\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{sec}}$
C. $\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{sec}}$
D. $k g \times$ Newton

Answer: B

D Watch Video Solution

35. The velocity of a particle depends upon as $v=a+b t+c t^{2}$, if the velocity is in m / sec, the unit of a will be
A. $\mathrm{m} / \mathrm{sec}$
B. m / sec^{2}
C. m^{2} / sec
D. m / sec^{2}

Answer: A

D Watch Video Solution

36. One million electron volt $(1 \mathrm{MeV})$ is equal to
A. $10^{5} \mathrm{eV}$
B. $10^{6} V$
C. $10^{4} \mathrm{eV}$
D. $10^{7} \mathrm{eV}$

- Watch Video Solution

37. $\operatorname{Erg}=m^{-1}$ can be the unit of measure for
A. Force
B. Momentum
C. Power
D. Acceleration

Answer: A

- Watch Video Solution

38. The unit of potential energy is
A. $g\left(\mathrm{~cm} / \mathrm{sec}^{2}\right)$
B. $g(\mathrm{~cm} / \mathrm{sec})^{2}$
C. $g\left(c m^{2} / \mathrm{sec}\right)$
D. $g(\mathrm{~cm} / \mathrm{sec})$

Answer: B

D Watch Video Solution

39. Which of the following represents a volt?
A. Joule/second
B. Watt/Ampere
C. Watt/Coulomb
D. Coulomb/Joule

- Watch Video Solution

40. Kilowatt-hour is a unit of
A. Electrical charge
B. Energy
C. Power
D. Force

Answer: B

- Watch Video Solution

41. What is the SI unit of permeability
A. Henry per metre
B. Tesla metre per ampere
C. Weber per ampere metre
D. All the above units are correct

Answer: D

D Watch Video Solution

42. In which of the following systems of unit, Weber is the unit of magnetic flux
A. CGS
B. MKS
C. SI
D. None of these

Answer: C

- Watch Video Solution

43. Tesla is a unit for measuring
A. Magnetic moment
B. Magnetic induction
C. Magnetic intensity
D. Magnetic pole strength

Answer: B::C

44. If the unit of length and force be increased four times, then the unit of energy is
A. Increased 4 times
B. Increased 8 times
C. Increased 16 times
D. Decreased 16 times

Answer: C

- Watch Video Solution

45. Oersted is a unit of
A. Dip
B. Magnetic intensity
C. Magnetic moment
D. Pole strength

Answer: B

- Watch Video Solution

46. Ampere - hour is a unit of
A. Quantity of electricity
B. Strength of electric current
C. Power
D. Energy

Answer: A

47. The unit of specific resistance is
A. $\mathrm{Ohm} / \mathrm{cm}^{2}$
B. $\mathrm{Ohm} / \mathrm{cm}$
C. $\mathrm{Ohm}-\mathrm{cm}$
D. $(\mathrm{Ohm}-\mathrm{cm})^{-1}$

Answer: C

D Watch Video Solution

48. The binding energy of a nucleon in a nucleus is of the order of a few
A. eV
B. Ergs
C. MeV
D. Volts

Answer: C

- Watch Video Solution

49. Parsec is a unit of
A. Distance
B. Velocity
C. Time
D. Angle
50. If u_{1} and u_{2} are the units selected in two systems of measurement and n_{1} and n_{2} their numerical values, then
A. $n_{1} u_{1}=n_{2} u_{2}$
B. $n_{1} u_{1}+n_{2} u_{2}=0$
C. $n_{1} n_{2}=u_{1} u_{2}$
D. $\left(n_{1}+u_{1}\right)=\left(n_{2}+u_{2}\right)$

Answer: A

- Watch Video Solution

51. 1 eV is
A. Same as joule
B. $1.6 \times 10^{-19} \mathrm{~J}$
C. 1 V
D. $1.6 \times 10^{-19} C$

Answer: B

D Watch Video Solution
52. $1 k W h=$
A. 1000 W
B. $36 \times 10^{5} \mathrm{~J}$
C. 1000 J
D. 3600 J

- Watch Video Solution

53. Universal time is based on
A. Rotation of the earth on its axis
B. Earth's orbital motion around the earth
C. Vibrations of cesium atom
D. Oscillations of quartz crystal

Answer: C

- Watch Video Solution

54. The nuclear cross-section is measured in barn, it is equal to
A. $10^{-20} m^{2}$
B. $10^{-30} m^{2}$
C. $10^{-28} m^{2}$
D. $10^{-14} m^{2}$

Answer: C

D Watch Video Solution

55. Unit of moment of inertia in MKS system
A. $k g \times \mathrm{cm}^{2}$
B. $\mathrm{kg} / \mathrm{cm}^{2}$
C. $k g \times m^{2}$
D. Joule $\times m$

Answer: C

- Watch Video Solution

56. Unit of stress is
A. N / m
B. $N-m$
C. N / m^{2}
D. $N-m^{2}$

Answer: C

- Watch Video Solution

57. Unit of Stefan's constant is
A. $J s^{-1}$
B. $J m^{-2} s^{-1} K^{-4}$
C. Jm^{-2}
D. $J s$

Answer: B

D Watch Video Solution

58. Unit of magnetic moment is
A. Ampere-metre ${ }^{2}$
B. Ampere-metre
C. Weber-metre ${ }^{2}$
D. Weber/metre

- Watch Video Solution

59. Curie is a unit of
A. Enertgy of γ - rays
B. Half life
C. Radioactivity
D. Intensity of γ-rays

Answer: C

- Watch Video Solution

60. Hertz is the unit for
A. Frequency
B. Force
C. Electric charge
D. Magnetic flux

Answer: A

D Watch Video Solution

61. One pico Farad is equal to
A. $10^{-24} F$
B. $10^{-18} F$
C. $10^{-12} F$
D. $10^{-6} F$

Answer: C

- Watch Video Solution

62. In SI, Henry is the unit of
A. Self inductance
B. Mutual inductance
C. (a) and (b) both
D. None of the above

Answer: C

- Watch Video Solution

63. The unit of e.m.f is
A. Joule
B. Joule-Coulomb
C. Volt-Coulomb
D. Joule/Coulomb

Answer: D

D Watch Video Solution

64. Which of the following is not the unit of time
A. Micro second
B. Leap year
C. Solar day
D. Parallactic second

- Watch Video Solution

65. Unit of self inductance is

> A. $\frac{\text { Newton-second }}{\text { Coulomb } \times \text { Ampere }}$ B. $\frac{\text { Joule } / \text { Coulomb } \times \text { second }}{\text { Ampere }}$
C. $\frac{\text { Volt } \times \text { metre }}{\text { Coulomb }}$
D. $\frac{\text { Newton } \times \text { metre }}{\text { Ampere }}$

Answer: B

- Watch Video Solution

66. To determine the young's modulus of a wire, the formula is $Y=\frac{F}{A} \cdot \frac{L}{\Delta l}$, where $L=I$ ength,$A=$ area of cross - section of the wire , $\Delta L=$ change in the length of the wire when streched with a force F. Find the conversion factor to change it from CGS to MKS system.
A. 1
B. 10
C. 0.1
D. 0.01

Answer: C

- Watch Video Solution

67. Young's modules of a material has the same unit as
A. Pressure
B. Strain
C. Compressibility
D. Force

Answer: A

- Watch Video Solution

68. One yard in SI units is equal
A. 1.9144 metre
B. 0.9144 metre
C. 0.09144 kilometre
D. 1.0936 kilometre

- Watch Video Solution

69. Which of the following is smallest unit?
A. Millimetre
B. Angstrom
C. Fermi
D. Metre

Answer: C

70. Which one of the following pairs of quantities and their units is a proper match
A. Electric field -Coulomb/m
B. Magnetic flux-Weber
C. Power-Farad
D. Capacitance -Henry

Answer: B

D Watch Video Solution

71. The units of modulus of rigidity are
A. $N-m$
B. N / m
C. $N-m^{2}$
D. N / m^{2}

Answer: D

- Watch Video Solution

72. The unit of absolute permittivity is
A. Fm (Farad -meter)
B. $F m^{-1}$ (Farad/meter)
C. $F m^{-2}\left(\right.$ Farad $/$ metre $\left.^{2}\right)$
D. F (Farad)

Answer: B

73. Match List-I with List-II and select the correct answer using the codes given below the lists

List-I

1. Joule
II. Watt
III. Volt

List-II
A. Henry \times Amp/sec
B. Farad \times Volt
C. Coulomb \times Volt
IV. Coulomb
D. Oersted $\times \mathrm{cm}$
E. Amp \times Gauss
F. $A m p^{2} \times O h m$
A. $I-A, I I-F, I I I-E, I V-D$
B. $I-C, I I-F, I I I-A, I V-B$
C. $I-C, I I-F, I I I-A, I V-E$
D. $I-B, I I-F, I I I-A, I V-C$

Answer: B

74. Which relation is wrong
A. 1 Calorie $=4.18$ Joules
B. $1 \AA=10^{-10} m$
C. $1 \mathrm{MeV}=1.6 \times 10^{-13}$ Joules
D. 1 Newton $=10^{-5}$ Dynes

Answer: D

- Watch Video Solution

75. If $x=a t+b t^{2}$, where x is the distance travelled by the body in kilometres while t is the time in seconds, then the units of b are
A. $k m / s$
B. $k m-s$
C. $k m / s^{2}$
D. $k m-s^{2}$

Answer: C

D Watch Video Solution

76. The equation $\left(P+\frac{a}{V^{2}}\right)(V-b)$ constant. The units of a are
A. Dyne $\times \mathrm{cm}^{5}$
B. Dyne $\times \mathrm{cm}^{4}$
C. Dyne $/ \mathrm{cm}^{3}$
D. Dyne $/ \mathrm{cm}^{2}$

Answer: B

- Watch Video Solution

77. Which of the following quantity is expressed as force per unit area
A. Work
B. Pressure
C. Volume
D. Area

Answer: B
78. Match List-I with List-II and select the correct answer by using the codes given below the lists

- List-1 List-II
(a) Distance between earth and stars I. Microns
(b) Inter-atomic distance in a solid 2. Angstroms
(c) Size of the nucleus 3. Light years
(d) Wavelength of infrared laser

4. Fermi
5. Kilometres
A. $5,4,2,1$
B. 3, 2, 4, 1
C. $5,2,4,3$
D. 3, 4, 1, 2

Answer: B

79. Unit of impulse is

A. Newton
B. $\mathrm{kg}-\mathrm{m}$
C. $k g-m / s$
D. Joule

Answer: C

- Watch Video Solution

80. Which is not a unit of electric field
A. $N C^{-1}$
B. $V m^{-1}$
C. $J C^{-1}$
D. $J C^{-1} m^{-1}$

Answer: C

- View Text Solution

81. The correct value of $0^{\circ} C$ on the Kelvin scale is
A. $273.15 K$
B. 272.85 K
C. 273 K
D. 273.2 K

Answer: A

82. Torr is the unit of physical quantity
A. Pressure
B. Volume
C. Density
D. Flux

Answer: A

- Watch Video Solution

83. Which of the following is a derived unit
A. Unit of mass
B. Unit of length
C. Unit of time
D. Unit of volume

Answer: D

- Watch Video Solution

84. Dyne/cm is not a time of
A. Pressure
B. Stress
C. Strain
D. Young's modulus

Answer: C

85. The units of angular momentum are
A. $k g-m^{2} / s^{2}$
B. Joule-s
C. Joule/s
D. $k g-m-s^{2}$

Answer: B

D Watch Video Solution

86. Which of the following is not the unit of energy ?
A. Calorie
B. Joule
C. Electro volt

Answer: D

- Watch Video Solution

87. Which of the following is not a unit of time
A. Leap year
B. Microsecond
C. Lunar month
D. Light year

Answer: D

88. The S.I. unit of gravitational potential is
A. J
B. $J-k g^{-1}$
C. $J-k g$
D. $J-k g^{2}$

Answer: B

D Watch Video Solution

89. Which one of the following is not a unit of young's modulus
A. $N m$
B. $N m^{-2}$
C. Dynecm ${ }^{-2}$

Answer: A

- Watch Video Solution

90. In $C G S$ system the magnitude of the force is 100 dynes. In another system where the fundamental phyical quamtities are kilogram , meter , and minute, find the magnitude of the force.
A. 0.036
B. 0.36
C. 3.6
D. 36

Answer: C

91. The unit of L / R is (where $L=$ inductance and $R=$ resistance)
A. Second
B. $\sec ^{-1}$
C. Volt-Coulomb
D. Ampere

Answer: A

- Watch Video Solution

92. Which is different from others by units ?
A. Phase difference
B. Mechanical equivalent
C. Loudness of sound
D. Poisson's ratio

Answer: D

D Watch Video Solution

93. Length cannot be measured by
A. Fermi
B. Debye
C. Micron
D. Light year

- Watch Video Solution

94. The value of Planck's constant in SI unit is
A. $6.63 \times 10^{-34} J-\mathrm{sec}$
B. $6.63 \times 10^{34} \mathrm{~J} / \mathrm{sec}$
C. $6.63 \times 10^{-34} \mathrm{~kg}-\mathrm{m}^{2}$
D. $6.63 \times 10^{34} \mathrm{~kg} / \mathrm{sec}$

Answer: A

95. A physical quantity is measured and the result is expressed

 as nu where u is the unit used and n is the numberical value. If the result is expressed in various units thenA. $n \propto u^{2}$
B. $n \propto u$
C. $n \propto \sqrt{u}$
D. $n \propto \frac{1}{u}$

Answer: D

- Watch Video Solution

96. Faraday is the unit of
A. Charge
B. emf
C. Mass
D. Energy

Answer: A

- Watch Video Solution

97. Candela is the unit of
A. Electric intensity
B. Luminous intensity
C. Sound intensity
D. None of these
98. The unit of reactance is
A. Ohm
B. Volt
C. Mho
D. Newton

Answer: A

D Watch Video Solution

99. The unit of Planck's constant is
A. Joule
B. Joule/s
C. Joule/m
D. Joule-s

Answer: D

- Watch Video Solution

100. Number of base SI units is
A. 4
B. 7
C. 3
D. 5
101. SI unit of permittivity is
A. $C^{2} m^{2} N^{-1}$
B. $C^{-1} m^{2} N^{-2}$
C. $C^{2} m^{2} N^{2}$
D. $C^{2} m^{-2} N^{-1}$

Answer: D

- Watch Video Solution

102. Which does not has the same unit as others
A. Watt-sec
B. Kilowatt-hour
C. eV
D. J-sec

Answer: D

- Watch Video Solution

103. S.I. Unit of surface tension is:
A. $N m^{-1}$
B. $N m^{-2}$
C. $N^{2} m^{-1}$
D. $N m^{-3}$
104. Which of the following system of units is not based on units of mass, length and time alone
A. SI
B. MKS
C. FPS
D. CGS

Answer: A

- Watch Video Solution

105. The unit of the coefficient of viscosity in S.I. system is
A. $m / k g-s$
B. $m-s / k g^{2}$
C. $k g / m-s^{2}$
D. $\mathrm{kg} / \mathrm{m}-\mathrm{s}$

Answer: D

D Watch Video Solution

106. The unit of Young's modulus is
A. $N m^{2}$
B. $N m^{-2}$
C. Nm
D. $N m^{-1}$

107. One femtometer is equivalent to

A. $10^{15} \mathrm{~m}$
B. $10^{-15} m$
C. $10^{-12} m$
D. $10^{12} \mathrm{~m}$

Answer: B

108. Light emitted by Krypton 86 is 6057.8021 Å. Calculate number of wavelengths of Krypton 86 in one metre. What is the order of magnitude?
A. 155316.13
B. 1650763.73
C. 652189.63
D. 2348123.73

Answer: B

- Watch Video Solution

109. Which of the following pairs is wrong
A. Pressure-Baromter
B. Relative density-Pyrometer
C. Temperature-Thermometer
D. Earthquake-Seismograph

Answer: B

- Watch Video Solution

110. Select the pair whose dimensions are same
A. Pressure and stress
B. Stress and strain
C. Pressure and force
D. Power and force

111. Dimensional formula $M L^{-1} T^{2}$ does not represent the physical quantity

A. Young's modulus of elasticity
B. Stress
C. Strain
D. Pressure

Answer: C

- Watch Video Solution

112. Dimensionasl formula $M L^{2} T^{-3}$ represents
A. Force
B. Power
C. Energy
D. Work

Answer: B

D Watch Video Solution

113. The dimensions of calorie are
A. $M L^{2} T^{-2}$
B. $M L T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L^{2} T^{-3}$

- Watch Video Solution

114. Whose dimensions is $M L^{2} T^{-1}$
A. Torque
B. Angular momentum
C. Power
D. Work

Answer: B

115. If L and R denote inductance and resistance, respectively, then the dimensions of L / R are
A. $M^{0} L^{0} T^{-1}$
B. $M^{0} L T^{0}$
C. $M^{0} L^{0} T$
D. Cannot be represented in terms of M, L and T

Answer: C

- Watch Video Solution

116. Which pair has the same dimensions
A. Work and power
B. Density and relative density
C. Momentum and impulse
D. Stress and strain

Answer: C

- Watch Video Solution

117. If C and R denote capacitance and resistance respectively, then the dimensional formula of $C R$ is
A. $M^{0} L^{0} T^{2}$
B. $M^{0} L^{0} T$
C. $M L^{-1}$
D. None of the above

Answer: B
118. The dimensions of the quantities in one (or more) of the following pairs are the same. Identify the pair(s)
A. Torque and work
B. Angular momentum and work
C. Energy and Young's modulus
D. Light year and wavelength

Answer: A::D

- Watch Video Solution

119. Dimensional formula for latent heat is \qquad
A. $M^{0} L^{2} T^{-2}$
B. $M L T^{-2}$
C. $M L^{2} T^{-2}$
D. $M L^{2} T^{-1}$

Answer: A

D Watch Video Solution

120. Dimensional formula for volume elasticity is
A. $M^{1} L^{-2} T^{-2}$
B. $M^{1} L^{-3} T^{-2}$
C. $M^{1} L^{2} T^{-2}$
D. $M^{1} L^{-1} T^{-2}$

- Watch Video Solution

121. The dimensionas of universal gravitational constant are
A. $M^{-2} L^{2} T^{-2}$
B. $M^{-1} L^{3} T^{-2}$
C. $M L^{-1} T^{-2}$
D. $M L^{2} T^{-2}$

Answer: B

- Watch Video Solution

122. The dimensional formula of angular velocity is
A. $M^{0} L^{0} T^{-1}$
B. $M L T^{-1}$
C. $M^{0} L^{0} T^{1}$
D. $M L^{0} T^{-2}$

Answer: A

D Watch Video Solution

123. The dimensions of power are \qquad
A. $M^{1} L^{2} T^{-3}$
B. $M^{2} L^{1} T^{-2}$
C. $M^{1} L^{2} T^{-1}$
D. $M^{1} L^{1} T^{-2}$

- Watch Video Solution

124. The dimensions of couple are \qquad
A. $M L^{2} T^{-2}$
B. $M L T^{-2}$
C. $M L^{-1} T^{-3}$
D. $M L^{-2} T^{-2}$

Answer: A

- Watch Video Solution

125. The dimensional formula for angular momentum is
A. $M L^{2} T^{-2}$
B. $M L^{2} T^{-1}$
C. $M L T^{-1}$
D. $M^{0} L^{2} T^{-2}$

Answer: B

D Watch Video Solution

126. The dimensional formula of impulse is
A. $M L T^{-2}$
B. $M L T^{-1}$
C. $M L^{2} T^{-1}$
D. $M^{2} L T^{-1}$

- Watch Video Solution

127. The dimensional formula for the modulus of rigidity is
A. $M L^{2} T^{-2}$
B. $M L^{-1} T^{-3}$
C. $M L^{-2} T^{-2}$
D. $M L^{-1} T^{-2}$

Answer: D

128. The dimensional formula for r.m.s. (root mean square) velocity is
A. $M^{0} L T^{-1}$
B. $M^{0} L^{0} T^{-2}$
C. $M^{0} L^{0} T^{-1}$
D. $M L T^{-3}$

Answer: A

- Watch Video Solution

129. The dimensional formula for Planck's constant (h) is \qquad
A. $M L^{-2} T^{-3}$
B. $M L^{2} T^{-2}$
C. $M L^{2} T^{-1}$
D. $M L^{-2} T^{-2}$

Answer: C

- Watch Video Solution

130. Out of the following pair, which one NOT have identical dimensions is
A. Angular momentum and Planck's constant
B. Moment of inertia and moment of a force
C. Work and torque
D. Impulse and momentum

Answer: B
131. The dimensional formul for impulse is same as the dimensional formula for
A. Momentum
B. Force
C. Rate of change of momentum
D. Torque

Answer: A

- Watch Video Solution

132. Which of the following is dimensionally correct
A. Pressure $=$ Energy per unit area
B. Pressure = Energy per unit volume
C. Pressure $=$ Force per unit volume
D. Pressure $=$ Momentum per unit volume per unit time

Answer: B

D Watch Video Solution

133. Planck's constant has the dimension (unit) of
A. Energy
B. Linear momentum
C. Work
D. Angular momentum

- Watch Video Solution

134. The van der Waal's equation of state for some gases can be expressed as :
$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
Where P is the pressure, V is the molar volume, and T is the absolute temperature of the given sample of gas and a, b, and R are constants.

The dimensions of a are
A. $M L^{5} T^{-2}$
B. $M L^{-1} T^{-2}$
C. $M^{0} L^{3} T^{0}$
D. $M^{0} L^{6} T^{0}$

- Watch Video Solution

135. If V denotes te potential difference across the plate of a capacitor of capacitance C, the dimensions of $C V^{2}$ are
A. Not expressible in $M L T$
B. $M L T^{-2}$
C. $M^{2} L T^{-1}$
D. $M L^{2} T^{-2}$

Answer: D

136. If L denotes the inductance of an inductor through which a current i is flowing, the dimensions of $L i^{2}$ are
A. $M L^{2} T^{-2}$
B. Not expressible in MLT
C. $M L T^{-2}$
D. $M^{2} L^{2} T^{-2}$

Answer: A

- Watch Video Solution

137. Of the following quantities, which one has the dimensions different from the remaining three?
A. Energy per unit volume
B. Force per unit area
C. Product of voltage and charge per unit volume
D. Angular momentum per unit mass

Answer: D

- Watch Video Solution

138. A sperical body of mass m and radius r is allowed to fall in a medium of viscosity η. The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity (v) is called constant (τ). Dimensionally , τ can be represented by
A. $\frac{m r^{2}}{6 \pi \eta}$
B. $\sqrt{\left(\frac{6 \pi m r \eta}{g^{2}}\right)}$
C. $\frac{m}{6 \pi \eta r v}$
D. None of the above

Answer: D

- Watch Video Solution

139. The frequency f of vibrations of a mass m suspended from a spring of spring constant k is given by $f=C m^{x} k^{y}$, where C is a dimensionnless constant. The values of x and y are, respectively,
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=-\frac{1}{2}, y=-\frac{1}{2}$
C. $x=\frac{1}{2}, y=-\frac{1}{2}$
D. $x=-\frac{1}{2}, y=\frac{1}{2}$

D Watch Video Solution

140. The quantities A and B are related by the relation $A / B=m$, where m is the linear mass density and A is the force, the dimensions of B will be
A. Pressure
B. Work
C. Latent heat
D. None of the above

Answer: C

- Watch Video Solution

141. The velocity of water wave v may depend on their wavelength λ, the density of water ρ and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as
A. $v^{2} \propto \lambda g^{-} \rho^{-1}$
B. $v^{2} \propto g \lambda \rho$
C. $v^{2} \propto g \lambda$
D. $v^{2} \propto g^{-1} \lambda^{-3}$

Answer: C

- Watch Video Solution

142. The dimensions of Farad are
A. $M^{-1} L^{-2} T^{2} Q^{2}$
B. $M^{-1} L^{-2} T Q$
C. $M^{-1} L^{-2} T^{-2} Q$
D. $M^{-1} L^{-2} T Q^{2}$

Answer: A

D Watch Video Solution

143. The dimensional formula fo resistivity in terms of M, L, T and Q where Q stands for the dimensions of charge is
A. $M L^{3} T^{-1} Q^{-2}$
B. $M L^{3} T^{-2} Q^{-1}$
C. $M L^{2} T^{-1} Q^{-1}$
D. $M L T^{-1} Q^{-1}$

- Watch Video Solution

144. The equation of a wave is given by $Y=A \sin \omega\left(\frac{x}{v}-k\right)$, where ω is the angular velocity and v is the linear velocity. Find the dimension of k.
A. $L T$
B. T
C. T^{-1}
D. T^{2}

Answer: B

145. The dimensions of coefficient of thermal conductivity is
A. $M L^{2} T^{-2} K^{-1}$
B. $M L T^{-3} K^{-1}$
C. $M L T^{-2} K^{-1}$
D. $M L T^{-3} K$

Answer: B

- Watch Video Solution

146. Dimensional formula of velocity of sound is
A. $M^{0} L T^{-2}$
B. $L T^{0}$
C. $M^{0} L T^{-1}$
D. $M^{0} L^{-1} T^{-1}$

Answer: C

- Watch Video Solution

147. Dimensional formula of capacitance is
A. $M^{-1} L^{-2} T^{4} A^{2}$
B. $M L^{2} T^{4} A^{-2}$
C. $M L T(-4) A^{2}$
D. $M^{-1} L^{-2} T^{-4} A^{-2}$

Answer: A

148. $M L T^{-1}$ represents the dimensional formula of
A. Power
B. Momentum
C. Force
D. Couple

Answer: B

D Watch Video Solution

149. Dimensional formula of heat energy is
A. $M L^{2} T^{-2}$
B. $M L T^{-1}$
C. $M^{0} L^{0} T^{-2}$
D. None of these

Answer: A

- Watch Video Solution

150. If C and L denote capacitance and inductance respectively, then the dimensions of $L C$ are
A. $M^{0} L^{0} T^{0}$
B. $M^{0} L^{0} T^{2}$
C. $M^{2} L^{0} T^{2}$
D. $M L T^{2}$

Answer: B

151. Which of the following quantities has the same dimensions as that of energy
A. power
B. force
C. momentum
D. work

Answer: D

- Watch Video Solution

152. The dimensionsof "time constant" $\frac{L}{R}$ during growth and decay of current in all inductive circuit is same as that of
A. Constant
B. Resistance
C. Current
D. Time

Answer: D

D Watch Video Solution

153. The period T of a soap bubble under $S H M$ is given by $T=P^{a} D^{b} S^{c}$, where P is pressure, D, is density and S is surface tension. Then the values of a, b and c are
A. $-\frac{3}{2}, \frac{1}{2}, 1$
B. $-1,-2,3$
C. $\frac{1}{2},-\frac{3}{2},-\frac{1}{2}$
D. $1,2, \frac{1}{3}$

Answer: A

- Watch Video Solution

154. Which of the following pairs of physical quantities has the same dimensions
A. Work and power
B. Momentum and energy
C. Force and power
D. Work and energy

Answer: D

155. The velocity of a freely falling body changes as $g^{p} h^{q}$ where g is acceleration due to gravity and h is the height. The values of p and q are
A. $1, \frac{1}{2}$
B. $\frac{1}{2}, \frac{1}{2}$
C. $\frac{1}{2}, 1$
D. 1,1

Answer: B

- Watch Video Solution

156. Which one of the following does not have tha same dimensions?
A. Work and energy
B. Angle and strain
C. Relative density and refractive index
D. Planck constant and energy

Answer: D

- Watch Video Solution

157. Dimensions of frequency are
A. $M^{0} L^{-1} T^{0}$
B. $M^{0} L^{0} T^{-1}$
C. $M^{0} L^{0} T$
D. $M T^{-2}$

- Watch Video Solution

158. Which one has the dimensions different from the remaining three
A. power
B. work
C. torque
D. energy

Answer: A

159. A small steel ball of radius r is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity η. After some time the velocity of the ball attains a constant value known as terminal velocity v_{T}. The terminal velocity depends on
(i) the mass of the ball m (ii) η, (iii) r and (iv) acceleration due to gravity g. Which of the following relations is dimensionally correct?
A. $v_{T} \propto \frac{m g}{\eta r}$
B. $v_{T} \propto \frac{\eta r}{m g}$
C. $v_{T} \propto \eta r m g$
D. $v_{T} \propto \frac{m g r}{\eta}$

Answer: A

160. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where ϵ_{0} is the permittivity of the free space, L is a length, ΔV is a potential difference and Δt is a time interval. The dimensinal formula for X is the same as that of
A. Resistance
B. Charge
C. Voltage
D. Current

Answer: D

D Watch Video Solution

161. The dimensions of $\varepsilon_{0} \mu_{0}$ are
A. $L T^{-1}$
B. $L^{-2} T^{2}$
C. $M^{-1} L^{-3} Q^{2} T^{2}$
D. $M^{-1} L^{-3} I^{2} T^{2}$

Answer: B

D Watch Video Solution

162. The expression $\left[M L^{2} T^{-2}\right]$ represents
A. Pressure
B. Kinetic energy
C. Momentum
D. Power

- Watch Video Solution

163. Find the dimensions of physical quantity X in the equation

Force $=\frac{X}{\text { Density }}$.
A. $M^{1} L^{4} T^{-2}$
B. $M^{2} L^{-2} T^{-1}$
C. $M^{2} L^{-2} T^{-2}$
D. $M^{1} L^{-2} T^{-1}$

Answer: C

164. The dimensions of $C V^{2}$ matches with the dimensions of
A. $L^{2} I$
B. $L^{2} I^{2}$
C. $L I^{2}$
D. $\frac{1}{L I}$

Answer: C

D Watch Video Solution

165. The Martians force (F), acceleration (A) and time (T) as their fundamental physical quantities. The dimensions of length on Martians system are
A. $F T^{2}$
B. $F^{-1} T^{2}$
C. $F^{-1} A^{2} T^{-1}$
D. $A T^{2}$

Answer: D

- Watch Video Solution

166. The dimension of $\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ is that of
A. Velocity
B. Time
C. Capacity
D. Distance

- Watch Video Solution

167. An athlletic coach told his team that muscle times speed equals power. What dimesions does he view for muscle?
A. $M L T^{-2}$
B. $M L^{2} T^{-2}$
C. $M L T^{2}$
D. L

Answer: A

- Watch Video Solution

168. The foundations of dimensional analysis were laid down by
A. Gallileo
B. Newton
C. Fourier
D. Joule

Answer: C

D View Text Solution

169. The dimensional formula of wave number is
A. $M^{0} L^{0} T^{-1}$
B. $M^{0} L^{-1} T^{0}$
C. $M^{-1} L^{-1} T^{0}$
D. $M^{0} L^{0} T^{0}$

- Watch Video Solution

170. Find the dimensions of stress, strain and modulus of elasticity.
A. Force
B. Pressure
C. Work
D. $\frac{1}{\text { Pressure }}$

Answer: B

171. The dimensions of pressure are
A. $M L T^{-2}$
B. $M L^{-2} T^{2}$
C. $M L^{-1} T(-2)$
D. $M L T^{2}$

Answer: C

D Watch Video Solution

172. Dimensions of permeability are
A. $A^{-2} M^{1} L^{1} T^{-2}$
B. $M L T^{-2}$
C. $M L^{0} T^{-1}$
D. $A^{-1} M L T^{2}$

Answer: A

- Watch Video Solution

173. The dimensional formula for magnetic flux is
A. $M L^{2} T^{-2} A^{-1}$
B. $M L^{0} T^{-2} A^{-2}$
C. $M^{0} L^{-2} T^{-2} A^{-3}$
D. $M L^{2} T^{-2} A^{3}$

Answer: A

174. If P represents radiation pressure, C represents the speed of light, and Q represents radiation energy striking a unit area per second, then non - zero integers x, y, z such that $P^{x} Q^{y} C^{z}$ is dimensionless, find the values of x, y, and z.
A. $x=1, y=1, z=-1$
B. $x=1, y=-1, z=1$
C. $x=-1, y=1, z=1$
D. $x=1, y=1, z=1^{`}$

Answer: B

- Watch Video Solution

175. Inductance L can be dimensional represented as
A. $M L^{2} T^{-2} A^{-2}$
B. $M L^{2} T^{-4} A^{-3}$
C. $M L^{-2} T^{-2} A^{-2}$
D. $M L^{2} T^{4} A^{3}$

Answer: A

D Watch Video Solution

176. Find the dimensions of stress, strain and modulus of elasticity.
A. $M L T^{-1}$
B. $M L^{2} T^{-1}$
C. $M L T(-2)$
D. $M^{0} L^{0} T^{0}$
177. Dimensions of time in power are
A. T^{-1}
B. T^{-2}
C. T^{-3}
D. T^{0}

Answer: C

- Watch Video Solution

178. Dimensions of kinetic energy are
A. $M L^{2} T^{-2}$
B. $M^{2} L T^{-1}$
C. $M L^{2} T^{-1}$
D. $M L^{3} T^{-1}$

Answer: A

D Watch Video Solution

179. The dimensional formula of torque is
A. $L^{2} M T^{-2}$
B. $L^{-1} M T^{-2}$
C. $L^{2} M T^{-3}$
D. $L M T^{-2}$

- Watch Video Solution

180. Which one of the following represents the correct dimensions of the coefficient of viscosity?
A. $M L^{2} T^{-2}$
B. $M L^{2} T^{-1}$
C. $M L^{-1} T^{-1}$
D. $M L T$

Answer: C

181. Find the dimension of the quantity $L /(R C V)$, where symbols have usual meaning.
A. $[A]$
B. $\left[A^{2}\right]$
C. $\left[A^{-1}\right]$
D. None of these

Answer: C

- Watch Video Solution

182. The dimensions of the ratio of angular momentum to linear momentum is
A. $M^{0} L^{1} T^{0}$
B. $M^{1} L^{1} T^{-1}$
C. $M^{1} L^{2} T^{-1}$
D. $M^{-1} L^{-1} T^{-1}$

Answer: A

- Watch Video Solution

183. The pair having the same dimensions is
A. Angular momentum, work
B. Work, torque
C. Potential energy, linear momentum
D. Kinetic energy, velocity
184. The dimensions of surface tension are
A. $M L^{-1} T^{-2}$
B. $M L T^{-2}$
C. $M L^{-1} T^{-1}$
D. $M T^{-2}$

Answer: D

- Watch Video Solution

185. In the following list, the only pair which have different dimensions, is
A. Linear momentum and moment of a force
B. Planck's constant and angular momentum
C. Pressure and modulus of elasticity
D. Torque and potential energy

Answer: A

D Watch Video Solution

186. If R and L represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency
A. $\frac{R}{L}$
B. $\frac{L}{R}$
C. $\sqrt{\frac{R}{L}}$
D. $\sqrt{\frac{L}{R}}$

Answer: A

- Watch Video Solution

187. If velocity v acceleration A and force F are chosen as fundamental quantities, then the dimensional formula of angular momentum is terms of v, A and F would be
A. $F A^{-1} v$
B. $F v^{3} A^{-2}$
C. $F v^{2} A^{-1}$
D. $F^{2} v^{2} A^{-1}$

Answer: B

188. The dimensions of permittivity ε_{0} are
A. $A^{2} T^{2} M^{-1} L^{-3}$
B. $A^{2} T^{4} M^{-1} L^{-3}$
C. $A^{-2} T^{-4} M L^{3}$
D. $A^{2} T^{-4} M^{-1} L^{-3}$

Answer: B

- Watch Video Solution

189. Dimensions of the following three quantities are the same
A. Work, energy, force
B. Velocity, momentum, impulse
C. Potential energy, kinetic energy, momentum
D. Pressure, stress, coefficient of elasticity

Answer: D

- Watch Video Solution

190. the dimensional formula for planck's constant and angular momentum are
A. $M L^{2} T^{-1}$ and $M L T^{-1}$
B. $M L^{2} T^{-1}$ and $M L^{2} T^{-1}$
C. $M L T^{-1}$ and $M L^{2} T^{-1}$
D. $M L T^{-1}$ and $M L^{2} T^{-2}$

- Watch Video Solution

191. Let $\left[\varepsilon_{0}\right]$ denote the dimensional formula of the permittivity of the vacuum, and $\left[\mu_{0}\right]$ that of the permeability of the vacuum.

If
$M=$ mass $, L=\leq n>h, T=$ time and $I=e \leq c t r i c c u r r e n t$
A. $\left[\varepsilon_{0}\right]=M^{-1} L^{-3} T^{2} I$
B. $\left[\varepsilon_{0}\right]=M^{-1} L^{-3} T^{4} I^{2}$
C. $\left[\mu_{0}\right]=M L T^{-2} I^{-2}$
D. $\left[\mu_{0}\right]=M L^{2} T^{-1} I$
192. Dimension of $C R$ are those of
A. Frequency
B. Energy
C. Time period
D. Current

Answer: C

- Watch Video Solution

193. The physical quantity that has no dimensions is:
A. Angular Velocity
B. Linear momentum
C. Angular momentum
D. Strain

Answer: D

- Watch Video Solution

194. $M L^{-1} T^{-2}$ represents
A. Stress
B. Young's Modulus
C. Pressure
D. All the above three quantities
195. Dimensions of magnetic field intensity is
A. $\left[M^{0} L^{-1} T^{0} A^{1}\right]$
B. $\left[M L T^{-1} A^{-1}\right]$
C. $\left[M L^{0} T^{-2} A^{-1}\right]$
D. $\left[M L T^{-2} A\right]$

Answer: C

- Watch Video Solution

196. The viscous force F on a sphere of radius a moving in a medium with velocity v is given by $F=6 \pi n a v$. The dimension of η is
A. $M L^{-1} T^{-1}$
B. $M T^{-1}$
C. $M L T^{-2}$
D. $M L^{-3}$

Answer: A

D Watch Video Solution

197. Which physical quantities have the same dimension
A. Couple of force and work
B. Force and power
C. Latent heat and specific heat
D. Work and power

- Watch Video Solution

198. Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful?
A. A / B
B. $A+B$
C. $A-B$
D. None

Answer: A

199. Given that v is speed, r is the radius and g is the acceleration due to gravity. Which of the following is dimensionless
A. $v^{2} / r g$
B. $v^{2} r / g$
C. $v^{2} g / r$
D. $v^{2} r g$

Answer: A

- Watch Video Solution

200. The physical quantity which has the dimensional formula $\left[M^{1} T^{-3}\right]$ is
A. Surface tension
B. Solar constant
C. Density
D. Compressibility

Answer: B

- Watch Video Solution

201. A force F is given by $F=a t+b t^{2}$, where t is time. What are the dimensions of a and b ?
A. $M L T^{-3}$ and $M L^{2} T^{-4}$
B. $M L T^{-3}$ and $M L T^{-4}$
C. $M L T^{-1}$ and $M L T^{0}$
D. $M L T^{-4}$ and $M L T^{-1}$

- Watch Video Solution

202. The dimensions of inter atomic force constant are
A. $M T^{-2}$
B. $M L T^{-1}$
C. $M L T^{-2}$
D. $M L^{-1} T^{-1}$

Answer: A

- Watch Video Solution

203. If the speed of light c, acceleration due to gravity (g) and pressure (p) are taken as the fundamental quantities then the dimension of gravitational constant is
A. $c^{2} g^{0} p^{-2}$
B. $c^{0} g^{2} p^{-1}$
C. $c g^{3} p^{-2}$
D. $c^{-1} g^{0} p^{-1}$

Answer: B

- Watch Video Solution

204. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the drop, and density (ρ) of the liquid, then find the expression of T.
A. $T=k \sqrt{\rho r^{3} / S}$
B. $T=k \sqrt{\rho^{1 / 2} \frac{r^{3}}{S}}$
C. $T=k \sqrt{\rho \frac{r^{3}}{S^{1 / 2}}}$
D. None of these

Answer: A

- Watch Video Solution

205. $M L^{3} T^{-1} Q^{-2}$ is dimension of
A. Resistivity
B. Conductivity
C. Resistance
D. None of these

- Watch Video Solution

206. Dimension of electric current is
A. $\left[M^{0} L^{0} T^{-1} Q\right]$
B. $\left[M L^{2} T^{-1} Q\right]$
C. $\left[M^{2} L T^{-1} Q\right]$
D. $\left[M^{2} L^{2} T^{-1} Q\right]$

Answer: A

- Watch Video Solution

207. The fundamental physical quantites quanties that have same dimension in the dimensional formula of Torque and Angular Momentum are
A. Mass, time
B. Time, length
C. Mass, length
D. Time, mole

Answer: C

- Watch Video Solution

208. If pressure P, velocity V and time T are taken as fundamental physical quantities, the dimensional formula of force if
A. $P V^{2} T^{2}$
B. $P^{-1} V^{2} T^{-2}$
C. $P V T^{2}$
D. $P^{-1} V T^{2}$

Answer: A

D Watch Video Solution

209. The physical quantity which was the dimensional formula as
that of $\frac{\text { energy }}{\text { mass } \times \text { length }}$ is
A. Force
B. Power
C. Pressure
D. Acceleration

Answer: D

- Watch Video Solution

210. If velocity (V), force (F), and energy (E) are taken as fundamental units, then find the dimensional formula for mass.
A. $E v^{2}$
B. $E v^{-2}$
C. $F v^{-1}$
D. $F v^{-2}$

Answer: B

211. Dimensions of luminous flux are

A. $M L^{2} T^{-2}$
B. $M L^{2} T^{-3}$
C. $M L^{2} T^{-1}$
D. $M L T^{-2}$

Answer: B

- Watch Video Solution

212. A physical quantity x depends on quantities y and z as follows : $\quad x=A y+B \tan (C z)$, where A, B and C are constants. Which of the followings do not have the same dimensions?
A. x and b
B. C and z^{-1}
C. y and B / A
D. x and A

Answer: D

D Watch Video Solution

213. Which of the following pairs does not have similar dimensions?
A. Stress and pressure
B. Angle and strain
C. Tension and surface tension
D. Planck's constant and angular momentum

Answer: C

- Watch Video Solution

214. Out of the following which pair of quantities do not have same dimensions
A. Planck's constant and angular momentum
B. Work and energy
C. Pressure and Young's modulus
D. Torque \& moment of inertia

Answer: D

- Watch Video Solution

215. Identify the pair which has different dimensions
A. Planck's constant and angular momentum
B. Impulse and linear momentum
C. Angular momentum and frequency
D. Pressure and Young's modulus

Answer: C

D Watch Video Solution

216. The dimensional formula $M^{0} L^{2} T^{-2}$ stands for
A. Torque
B. Angular momentum
C. Latent heat
D. Coefficient of thermal conductivity

Answer: C

- Watch Video Solution

217. Which of the following represents the dimensions of Farad
A. $M^{-1} L^{-2} T^{4} A^{2}$
B. $M L^{2} T^{2} A^{-2}$
C. $M L^{2} T^{2} A^{-1}$
D. $M T^{-2} A^{-1}$

Answer: A

218. If L, C and R denote the inductance, capacitance and resistance respectively, the dimensional formula for $C^{2} L R$ is
A. $\left[M L^{-2} T^{-1} I^{0}\right]$
B. $\left[M^{0} L^{0} T^{3} I^{0}\right]$
C. $\left[M^{-1} L^{-2} T^{6} I^{2}\right]$
D. $\left[M^{0} L^{0} T^{2} I^{0}\right]$

Answer: B

- Watch Video Solution

219. If the velocity of light (c), gravitational constant (G) and Planck's constant (h) are chosen as fundamental units, then the dimensions of mass in new system is
A. $c^{1 / 2} G^{1 / 2} h^{1 / 2}$
B. $c^{1 / 2} G^{1 / 2} h^{-1 / 2}$
C. $c^{1 / 2} G^{-1 / 2} h^{1 / 2}$
D. $c^{-1 / 2} G^{1 / 2} h^{1 / 2}$

Answer: C

D Watch Video Solution

220. Dimensions of charge are
A. $M^{0} L^{0} T^{-1} A^{-1}$
B. $M L T A^{-1}$
C. $T^{-1} A$
D. $T A$

- Watch Video Solution

221. According to Newton, the viscous force acting between
liquid layers of area A and velocity gradient $\frac{\Delta v}{\Delta z}$ is given by $F=-\eta A \frac{d v}{d z}$, where η is constant called
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{-1}\right]$
C. $\left[M L^{-2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: B
222. Identify the pair whose dimensions are equal
A. Torque and work
B. Stress and energy
C. Force and stress
D. Force and work

Answer: A

- Watch Video Solution

223. The dimensions of pressure is equal to
A. Force per unit volume
B. Energy per unit volume
C. Force
D. Energy

Answer: B

- Watch Video Solution

224. Which of the two have same dimensions
A. Force and strain
B. Force and stress
C. Angular velocity and frequency
D. Energy and strain

Answer: C

225. An object is moving through the liquid. The viscous damping force acting on it is proportional to the velocity. Then dimensions of constant of proportionality are
A. $M L^{-1} T^{-1}$
B. $M L T^{-1}$
C. $M^{0} L T^{-1}$
D. $M L^{0} T^{-1}$

Answer: D

- Watch Video Solution

226. The dimensions of emf in MKS is
A. $M L^{-1} T^{-2} Q^{-2}$
B. $M L^{2} T^{-2} Q^{-2}$
C. $M L T^{-2} Q^{-1}$
D. $M L^{2} T^{-2} Q^{-1}$

Answer: D

D Watch Video Solution

227. Which of the following quantities is dimensionless
A. Gravitational constant
B. Planck's constant
C. Power of a convex lens
D. None
228. The dimensional formula for Boltzmann's constant is
A. $\left[M L^{2} T^{-2} \theta^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{0} T^{-2} \theta^{-1}\right]$
D. $\left[M L^{-2} T^{-1} \theta^{-1}\right]$

Answer: A

D Watch Video Solution

229. The dimensions of K in the equation $W=\frac{1}{2} K x^{2}$ is
A. $M^{1} L^{0} T^{-2}$
B. $M^{0} L^{1} T^{-1}$
C. $M^{1} L^{1} T^{-2}$
D. $M^{1} L^{0} T^{-1}$

Answer: A

- Watch Video Solution

230. The physical quantities not having same dimensions are
A. Speed and $\left(\mu \varepsilon_{0}\right)^{-1 / 2}$
B. Torque and work
C. Momentum and Plank's constant
D. Stress and Young's modules
231. Dimension of R is
A. $M L^{2} T^{-1}$
B. $M L^{2} T^{-3} A^{-2}$
C. $M L^{-1} T^{-2}$
D. None of these

Answer: B

- Watch Video Solution

232. The dimensional formula of relative density is
A. $M L^{-3}$
B. $L T^{-1}$
C. $M L T^{-2}$
D. Dimensionless

Answer: D

(D) Watch Video Solution

233. The dimensional formula for young's modulus is
A. $M L^{-1} T^{-2}$
B. $M^{0} L T^{-2}$
C. $M L T^{-2}$
D. $M L^{2} T^{-2}$
234. Frequency is the function of density (ρ), length (a) and surface tension (T). Then its value is
A. $k \rho^{-1 / 2} a^{-3 / 2} \sqrt{T}$
B. $k \rho^{3 / 2} a^{3 / 2} / \sqrt{T}$
C. $k \rho^{\frac{1}{2}} a^{\frac{3}{2}} / T^{3 / 4}$
D. $k \rho^{1 / 2} a^{1 / 2} / T^{3 / 2}$

Answer: A

- Watch Video Solution

235. The dimensions of electric potential are
A. $\left[M L^{2} T^{-2} Q^{-1}\right]$
B. $\left[M L T^{-2} Q^{-1}\right]$
C. $\left[M L^{2} T^{-1} Q\right]$
D. $\left[M L^{2} T^{-2} Q\right]$

Answer: A

D Watch Video Solution

236. Dimensions of potential energy are
A. $M L T^{-1}$
B. $M L^{2} T^{-2}$
C. $M L^{-1} T^{-2}$
D. $M L^{-1} T^{-1}$
237. The dimension of $\frac{R}{L}$ are
A. T^{2}
B. T
C. T^{-1}
D. T^{-2}

Answer: C

- Watch Video Solution

238. The dimensions of shear modulus are
A. $M L T^{-1}$
B. $M L^{2} T^{-2}$
C. $M L^{-1} T^{-2}$
D. $M L T^{-2}$

Answer: C

D Watch Video Solution

239. Presure gradient has the ssame dimension as that of
A. Velocity gradient
B. Potential gradient
C. Energy gradient
D. None of these

- Watch Video Solution

240. If force F, Length L and time T are chosen as fundamental quantites, the dimensional formula for Mass is
A. $F L^{-1} T^{2}$
B. $F L^{-1} T^{-2}$
C. $F L^{-1} T^{-1}$
D. $F L^{2} T^{2}$

Answer: A

D Watch Video Solution
241. The dimensions of universal gas constant is
A. $\left[M L^{2} T^{-2} \theta^{-1}\right]$
B. $\left[M^{2} L T^{-2} \theta\right]$
C. $\left[M L^{3} T^{-1} \theta^{-1}\right]$
D. None of these

Answer: A

D Watch Video Solution

242. In the relation $y=a \cos (\omega t-k x)$, the dimensional formula for k is
A. $\left[M^{0} L^{-1} T^{-1}\right]$
B. $\left[M^{0} L T^{-1}\right]$
C. $\left[M^{0} L^{-1} T^{0}\right]$
D. $\left[M^{0} L T\right]$

Answer: C

- Watch Video Solution

243. Position of a body with acceleration a is given by $x=K a^{m} t^{n}$, here t is time Find demension of m and n.
A. $m=1, n=1$
B. $m=1, n=2$
C. $m=2, n=1$
D. $m=2, n=2$

Answer: B

244. "Pascal-Second" has dimension of

A. Force
B. Energy
C. Pressure
D. Coefficient of viscosity

Answer: D

- Watch Video Solution

245. In a system of units if force (F), acceleration (A) and time (T) are taken as fundamental units, then the dimensional formula of
A. $F A^{2} T$
B. $F A T^{2}$
C. $F^{2} A T$
D. $F A T$

Answer: B

D Watch Video Solution

246. Out of the following pair, which one NOT have identical dimensions is
A. Moment of inertia and moment of force
B. Work and torque
C. Angular momentum and Planck's constant
D. Impulse and momentum

- Watch Video Solution

247. The ratio of the dimension of Planck's constant and that of moment of inertia is the dimension of
A. Frequency
B. Velocity
C. Angular momentum
D. Time

Answer: A

D Watch Video Solution

248. Which of the following group have different dimension
A. Potential difference, EMF, voltage
B. Pressure, stress, young's modulus
C. Heat, energy, work-done
D. Dipole moment, electric flux, electric field

Answer: D

D View Text Solution

249. Out of following four dimensional quantities, which one quantity is to be called a dimensional constant
A. Acceleration due to gravity
B. Surface tension of water
C. Weight of a standard kilogram mass
D. The velocity of light in vacuum

Answer: D

- Watch Video Solution

250. Density of a liquid in CGS system is $0.625 \frac{g}{\mathrm{~cm}^{3}}$. What is its magnitude is SI system?
A. 0.625
B. 0.0625
C. 0.00625
D. 625
251. The period of oscillation of a simple pendulum is given by $T=2 \pi \sqrt{\frac{l}{g}}$ where I is about 100 cm and is known to have 1 mm accuracy. The period is about 2 s . The time of 100 oscillation is measrued by a stop watch of least count 0.1 s . The percentage error is g is
A. 0.1%
B. 1%
C. 0.2%
D. 0.8%

Answer: C

- Watch Video Solution

252. The percentage errors in the measurement of mass and speed are 2% and 3%, respectively. How much will be the maximum error in the estimation of $K E$ obtained by measuring mass and speed?
A. 0.11
B. 0.08
C. 0.05
D. 0.01

Answer: B

- Watch Video Solution

253. The random error in the arithmetic mean of 100 observations is x , then random error in the arithmetic mean of

400 observations would be

A. $4 x$
B. $\frac{1}{4} x$
C. $2 x$
D. $\frac{1}{2} x$

Answer: B

D Watch Video Solution

254. What is the number of significant figures in 0.310×10^{-2}
A. 2
B. 3
C. 4
D. 6

Answer: B

- Watch Video Solution

255. Errror in the measurement of radius of a sphere is 1%.The error in the calculated value of its volume is
A. 0.01
B. 0.03
C. 0.05
D. 0.07

Answer: B
256. The mean time period of second's pendulum is 2.00 s and mean absolute error in the time period is 0.05 s . To express maximum estimate of error, the time period should be written as
A. $(2.00 \pm 0.01) s$
B. $(2.00+0.025) s$
C. $(2.00 \pm 0.05) s$
D. $(2.00 \pm 0.10) s$

Answer: C

D Watch Video Solution

257. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Find the velocity of the body within error limits and the percentage error.
A. $(3.45 \pm 0.2) m s$
B. $(3.45 \pm 0.3) m s$
C. $(3.45 \pm 0.4) m s$
D. $(3.45 \pm 0.5) m s$

Answer: B

- Watch Video Solution

258. The unit of percentage error is
A. Same as that of physical quantity
B. Different from that of physical quantity
C. Percentage error is unit less
D. Errors have got their own units which are different from that of physical quantity measured

Answer: C

D Watch Video Solution

259. The decimal equivalent of $\frac{1}{20}$ up to three significant figures is
A. 0.05
B. 0.05
C. 0.005
D. 5.0×10

- Watch Video Solution

260. Accuracy of measurement is determined by
A. Absolute error
B. Percentage error
C. Both
D. None of these

Answer: B

261. The radius of a sphere is $(5.3 \pm 0.1) \mathrm{cm}$ ' The perecentage error in its volume is
A. $\frac{0.1}{5.3} \times 1000$
B. $3 \times \frac{0.1}{5.3} \times 100$
C. $\frac{0.1 \times 100}{3.53}$
D. $\pm \frac{0.1}{5.3} \times 100$

Answer: B

D Watch Video Solution

262. A thin copper wire of length l metre increases in length by 2% when heated through $10^{\circ} \mathrm{C}$. What is the percentage increase in area when a square copper sheet of length l metre is heated through $10^{\circ} \mathrm{C}$
A. 0.04
B. 0.08
C. 0.16
D. None of these

Answer: A

D Watch Video Solution

263. In the context of accuracy of measurement and significant figures in expressing result of experiment, which of the following is /are correct
(1) Out of the two measurements 50.14 cm and 0.00025 ampere, the first one has greater accuracy
(2) If one travels 478 km by rail and 397 m by road,, the total distance travelled is 478 km
A. Only (1) is correct
B. Only (2) is correct
C. Both are correct
D. None of them is correct

Answer: C

- Watch Video Solution

264. A physical parameter a can be determined by measuring the parameters b, c, d, and e using the relation $a=b^{\alpha} c^{\beta} / d^{\gamma} e^{\delta}$. If the maximum errors in the measurement of b, c, d, and $e^{a r e b} b_{1} \%, c_{1} \%, d_{1} \%$, and $e_{1} \%$, then the maximum error in the value of a determined by the experminent.
A. $\left(b_{1}+c_{1}+d_{1}+e_{1}\right) \%$
B. $\left(b_{1}+c_{1}-d_{1}-e_{1}\right) \%$
C. $\left(\alpha b_{1}+\beta c_{1}-\gamma d_{1}-\delta e_{1}\right) \%$
D. $\left(\alpha b_{1}+\beta c_{1}+\gamma d_{1}+\delta e_{1}\right) \%$

Answer: D

D Watch Video Solution

265. The relative density of material of a body is found by weighting it first in air and then in water. If the weight in air is $(5.00 \pm 0.05) N$ and the weight in water is $(4.00 \pm 0.05) N$. Find the relative density along with the maximum permissible percentage error.
A. $5.0 \pm 11 \%$
B. $5.0 \pm 1 \%$
C. $5.0 \pm 6 \%$
D. $1.25 \pm 5 \%$

Answer: A

- Watch Video Solution

266.

The
resistance
$R=V / i$,
where
$V=100 \pm 5 V$ and $I=10 \pm 0.2 A$. What is the total error in
R ?
A. 5%
B. 7%
C. 5.2%
D. $\frac{5}{2} \%$

- Watch Video Solution

267. The period of oscillation of a simple pendulum in the experiment is recorded as $2.63 s, 2.56 s, 2.42 s, 2.71 s$, and $2.80 s$
. Find the average absolute error.
A. $0.1 s$
B. $0.11 s$
C. 0.01
D. 1.0 s

Answer: B

268. The length of a cylinder is measured with a meter rod having least count 0.1 cm . Its diameter is measured with vernier calipers having least count 0.01 cm . Given that length is 5.0 cm . and radius is 2.0 cm . The percentage error in the calculated value of the volume will be
A. 0.01
B. 0.02
C. 0.03
D. 0.04

Answer: C

269. In an experiment, the following observations were recorded:
$L=2.820 \mathrm{~m}, M=3.00 \mathrm{~kg}, l=0.087 \mathrm{~cm}$, diameter,$D=0.041 \mathrm{~cm}$
. Taking $g=9.81 \mathrm{~ms}^{-2}$ and using the formula , $Y=\frac{4 M g L}{\pi D^{2} l}$, find the maximum permissible error in Y.
A. 7.96%
B. 4.56%
C. 6.50%
D. 8.42%

Answer: C

- Watch Video Solution

270. According to Joule's law of heating , heat produced $H=I^{2} R t$, where I is current, R is resistance and t is time. if the errors in the measurement of I, R, and t are $3 \%, 4 \%$, and 6% respectively, find error in the measurement of H.
A. $\pm 17 \%$
B. $\pm 16 \%$
C. $\pm 19 \%$
D. $\pm 25 \%$

Answer: B

D Watch Video Solution

271. If there is a positive error of 50% in the measurement of velocity of a body, find the error in the measurement of kinetic

energy.

A. 0.25
B. 0.5
C. 1
D. 1.25

Answer: D

D Watch Video Solution

272. A physical quantity P is given by $P=\frac{A^{3} B^{1 / 2}}{C^{-4} D^{3 / 2}}$. Which quantity among A, B, C, and D brings in the maximum percentage error in P ?
A. A
B. B
C. C
D. D

Answer: C

- Watch Video Solution

273. If $L=2.331 \mathrm{~cm}, B=2.1 \mathrm{~cm}$, then ${ }^{`} \mathrm{~L}+\mathrm{B}=$
A. 4.431 cm
B. 4.43 cm
C. 4.4 cm
D. 4 cm

Answer: C

274. The number of significant figures in all the given numbers $25.12,2009,4.156$ and 1.217×10^{-4} is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

275. If the length of $\operatorname{rod} A$ is $3.25 \pm 0.01 \mathrm{~cm}$ and that of B is 4.19
$\pm 0.01 \mathrm{~cm}$ then the $\operatorname{rod} B$ is longer than rod A by
A. $0.94 \pm 0.00 \mathrm{~cm}$
B. $0.94 \pm 0.01 \mathrm{~cm}$
C. $0.94 \pm 0.02 \mathrm{~cm}$
D. $0.94 \pm 0.005 \mathrm{~cm}$

Answer: C

- Watch Video Solution

276. A physical quantity is given by $X=M^{a} L^{b} T^{c}$. The percentage error in measurement of M, L and T are α, β and γ respectively. Then maximum percentage error in the quantity X is
A. $a \alpha+b \beta+c \gamma$
B. $a \alpha+b \beta-c \gamma$
C. $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}$
D. None of these

Answer: A

- Watch Video Solution

277. A physical quantity A is related to four observable a, b, c and d as follows, $A=\frac{a^{2} b^{3}}{c \sqrt{d}}$, the percentage errors of measurement is a,b,c and d,are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A ?
A. 0.12
B. 0.07
C. 0.05
D. 0.14

- Watch Video Solution

278. If the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$ and unit of
length and time are changed in kilometer and hour respectively the numerical value of the acceleration is
A. 360000
B. 72000
C. 36000
D. 129600

Answer: D

- Watch Video Solution

279. If L, C and R represent inductance, capacitance and resistance respectively, then which of the following does not represent dimensions of frequency
A. $\frac{1}{R C}$
B. $\frac{R}{L}$
C. $\frac{1}{\sqrt{L C}}$
D. $\frac{C}{L}$

Answer: D

D Watch Video Solution

280. Number of particles is given by $n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}}$ crossing a unit area perpendicular to X-axis in unit time, where n_{1} and n_{2} are number of particles per unit volume for the value of x
meant to x_{2} and x_{1}. Find dimensions of D called as diffusion constant
A. $M^{0} L T^{2}$
B. $M^{0} L^{2} T^{-4}$
C. $M^{0} L T^{-3}$
D. $M^{0} L^{2} T^{-1}$

Answer: D

- Watch Video Solution

281. With the usual notations the following equation

$$
S_{t}=u+\frac{1}{2} a(2 t-1) \text { is }
$$

A. Only numerically correct
B. Only dimensionally correct
C. Both numerically and dimensionally correct
D. Neither numerically nor dimensionally correct

Answer: C

- Watch Video Solution

282. If the dimenisons of length are expressed as $G^{x} c^{y} h^{z}$, where
G, c and h are the universal gravitational constant, speed of light and Plank's constant respectively, then
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=\frac{1}{2}, z=\frac{1}{2}$
C. $y=\frac{1}{2}, z=\frac{3}{2}$
D. $y=-\frac{3}{2}, z=\frac{1}{2}$

- Watch Video Solution

283. A highly rigid cubical block A of small mass M and side L is
fixed rigidly on the other cubical block of same dimensions and of modulus of rigidity η such that the lower face of A completely covers the upper face of B. The lower face of B is rigidly held on a horizontal surface.A small force F is applied perpendicular to one of the side faces of A. After the force is withdrawn, block A executes faces of A. After the force is withdrawn, block A exceutes small oscillations, the time period of which is given by
A. $2 \pi \sqrt{\frac{M \eta}{L}}$
B. $2 \pi \sqrt{\frac{L}{M \eta}}$
C. $2 \pi \sqrt{\frac{M L}{\eta}}$
D. $2 \pi \sqrt{\frac{M}{e g a L}}$

Answer: D

- Watch Video Solution

284. The pairs of physical quantities that have the same dimensions is (are):
A. Reynolds number and coefficient of friction
B. Latent heat and gravitational potential
C. Curie and frequency of a light wave
D. Planck's constant and torque

- Watch Video Solution

285. The speed of light (c), gravitational constant (G) and plank's constant (h) are taken as fundamental units in a system. The dimensions of time in this new system should be.
A. $G^{1 / 2} h^{1 / 2} c^{-5 / 2}$
B. $G^{-1 / 2} h^{1 / 2} c^{1 / 2}$
C. $G^{1 / 2} h^{1 / 2} c^{-3 / 2}$
D. $G^{1 / 2} h^{1 / 2} c^{1 / 2}$

Answer: A

- Watch Video Solution

286. If the constant of gravitation (G), Planck's constant (h) and the velocity of light (c) be chosen as fundamental units. The dimension of the radius of gyration is
A. $h^{1 / 2} c^{-3 / 2} G^{1 / 2}$
B. $h^{1 / 2} c^{3 / 2} G^{1 / 2}$
C. $h^{1 / 2} c^{-3 / 2} G^{-1 / 2}$
D. $h^{-1 / 2} c^{-3 / 2} G^{1 / 2}$

Answer: A

- Watch Video Solution

287. $X=3 Y Z^{2}$ find dimension of Y in (MKSA) system, if X and Z are the dimension of capacity and magnetic field respectively
A. $M^{-3} L^{-2} T^{-4} A^{-1}$
B. $M L^{-2}$
C. $M^{-3} L^{-2} T^{4} A^{4}$
D. $M^{-3} L^{-2} T^{8} A^{4}$

Answer: D

- Watch Video Solution

288. In the relation $P=\frac{\alpha}{\beta} e^{-\alpha z / k \theta}, P$ is preesure, K is Botzmann's constant, Z is distance and θ is temperature. The dimensional formula of β wll be
A. $\left[M^{0} L^{2} T^{0}\right]$
B. $\left[M^{1} L^{2} T^{1}\right]$
C. $\left[M^{1} L^{0} T^{-1}\right]$
D. $\left[M^{0} L^{2} T^{-1}\right]$

Answer: A

- Watch Video Solution

289. The frequency of vibration of string is given by $v=\frac{p}{2 l}\left[\frac{F}{m}\right]^{1 / 2}$. Here p is number of segments in the string and l is the length. The dimensional formula for m will be
A. $\left[M^{0} L T^{-1}\right]$
B. $\left[M L^{0} T^{-1}\right]$
C. $\left[M L^{-1} T^{0}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

290. Matching

(i) Curie
(A) $M L T^{2}$
(ii) Light year
(B) M
(iii) Dielectric strength
(C) Dimensionless
(iv) Atomic weight
(D) T
(v) Decibel
(E) $M L^{2} T^{-2}$
(F) $M T^{-3}$
(G) T^{-1}
A. (i) G, (ii) H, (iii) C, (iv) B, (v) C
B. (i) D, (ii) H, (iii) I, (iv) B, (v) G
C. (i) G, (ii) H, (iii) I, (iv) B, (v) G
D. None of the above

Answer: A

D View Text Solution
291. A wire has a mass $0.3 \pm 0.003 \mathrm{~g}$, radius $0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The maximum percentage error in the measurement of its density is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

292. If 97.52 is divided by 2.54 , the correct result in terms of significant figures is
A. 38.4
B. 38.3937
C. 38.394
D. 38.39

Answer: A

- Watch Video Solution

293. Assertion : 'Light year' and 'Wavelength' both measure distance.

Reason : Both have dimensions of time.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

294. Assertion : Light year and year, both measure time.

Reason : Because light year is the time light takes to reach the earth from the sun.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

D Watch Video Solution

295. Assertion : Force cannot be added to pressure.

Reason : Because their dimensons are different.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

296. Assertion : Linear mass density has the dimensions of $\left[M^{1} L^{-1} T^{0}\right]$.

Reason : Because density is always mass per unit volume.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

297. Assertion : Rate of flow of a liquid represents velocity of flow Reason : The dimensions of rate of flow are $\left[M^{0} L^{1} T^{-1}\right]$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

- Watch Video Solution

298. Assertion : Units of Rydberge constant R are m^{-1}.

Reason : It follows from Bohr's formula $\left[\bar{V}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)\right]$, where the symbole have their usual meaning.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

- Watch Video Solution

299. Assertion : Parallax method cannot be used for measuring distance of stars morer then 100 light year away.

Reason : Because parallax angle reduces so much that it cannot be measured accurately.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

- Watch Video Solution

300. Assertion : Number of significant figure in 0.005 is one and that is 0.500 is three

Reason : This is became zeros are not significant
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

(-) Watch Video Solution

301. Assersion : Out of three meansurements
$l=0.7 m, l=0.70 m$ and $l=0.700 m$ the last one is most accurate.

Reason: In every meansurements only the last significant digit is not accurately known.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

- Watch Video Solution

302. Assertion : Mass, length and time are fundamental physical quantities.

Reason : They are independent of each other.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

- Watch Video Solution

303. Assertion : Density is a derived physical quantity.

Reason : Density cannot be derived from the fundamental physical quantities.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

304. Assertion : Now a days a standard metre is defined as in terms of the wavelength of light.

Reason : Light has no relation with length.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

305. Assertion : Radar is used to detect an aeroplane in the sky

Reason : Radar works on the principle of reflection of waves.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

306. Assertion : Surface tension and surface energy have the same dimensions.

Reason : Because both have the same S.I. unit
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D Watch Video Solution

307. Assertion: In $y=A \sin (\omega t-k x),(\omega t-k x)$ is dimensionless.

Reason: Because dimension of $\omega=\left[M^{0} L^{0} T\right]$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

(D) Watch Video Solution

308. Assertion : Radian is the unit of distance.

Reason: One radian is the angle subtended at the centre of a circle by an arc equal in length to the radius of the circle.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

D Watch Video Solution

309. Assertion : A.U. is much bigger than \AA.

Reason : A.U. stands for astronomical unit and \AA stands from

Angstrom.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

310. Assertion: When we change the unit of measurerment of a quantity its numerical value changes.

Reason: Smaller the unit of measurement smaller is its numerical value.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

311. Assertion: Dimensional constant are the quantites whose value are constant.

Reason: Dimensional constant are Dimensionless.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D Watch Video Solution

312. Assertion : The time period of a pendulum is given by the formula, $T=2 \pi \sqrt{g / l}$.

Reason : According to the principle of homogeneity of
dimensions, only that formula is correct in which the dimensions of L.H.S. is equal to dimensions of R.H.S.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

313. Assertion: In the relation $f=\frac{1}{2 l} \sqrt{\frac{T}{m}}$, where symbols have standard meaning, m represent linear mass density.

Reason: The frequency has the dimensions linear of time.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

314. Assertion: The graph between P and Q is straight line, when P / Q is constant.

Reason: The straight line graph means that P proportional to Q or P is equal to constant multiplied by Q
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

315. Assertion : Avogadro number is the number of atoms in onegram mole.

Reason : Avogadro number is a dimensionless constant.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

316. Assertion : L / R and $C R$ both have same dimensions

Reason L / R and $C R$ both have dimensions of time
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

(D) Watch Video Solution

317. Assertion: the quantity $\left(1 / \sqrt{\mu_{0} \varepsilon_{0}}\right)$ is dimensionally equal to velocity and numerical equal to velocity of light.

Reason : μ_{0} is permeability of free space and ε_{0} is the permitivity of free space.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

(D) Watch Video Solution

318. The surface tension of a liquid is 70 dyne $/ \mathrm{cm}$. In MKS system its value is
A. $70 \mathrm{~N} / \mathrm{m}$
B. $7 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $7 \times 10^{3} \mathrm{~N} / \mathrm{m}$
D. $7 \times 10^{2} \mathrm{~N} / \mathrm{m}$

Answer:

- Watch Video Solution

319. The SI unit of gravitational constant is
A. Watt $K^{-1} \mathrm{~mol}^{-1}$
B. Newton $K^{-1} \mathrm{~mol}^{-1}$
C. Joule $K^{-1} \mathrm{~mol}^{-1}$
D. $E r g K^{-1} \mathrm{~mol}^{-1}$

Answer:

320. The unit of permittivity of free space ε_{0} is:
A. Coulomb/Newton-metre
B. Newton- metere ${ }^{2} /$ Coulomb 2
C. Coulomb ${ }^{2} /\left(\right.$ Newton- metre $\left.^{2}\right)$
D. Coulomb ${ }^{2} /$ Newton $=$ metre 2

Answer:

D Watch Video Solution

321. The temperature of a body on Kelvin scale is found to be $x \mathrm{~K}$
. When it is measured by Fahrenheit thermometer, it is found to be $x^{\circ} F$, then the value of x is
A. 301.25
B. 574.25
C. 313
D. 40

Answer:

D Watch Video Solution

322. What are the units of $K \frac{1}{4 \pi \epsilon_{0}}$?
A. $C^{2} N^{-1} m^{-2}$
B. $N m^{2} C^{-2}$
C. $N m^{2} C^{2}$
D. Unitless
323. S.I. Unit of surface tension is:
A. Dyne/cm
B. Newton/cm
C. Newton/metre
D. Newton-metre

Answer:

324. If E, M, J, and G, respectively, denote energy, mass, angular momentum , and gravitational constant , then $E J^{2} / M^{5} G^{2}$ has the dimensions of
A. Angle
B. Length
C. Mass
D. Time

Answer:

- Watch Video Solution

325. From the equation $\tan \theta=\frac{r g}{v^{2}}$ one can obtain the angle of banking θ for a cyclise taking a curve (the symbols have their usual meanings). Then say, it is
A. Both dimensionally and numerically correct
B. Neither numerically nor dimensionally correct
C. Dimensionally correct only
D. Numerically correct only

Answer:

D Watch Video Solution

326. A dimensionally consistent relation for the volume V of a liquid of coefficiet of viscosity η flowing per second through a tube of radius r and length l and having a pressure difference p across its end, is
A. $V=\frac{\pi p r^{4}}{8 \eta l}$
B. $V=\frac{\pi \eta l}{8 p r^{4}}$
C. $V=\frac{8 p \eta l}{\pi r^{4}}$
D. $V=\frac{\pi p \eta}{8 l r^{4}}$

Answer:

- Watch Video Solution

327. The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of a, b, c are respectively :-
A. $a=L^{2}, b=T, c=L T^{2}$
B. $a=L T^{2}, b=L T, c=L$
C. $a=L T^{-2}, b=L, c=T$
D. $a=L, b=L T, c=T^{2}$

- Watch Video Solution

328. From the dimensional consideration, which of the following
equation is correct
A. $T=2 \pi \sqrt{\frac{R^{3}}{G M}}$
B. $T=2 \pi \sqrt{\frac{G M}{R^{3}}}$
C. $T=2 \pi \sqrt{\frac{G M}{R^{20}}}$
D. $T=2 \pi \sqrt{\frac{R^{2}}{G M}}$

Answer:

329. The position of a particle at time t is given by the relation $x(t)=\left(\frac{v_{0}}{\alpha}\right)\left(1-e^{-\alpha t}\right)$ where v_{0} is a constant and $\alpha>0$. Find the dimensions of v_{0} and α
A. $M^{0} L^{1} T^{-1}$ and T^{-1}
B. $M^{0} L^{1} T^{0}$ and T^{-1}
C. $M^{0} L^{1} T^{-1}$ and $L T^{-2}$
D. $M^{0} L^{1} T^{-1}$ and T

Answer:

- Watch Video Solution

330. The equation of state of some gases can be expressed as $\left(P+\frac{a}{V^{2}}\right)=\frac{R \theta}{V}$ where P is the pressure V the volume, θ The
temperature and a and b are constant .The dimensional formula of a is
A. $\left[M L^{5} T^{-2}\right]$
B. $\left[M^{-1} L^{5} T^{-2}\right]$
c. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{-5} T^{-2}\right]$

Answer: a

- Watch Video Solution

331. The dimensins of $\frac{a}{b}$ in the equation $P=\frac{a-t^{2}}{b x}$ where P is pressure x is distance and t is time, are
A. $M T^{-2}$
B. $M^{2} L T^{-3}$
C. $M L^{3} T^{-1}$
D. $L T^{-3}$

Answer:

- Watch Video Solution

332. Dimension of $\frac{1}{\mu_{0} \varepsilon_{0}}$, where symbols have usual meaning, are
A. $\left[L T^{-1}\right]$
B. $\left[L^{-1} T\right]$
C. $\left[L^{-2} T^{2}\right]$
D. $\left[L^{2} T^{-2}\right]$

Answer:

333. The dimensions of $e^{2} / 4 \pi \varepsilon_{0} h c$, where e, ε_{0}, h and c are electronic charge, electric permittivity, Planck's constant and velocity of light in vacuum respectively
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M^{1} L^{0} T^{0}\right]$
C. $\left[M^{0} L^{1} T^{0}\right]$
D. $\left[M^{0} L^{0} T^{1}\right]$

Answer:

- Watch Video Solution

334. The radius of a sphere is $(5.3 \pm 0.1) \mathrm{cm}$ ` The perecentage error in its volume is
A. $3+3.01 \times \frac{100}{5.3}$
B. $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$
C. $\left(\frac{3 \times 0.1}{5.3}\right) \times 100$
D. $\frac{0.1}{5.3} \times 100$

Answer:

- Watch Video Solution

335. The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate. If the maximum error in measurement of force and length are respectively 4% and 2%, the maximum error in the measurement of pressure is
A. 0.01
B. 0.02
C. 0.06
D. 0.08

Answer:

- Watch Video Solution

336. While measuring the acceleration due to gravity by a simple pendulum, a student makes a positive error of 1% in the length of the pendulum and a negative error of 3% in the value of time period. His percentage error in the measurement of g by the relation $g=4 \pi^{2}\left(l / T^{2}\right)$ will be
A. 0.02
B. 0.04
C. 0.07
D. 0.1

Answer:

- Watch Video Solution

337. The length, breadth and thickness of a block are given by $\mathrm{I}=12 \mathrm{~cm}, \mathrm{~b}=6 \mathrm{~cm}$ and $\mathrm{t}=2.45 \mathrm{~cm}$. The volume of the block according to the idea of significant figures should be
A. $1 \times 10^{2} \mathrm{~cm}^{3}$
B. $2 \times 10^{2} \mathrm{~cm}^{3}$
C. $1.763 \times 10^{2} \mathrm{~cm}^{3}$
D. None of these
