びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)
 WORK, ENERGY, POWER \& COLLISION

MCQ s

1. A body of mass m is moving in a circle of radius
r with a constant speed v, The force on the body
is $\frac{m v^{2}}{r}$ and is directed towards the centre what
is the work done by the from in moving the body over half the circumference of the circle?
A. $\frac{m v^{2}}{\pi r^{2}}$
B. zero
C. $\frac{m v^{2}}{r^{2}}$
D. $\frac{\pi r^{2}}{m v^{2}}$

Answer: B

Watch Video Solution

2. If the unit of length and force be increased four times, then the unit of energy is
A. 16 times
B. 8 times
C. 2 times
D. 4 times

Answer: A
(D) Watch Video Solution
3. A man pushes a wall and fails to displace it.He does
A. Negative work
B. positive but not maximum work
C. No work at all
D. Maximum work

Answer: C

4. A moving train is stopped by applying brakes. It stops after travelling 80 m . If the speed of the train is doubled and retardation remain the same, it will cover a distance-
A. The
B. Doubled
C. Halved
D. Four time

Answer: D
5. A rigid body moves a distance of 10 m along a straight line under the action of a force 5 N . If the work done by this force on the body is 25 joules, the angle which the force makes with the the direction of motion of the body is:
A. 0°
B. 30°
C. 60°
D. 90°
6. you lift a heavy book from the floor of the room and keep it in the book-shelf having a height $2 m$ in this process you take 5 sec onds The work done you will depend upon
A. Mass of the book and time taken
B. Weight of the book and height of the bookshelf
C. Height of the book-shelf and time taken

D. Mass of the book, height of the book-shelf

and time taken

Answer: B

D Watch Video Solution

7. A body of mass $m k g$ is lifted by a man to a height of one metre in 30 sec . Another man lifted the same mass to the same height in 60 sec . The work done by them are in the ratio.
A. 1: 2
B. 1: 1
C. 2:1
D. $4: 1$

Answer: B

D Watch Video Solution

8. A force $\vec{F}=(5 \hat{i}+3 \hat{j})$ Newton is applied over a particle which displaces it from its origin to the point $\vec{r}=(2 \hat{i}-1 \hat{j})$ metres. The work done on the particle is
A. -7 joules
B. +13 joules
C. +7 joules
D. +11 joules

Answer: C

D Watch Video Solution

9. A foce acts on a 30 gram particle in such a way
that the position of the particle as a function of time is given by
$x=3 t-4 t^{2}+t^{3}$, where x is in meter and t in second. The work done during the first 4 s is
A. 528 mJ
B. 450 mJ
C. 490 mJ
D. 530 mJ

Answer: A
(D) Watch Video Solution
10. A body of mass 10 kg is dropped to the ground from a height of 10 metres. The work
done by the gravitational force is
$\left(g=9.8 m / \sec ^{2}\right)$
A. -490 joules
B. +490 joules
C. -980 joules
D. +980 joules

Answer: D

11. Which of the following is a scalar quantity
A. Displacement
B. Electric field
C. Acceleration
D. Work

Answer: D
(D) Watch Video Solution
12. The work done in pulling up a block of wood weighing 2 kN for a length of 10 m on a smooth plane inclined at an angle of 15° with the horizontal is
A. 4.36 kJ
B. 5.17 kJ
C. 8.91 kJ
D. 9.82 kJ

Answer: B

- Watch Video Solution

13. A force $\vec{F}=5 \hat{i}+6 \hat{j}+4 \hat{k}$ acting on a body, produces a displacement $\vec{S}=6 \hat{i}-5 \hat{k}$. Work done by the force is
A. 18 units
B. 15 units
C. 12 units
D. 10 units

Answer: D
14. A force of 5 N acts on a 15 kg body initially at rest. The work done by the force during the first second of motion of the body is
A. 5 J
B. $\frac{5}{6} \mathrm{~J}$
C. 6 J
D. 75 J

Answer: B
(D) Watch Video Solution
15. A force of 5 N , making an angle θ with the horizontal, actig on an object displaces it by 0.4 m along the horizontal direction. If the object gains kinetic energy of 1 J . The horizontal component of the force is
A. 1.5 N
B. 2.5 N
C. 3.5 N
D. 4.5 N

Answer: B
16. The work done against gravity in taking 10 kg mass at 1 m height in 1 sec will be
A. 49 J
B. 98 J
C. 196 J
D. none of these

Answer: B

D Watch Video Solution
17. The energy which an $e^{-} \mathrm{e}$ acquires when accelerated through a potential difference of 1 volt is called
A. 1 joule
B. 1 electron volt
C. 1 Erg
D. 1 Watt.

Answer: B
(D) Watch Video Solution
18. A body of mass 6 kg is under a force which causes displacement in it given by $S=\frac{t^{2}}{4}$ maters where t is time. The work done by the force in 2 sec is
A. 12 J
B. 9 J
C. 6 J
D. 3 J

Answer: D
19. A body of mass 10 kg at rest is acted upon
simultaneously by two forces 4 N and 3 N at right angles to each other. The kinetic energy of the body at the end of 10 sec is
A. 100 J
B. 300 J
C. 50 J
D. 125 J

Answer: D
(D) Watch Video Solution
20. A cylinder of 10 kg is sliding in a plane with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. If the coefficient of
friction between the surface and cylinder is 0.5
then before stopping, it will cover.
$\left(g=10 m / s^{2}\right)$
A. 12.5 m
B. 5 m
C. 7.5 m
D. 10 m

- Watch Video Solution

21. A force $(3 \hat{i}+4 \hat{j})$ newton acts on a boby and displaces it by $(3 \hat{i}+4 \hat{j})$ metre. The work done by the force is
A. 10 J
B. 12 J
C. 16 J
D. 25 J
22. A 50 kg man with 20 kg load on his head climbs up 20 steps of 0.25 m height each. The work done in climbing is
A. 5 J
B. 350 J
C. 100 J
D. 3430 J

Answer: D
23. A force $\vec{F}=6 \hat{i}+2 \hat{j}-3 \hat{k}$ acts on a particle and produces a displacement of
$\vec{s}=2 \hat{i}-3 \hat{j}+x \hat{k}$. If the work done is zero, the
value of x is
A. -2
B. $1 / 2$
C. 6
D. 2

D Watch Video Solution

24. A particle moves from position $3 \hat{i}+2 \hat{j}-6 \hat{k}$ to $14 \hat{i}+13 \hat{j}+9 \hat{k}$ due to a uniform force of $(4 \hat{i}+\hat{j}+3 \hat{k}) N$. If the displacement in meters then work done will be
A. 100J
B. 50 J
C. 200 J
D. 75 J

Answer: A

D Watch Video Solution

25. A force $\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k}$ acting on a particle causes a displacement $\vec{d}=-4 \hat{i}+2 \hat{j}-3 \hat{k}$. If the work done is 6 J . then the value of c will be
A. 0
B. 1
C. 6
D. 12

Answer: D

D Watch Video Solution

26. In an explosion a body breaks up into two pieces of unequal masses. In this
A. Both parts will have numerically equal momentum
B. Lighter part will have more momentum
C. Heavier part will have more momentum
D. Both parts will have equal kinetic energy.

Answer: A

D Watch Video Solution

27. Which of the following is a unit of energy
A. unit
B. watt
C. horse power
D. none

Answer: D

D Watch Video Solution

28. If force and displacement of particle in direction of force doubled. Work would be
A. Double
B. 4 times
C. half
D. $\frac{1}{4}$ times
29. A body of mass 5 kg is placed at the origin, and can move only on the x -axis. A force of 10 N is acting on it in a direction making an angle of o 60° with the x-axis and isplaces it along the x-axis by 4 metres. The work done by the force is
A. 2.5 J
B. 7.25 J
C. 40 J
D. 20 J

Answer: D

D Watch Video Solution

30. A force $\vec{F}=(5 \hat{i}+4 \hat{j}) N$ acts on a body and produces a displacement $\vec{S}=(6 \hat{i}-5 \hat{j}+3 \hat{k})$ m . The work done will be
A. 10 J
B. 20 J
C. 30 J
D. 40 J

Answer: A

D Watch Video Solution

31. A uniform chain of length $2 m$ is kept on a table such that a length of 60 cm hangas freely from the adge of the table. The table. The total mass of the chain ia $4 k g$ What is the work done in pulling the entire the chain the on the table?
A. 7.2 J
B. 3.6 J
C. 120 J
D. 1200 J

Answer: B

D Watch Video Solution

32. A particle is acted upon by a force of constant magnitude which is always perpendiculr to the velocity of the particle. The motion of the particle takes place in a plane. It follows that
A. Its velocity is constant
B. Its acceleration is constant
C. Its kinetic energy is constant (
D. It moves in a straight line

Answer: C

D Watch Video Solution

33. A ball of mass m moves with speed v and stricks a wall having infinite mass and it returns
with same speed then the work done by the ball on the wall is
A. zero
B. mv J
C. m/v. J
D. $\mathrm{v} / \mathrm{m} \mathrm{J}$

Answer: A

D Watch Video Solution

34. A force $\vec{F}=(5 \hat{i}+3 \hat{j}) N$ is applied over a particle which displaces it from its original position to the point $\vec{s}=S(2 \hat{i}-1 \hat{j}) m$. The work done on the particle is
A. -7
B. +7
C. +10
D. +13

Answer: B

(D) Watch Video Solution

35. The KE acquired by a mass m in travelling a certain distance s, starting from rest, under the
action of a constant force is directly proportional to :
A. m^{0}
B. m
C. m^{2}
D. \sqrt{m}

Answer: A
(D) Watch Video Solution
36. If force $(\vec{F})=4 \hat{i}+4 \hat{j}$ and displacement $(\vec{s})=3 \hat{i}+6 \hat{k}$ then the work done is
A. 4×6 unit
B. 6×3 unit
C. 5×6 unit
D. 4×3 unit

Answer: D

- Watch Video Solution

37. A man starts walking from a point on the surface of earth (assumed smooth) and reaches
diagonally opposite point. What is the work done by him
A. zero
B. positive
C. negative
D. Nothing can be said
38. It is easier to draw up a wooden block along an inclined plane than to haul it vertically, principally because
A. The friction is reduced
B. The mass becomes smaller
C. Only a part of the weight has to be overcome
D. 'g'becomes smaller

Answer: C
39. Two bodies of masses 1 kg and 5 kg are dropped gently from the top of a tower. At a point 20 cm from the ground, both the bodies will have the same
A. Momentum
B. Kinetic energy
C. Velocity
D. Total energy

- Watch Video Solution

40. Due to a force of $(6 \hat{i}+2 \hat{j}) N$ the displacement of a body is $(3 \hat{i}-\hat{j}) m$, then the work done is
A. 16 J
B. 12 J
C. 8 J
D. zero
41. A ball is dropped from the top of a tower. The ratio of work done by force of gravity in $1^{s t}, 2^{\text {nd }}$, and $3^{r d}$ second of the motion of ball is
A. $1: 2: 3$
B. 1:4:9
C. $1: 3: 5$
D. 1:5:3

Answer: C
42. A particale moves under the effect of a force
$F=C s$ from $x=0$ to $x=x_{1}$. The work down in the process is
A. $C x_{1}^{2}$
B. $\frac{1}{2} C x_{1}^{2}$
C. $C x_{1}$
D. zero

Answer: B
43. A cord is used to lower vertically a block of mass M, a distance d at a constant downward acceleration of $\frac{g}{4}$, then the work done by the cord on the block is
A. $\operatorname{Mg} \frac{d}{4}$
B. $3 \mathrm{Mg} \frac{d}{4}$
C. $-3 \mathrm{Mg} \frac{d}{4}$
D. $M g d$

Answer: C
44. Two springs have their force constant as k_{1} and $k_{2}\left(k_{1}>k_{2}\right)$. When they are streched by the same force.
A. No work is done in case of both the springs
B. Equal work is done in case of both the springs
C. More work is done in case of second spring
D. More work is done in case of first spring

Answer: C

D Watch Video Solution

45. A spring of force constant $10 \mathrm{~N} / \mathrm{m}$ has an initial stretch 0.20 m . In changing the stretch to
0.25 m , the increase in potential energy is about

A. 0.1 joule

B. 0.2 joule
C. 0.3 joule
D. 0.5 joule

Answer: A

D Watch Video Solution

46. The potential energy of a certain spring when stretched through a distance ' S ' is 10 joule. The amount of work (in joule) that must be done on this spring to stretch it through an additional distance 'S' will be
A. 30
B. 40
C. 10
D. 20

Answer: A

D Watch Video Solution

47. Two springs of spring constants $1500 \mathrm{~N} / \mathrm{m}$ and $3000 \mathrm{~N} / \mathrm{m}$ respectively are streched by the same force. The potential energy gained by the two springs will be in the ratio
A. $4: 1$
B. 1: 4
C. 2:1
D. 1:2

Answer: C

D Watch Video Solution

48. A spring 40 mm long is stretched by the application of a force. If 10 N force required to stretch the spring through 1 mm , then the work done in stretching the spring through 40 mm is
A. 84 J
B. 68 J
C. 23 J
D. 8 J

Answer: D

- Watch Video Solution

49. A force $\vec{F}=\left(7-2 x+3 x^{2}\right) \mathrm{N}$ is applied on
a 2 kg mass which displaces it from $\mathrm{x}=0$ to $\mathrm{x}=5$
m . Work done in joule is -
A. 70
B. 270
C. 35
D. 135

Answer: D

- Watch Video Solution

50. A body of mass $3 k g$ is under a force, which causes a displacement in it is given by $S=\frac{t^{3}}{3}$ (in metres). Find the work done by the force in first 2 seconds.
A. 2 J
B. 3.8 J
C. 5.2 J
D. 24 J

Answer: D

(D) Watch Video Solution

51. The force constant of a wire is k and that of another wire is . 2 k When both the wires are
stretched through same distance, then the work
done
A. $W_{2}=2 W_{1}^{2}$
B. $W_{2}=2 W_{1}$
C. $W_{2}=W_{1}$
D. $W_{2}=0.5 W_{1}$

Answer: B
(D) Watch Video Solution
52. A body of mass 0.1 g moving with a velocity of
$10 \mathrm{~m} / \mathrm{s}$ hits a spring (fixed at the other end) of
force constant $1000 \mathrm{~N} / \mathrm{m}$ and comes to rest after
compressing the spring. The compression of the spring is
A. 0.01 m
B. 0.1 m
C. 0.2 m
D. 0.5 m
53. When a 1.0 kg mass hangs attached to a spring of length 50 cm , the spring stretches by

2 cm . The mass is pulled down until the length of the spring becomes 60 cm . What is the amount of elastic energy stored in the spring in this condition. if $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 1.5 joule
B. 2.0 joule
C. 2.5 joule
D. 3.0 joule

Answer: C

D Watch Video Solution

54. A spring of force constant $800 \mathrm{~N} / \mathrm{m}$ has an extension of 5 cm . The work done in extending it from 5 cm to 15 cm is
A. 16 J
B. 8 J
C. 32 J
D. 24 J

Answer: B

D Watch Video Solution

55. When a spring is stretched by 2 cm , it stores

100 J of energy. If it is further stretched by 2 cm ,
the stored energy will be increased by
A. 100 J
B. 200 J
C. 300 J
D. 400 J

Answer: C

- Watch Video Solution

56. A spring when stretched by 2 mm its potential energy becomes 4 J . If it is stretched by 10 mm , its potential energy is equal to
A. 4 J
B. 54 J
C. 415 J
D. none

Answer: D

D Watch Video Solution

57. A spring of spring constant $5 \times 10^{3} \mathrm{~N} / \mathrm{m}$ is stretched initially by 5 cm from the unstretched position. The work required to further stretch the spring by another 5 cm is .
A. $6.25 \mathrm{~N}-\mathrm{m}$
B. $12.50 \mathrm{~N}-\mathrm{m}$
C. $18.75 \mathrm{~N}-\mathrm{m}$

D. $25.00 \mathrm{~N}-\mathrm{m}$

Answer: C

D Watch Video Solution

58. A mass of 0.5 kg moving with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ on a horizontal smooth surface, collides
with a nearly weightless spring of force constant
$k=50 \mathrm{~N} / \mathrm{m}$ The maximum compression of the spring would be.
A. 0.15 m
B. 0.12 m
C. 1.5 m
D. 0.5 m

Answer: A

- Watch Video Solution

59. A particle move in a straight line with retardation proportional to its displacement its loss of kinectic energy for any displacement x is proportional to
A. x^{2}
B. e^{x}
C. x
D. $\log _{e} x$

Answer: A

(D) Watch Video Solution

60. A spring with spring constant K when stretched through 1 cm , the potential energy is U
. If it stretched by 4 cm , the potential energy will
be
A. 4 U
B. 8 U
C. 16 U
D. 2 U

Answer: C
(D) Watch Video Solution
61. A spring with spring constant k is extended from $\mathrm{x}=0$ to $x=x_{1}$. The work done will be
A. $k x_{1}^{2}$
B. $\frac{1}{2} k x_{1}^{2}$
C. $2 k x_{1}^{2}$
D. $2 k x_{1}$

Answer: B

D Watch Video Solution

62. A long elastic spring is stretched by 2 cm and its potential energy is U. If the spring is stretched by 10 cm , the $P E$ will be
A. $\frac{U}{5}$
B. U
C. $5 U$
D. $25 U$

Answer: D
(D) Watch Video Solution
63. Natural length of a spring is 60 cm , and its spring constant is $4000 \mathrm{~N} / \mathrm{m}$, A mass of 20 kg is hung from it. The extension produced in the spring is (take $g=9.8 m / s^{2}$)
A. 4.9 cm
B. 0.49 cm
C. 9.4 cm
D. 0.94 cm

Answer: A
64. If a spring extends by x on loading, then the energy stored by the spring is (if T is tension in the spring and k is spring constant)

> A. $\frac{T^{2}}{2 k}$
> B. $\frac{T^{2}}{2 k^{2}}$
> C. $\frac{2 k}{T^{2}}$
> D. $\frac{2 T^{2}}{k}$

Answer: A
(D) Watch Video Solution
65. The potential energy of a body is given by
$U=A-B x^{2}$ (where x is the displacement). The magnitude of force acting on the partical is
A. constant
B. proportional to x
C. proportional to x^{2}
D. Inversely proportional to x

Answer: B

D Watch Video Solution
66. The potential energy between two atoms in a molecule is given by, $U_{(x)}=\frac{a}{x^{12}}-\frac{b}{x^{6}}$, where a and b are positive constant and x is the distance between the atoms. The atoms is an stable equilibrium, when-
A. $x=\left(\frac{11 a}{5 b}\right)^{1 / 6}$
B. $x=\left(\frac{a}{2 b}\right)^{1 / 6}$
C. $x=0$
D. $x=\left(\frac{2 a}{b}\right)^{1 / 6}$

Answer: D
67. Which are the following is not a conservative force?
A. Gravitational force
B. Electrostatic force between two charges
C. Magnetic force between two magnetic dipoles
D. Frictional force

Answer: D
68. Two bodies with masses $1 k g$ and $2 k g$ have equal kinetic energies. If p_{1} and P_{2} are their respective momenta, then p_{1} / P_{2} is equal to :
A. $m_{1}: m_{2}$
B. $m_{2}: m_{1}$
C. $\sqrt{m_{1}}: \sqrt{m_{2}}$
D. $m_{1}^{2}: m_{2}^{2}$

Answer: C

69. Work done in raising a box depends on

A. How fast it is raised
B. The strength of the man
C. The height by which it is raised
D. None of the above

Answer: C
(D) Watch Video Solution
70. A light and a heavy body have equal momenta. Which one has greater K.E
A. The light body
B. The heavy body
C. The K.E. are equal
D. Data is incomplete

Answer: A

D Watch Video Solution

71. A body at rest may have
A. Energy
B. Momentum
C. speed
D. velocity

Answer: A

- Watch Video Solution

72. The kinetic energy passessed by a body of mass m moving with a velocity v is equal to $\frac{1}{2} m v^{2}$, provided
A. The body moves with velocities comparable to that of light.
B. The body moves with velocities negligible
compared to the speed of light
C. The body moves with velocities greater
than that of light
D. None of the above statement is correcst

Answer: B

(D) Watch Video Solution

73. If the momentum of a body is increased n
times, its kinetic energy increases
A. n times
B. $2 n$ times
C. \sqrt{n} times
D. n^{2} times
74. When work is done on a body by an external force, its
A. Only kinetic energy increases
B. Only potential energy increases
C. Both kinetic and potential energies may increase
D. Sum of kinetic and potential energies remains constant

Answer: C

D Watch Video Solution

75. The bob of a simple pendulum (mass m and length I) dropped from a horizontal position strikes a block of the same mass elastically placed on a horizontal frictionless table. The K.E. of the block will be
A. 2 mg
B. mgl 2
C. mgl
D. 0

Answer: C

D Watch Video Solution

76. From a stationary tank of mass 125000 pound a small shell of mass 25 pound is fired with a muzzle velocity of $1000 \mathrm{ft} / \mathrm{sec}$. The tank recoils with a velocity of
A. $0.1 \mathrm{ft} / \mathrm{sec}$
B. $0.2 \mathrm{ft} / \mathrm{sec}$
C. $0.4 \mathrm{ft} / \mathrm{sec}$

D. $0.8 \mathrm{ft} / \mathrm{sec}$

Answer: B

D Watch Video Solution

77. A bomb of 12 kg explodes into two pieces of masses 4 kg and 8 kg . The velocity of 8 kg mass is
$6 \mathrm{~m} / \mathrm{sec}$. The kinetic energy of the other mass is
A. 48 J
B. 32 J
C. 24 J
D. 288 J

Answer: D

D Watch Video Solution

78. A bullet loses $1 / 20$ th of its velocity is passing through a plank. What is the least number of planks required to stop the bullet ?
A. 5
B. 10
C. 11
D. 20

Answer: C

D Watch Video Solution

79. A body of mass $2 k g$ is thrown up vertically
with kinetic energy of 490 J . If $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the
height at which the kinetic energy of the body becomes half of the original value, is
A. 50 m
B. 12.5 m
C. 25 m
D. 10 m

Answer: B

- Watch Video Solution

80. Two masses of 1 gm and 4 gm are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is
A. $4: 1$
B. $\sqrt{2}: 1$
C. 1:2
D. $1: 16$

Answer: C

- Watch Video Solution

81. If KE of a body increases by 300%, by what
\% will the linear momentum of the body increase?
A. 1
B. 1.5
C. $\sqrt{300} \%$
D. 175%

Answer: A

- Watch Video Solution

82. A light body and a heavy body have same kinetic energy. Which one has greater linear momentum?
A. The light body

B. The heavy body

C. Both have equal momentum
D. It is not possible to say anything without additional information

Answer: B

D Watch Video Solution

83. If the linear momentum is increased by 50%,
then KE will be increased by :
A. 0.5
B. 1
C. 1.25
D. 0.25

Answer: C

D Watch Video Solution

84. A free body of mass 8 kg is travelling at 2 mater per second in a straight line. At a certain instant, the body splits into two equal parts due to internal wxplosion which releases ` 16 joules of
energy. Neither part leves the original line of motion. Finally
A. Both parts continue to move in the same
direction as that of the original body
B. One part comes to rest and the other moves in the same direction as that of the original body
C. One part comes to rest and the other moves in the direction opposite to that of the original body

D. One part moves in the same direction and

 the other in the direction opposite to that of the original body
Answer: B

(Watch Video Solution
85. If the K.E. of a particle is doubled, then its
momentum will
A. Remain unchanged

B. Be doubled

C. Be quadrupled

D. Increase $\sqrt{2}$ times

Answer: D

D Watch Video Solution

86. If the stone is thrown up vertically and return to ground, its potential energy is maximum
A. During the upward journey
B. At the maximum height
C. During the return journey

D. At the bottom

Answer: B

D Watch Video Solution

87. A body of mass 2 kg is projected vertically upward with a velocity of $2 m \mathrm{sec}^{-1}$. The K.E. of the body just before striking the ground is
A. 2 J
B. 1 J
C. 4 J
D. 8 J

Answer: C

D Watch Video Solution

88. What type of energy is stored in the spring of
a watch?
A. K.E.
B. P.E.
C. heat energy
D. Chemical energy

Answer: B

D Watch Video Solution

89. Two bodies of different masses m_{1} and m_{2}
have equal momenta. Their kinetic energies E_{1} and E_{2} are in the ratio
A. $\sqrt{m_{1}}: \sqrt{m_{2}}$
B. $m_{1}: m_{2}$
C. $m_{2}: m_{1}$
D. $m_{1}^{2}: m_{2}^{2}$

Answer: C

D Watch Video Solution

90. A car travelling at a speed of $30 \mathrm{~km} /$ hour is brought to a halt in 8 m by applying brakes. If the same car is travelling at $60 \mathrm{~km} /$ hour , it can be brought to a halt with the same braking force in
A. 8 m
B. 16 m
C. 24 m

D. 32 m

Answer: D

- Watch Video Solution

91. Tripling the speed of the motor car multiplies
the distance needed for stopping it by
A. 3
B. 6
C. 9
D. Some other number

Answer: C

(D) Watch Video Solution

92. If the kinetic energy of a body increases by
0.1% the percent increase of its momentum will
be
A. 0.0005
B. 0.001
C. 0.01
D. 0.1

Answer: A

(D) Watch Video Solution

93. If velocity of a body is twice of previous
velocity, then kinetic energy will become
A. 2 times
B. $\frac{1}{2}$ times
C. 4 times
D. 1 times

- Watch Video Solution

94. Two bodies A and B having masses in the ratio of $3: 1$ possess the same kinetic energy. The ratio of their linear momenta is then
A. $3: 1$
B. $9: 1$
C. 1:1
D. $\sqrt{3}: 1$
95. In which case does the potential energy decrease?
A. On compressing a spring
B. On stretching a spring
C. On moving a body against gravitational force
D. On the rising of an air bubble in water
96. A shere of mass m, moving with velocity V, enters a hanging bag of sand and stop. If the mass of the bag is M and it is reised by height h, then the velocity of the sphere will be
A. $\frac{M+m}{m} \sqrt{2 g h}$
B. $\frac{M}{m} \sqrt{2 g h}$
C. $\frac{m}{M+m} \sqrt{2 g h}$
D. $\frac{m}{M} \sqrt{2 g h}$
97. Two bodies of masses m and 2 m have same momentum. Their respective kinetic energies E_{1} and E_{2} are in the ratio
A. 1:2
B. 2:1
C. $1: \sqrt{2}$
D. 1:4

Answer: B
98. IF a lighter body (mass M_{1} and velocity V_{1})
and a heavier body respective kinetic energies E_{1}
and E_{2} are in the ratio
A. $M_{2} V_{2}<M_{1} V_{1}$
B. $M_{2} V_{2}=M_{1} V_{1}$
C. $M_{2} V_{1}=M_{1} V_{2}$
D. $M_{2} V_{2}>M_{1} V_{1}$

Answer: D
99. A frictionless track $A B C D E$ ends in a circular loop of radius R. A body slides down the track from point A which is at a height $h=5 \mathrm{~cm}$. Maximum value of R for the body to successfully complete the loop is

A. 5 cm
B. $\frac{15}{4} \mathrm{~cm}$
C. $\frac{10}{3} \mathrm{~cm}$
D. 2 cm

Answer: D

D Watch Video Solution

100. The force constant of a weightless spring is $16 \mathrm{Nm}^{-1}$. A body of mass 1.0 kg suspended from it is pulled down through 5 cm and then released.

The maximum energy of the system (spring + body) will be
A. $2 \times 10^{-2} J$
B. $4 \times 10^{-2} J$
C. $8 \times 10^{-2} J$
D. $16 \times 10^{-2} J$

Answer: A

(Watch Video Solution

101. Two bodies with kinetic energies in the ratio

4:1 are moving with equal linear momentum. The ratio of their masses is
A. 1:2
B. 1: 1
C. $4: 1$
D. 1: 4

Answer: D

D Watch Video Solution

102. The kinetic energy of a body becomes four
times its initial value.The new linear momentum
will be:
A. Becomes twice its initial value
B. Become three times its initial value
C. Become four times its initial value
D. Remains constant

Answer: A

D Watch Video Solution

103. A bullet is fired fram a riffie . If the riffe recoils
freely determine whether the kinetic energy of
the rifle is greater then, equal or less then that of the bullet .
A. Less than that of the bullet
B. More than that of the bullet
C. Same as that of the bullet
D. Equal or less than that of the bullet

Answer: A

- Watch Video Solution

104. If the water falls from a dam into a turbine
wheel 19.6 m below, then the velocity of water at
the turbine is $\left(g=9.8 m / s^{2}\right)$
A. $9.8 \mathrm{~m} / \mathrm{s}$
B. $19.6 \mathrm{~m} / \mathrm{s}$
C. $39.2 \mathrm{~m} / \mathrm{s}$
D. $98.0 \mathrm{~m} / \mathrm{s}$

Answer: B
(D) Watch Video Solution
105. Two bodies of masses 2 m and m have their K.E. in the ratio $8: 1$, then their ratio of momenta is
A. 1:1
B. $2: 1$
C. $4: 1$
D. $8: 1$

Answer: C

- Watch Video Solution

106. A bomb of 12 kg divides in two parts whose ratio of masses is $1: 3$. If kinetic energy of smaller part is 216 J , then momentum of bigger part in kg $\mathrm{m} / \mathrm{sec}$ will be
A. 36
B. 72
C. 108
D. Data is incomplete

Answer: A

Watch Video Solution

107. A 4 kg mass and a 1 kg mass are moving with equal kinetic energies. The ratio of the magnitudes of their linear momenta is
A. $1: 2$
B. 1:1
C. 2:1
D. $4: 1$

Answer: C
(D) Watch Video Solution
108. Two identical cylindrical vessel with their bases at the same level each contain a liquid of density ρ. The height of the liquid in one vessel is
h_{1} and in the other is h_{2} the area of either base is A. What is the work done by gravity is equalising the levels when the two vessels are connected?

$$
\begin{aligned}
& \text { A. }\left(h_{1}-h_{2}\right) g \rho \\
& \text { B. }\left(h_{1} h_{2}\right) g A \rho \\
& \text { C. } \frac{1}{2}\left(h_{1}-h_{2}\right)^{2} g A \rho \\
& \text { D. } \frac{1}{4}\left(h_{1}-h_{2}\right)^{2} g A \rho
\end{aligned}
$$

Answer: D

D Watch Video Solution

109. If the increase in the kinetic energy of a body
is 22%, then the increase in the momentum will
be
A. 0.22
B. 0.44
C. 0.1
D. 3

Answer: C

D Watch Video Solution

110. If a body of mass 200 g falls a height 200 m and its total P.E. is converted into K.E. at the point of contact of the body with earth surface. Then what is the decrease in P.E. of the body at the contact.
$\left(g=10 m / s^{2}\right)$
A. 200 J
B. 400 J
C. 600 J
D. 900 J

Answer: B

- Watch Video Solution

111. If momentum is increased by 20% then K.E.
increases by
A. 0.44
B. 0.55
C. 0.66
D. 0.77

Answer: A

D Watch Video Solution
112. The kinetic energy of a body of mass 2 kg and momentum of 2 Ns is
A. 1J
B. 2J
C. 3J
D. 4 J

Answer: A

- Watch Video Solution

113. The decrease in the potential energy of a ball
of mass 20 kg which falls from a height of 50 cm
is
A. 968 J
B. 98J
C. 1980 J
D. None of these

Answer: B

D Watch Video Solution

114. An object of 1 kg mass has a momentum of 10
$\mathrm{kg} \mathrm{m} / \mathrm{sec}$ then the kinetic energy of the object will be
A. 100J
B. 50J
C. 1000J
D. 200J

Answer: B

D Watch Video Solution

115. A ball is released from certain height. It loses
50% of its kinetic energy on striking the ground.
It will attain a height again equal to
A. One fourth the initial height
B. Half the initial height
C. Three fourth initial height
D. None of these

Answer: B

D Watch Video Solution

116. A 0.5 kg ball is thrown up with an initial speed $14 \mathrm{~m} / \mathrm{s}$ and reaches a maximum height of 8.0 m . How much energy is dissipated by air drag acting on the ball during the ascent
A. 19.6 Joule
B. 4.9 Joule
C. 10 Joule

D. 9.8 Joule

Answer: D

- Watch Video Solution

117. An ice cream has a marked value of 700 kcal . How may kilowatt-hour of energy will it deliver to the body as it is degested.
A. 0.81 kWh
B. 0.90 kWh
C. 1.11 kWh

D. 0.71 kWh

Answer: A

- Watch Video Solution

118. What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise
to vertical height of 10 cm (take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

A. $0.6 \mathrm{~m} / \mathrm{s}$
B. $1.4 \mathrm{~m} / \mathrm{s}$
C. $1.8 \mathrm{~m} / \mathrm{s}$
D. $2.2 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

119. A particle of mass ' m ' and charge ' q ' is accelerated through a potential difference of V volt, its energy will be
A. qV
B. mq V
C. $\left(\frac{q}{m}\right) V$
D. $\frac{q}{m V}$

Answer: A

D Watch Video Solution

120. A running man has half the KE that a body of
half his mass has. The man speeds up by $1.0 \mathrm{~ms}^{-1}$ and then has the same energy as the boy. What were the original speeds of the man and the boy?
A. $\sqrt{2} m / s$
B. $(\sqrt{2}-1) m / s$

$$
\begin{aligned}
& \text { C. } \frac{1}{(\sqrt{2}-1)} m / s \\
& \text { D. } \frac{1}{\sqrt{2}} m / s
\end{aligned}
$$

Answer: C

- Watch Video Solution

121. The mass of two substance are
$4 g m$ and $9 g m$ respectively. If their kinetic energy
are the same, then the ratio of their momrntum will be
A. $4: 9$
B. 9: 4
C. 3:2
D. $2: 3$

Answer: D

- Watch Video Solution

122. If the momentum of a body is increased by
100%, then the percentage increase in the kinetic energy is
A. 1.5
B. 2
C. 2.25
D. 3

Answer: D

- Watch Video Solution

123. If a body looses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
A. 1 cm
B. 2 cm
C. 3 cm
D. 4 cm

Answer: A

D Watch Video Solution

124. A bomb of mass 9 kg explodes into 2 pieces of mass 3 kg and 6 kg . The velocity of mass $3 k g i s 1.6 m / s$. The K. E. ofmass 6 kg is
A. $3.84{ }^{\prime}$
B. 9.6 J
C. 1.92 J
D. 2.91 J

Answer: C

D Watch Video Solution

125. Two masses of 1 kg and 16 kg are moving with
equal kinetic energy. The ratio of magnitude of the linear momentum is
A. 1:2
B. 1: 4
C. $1: \sqrt{2}$
D. $\sqrt{2}: 1$

Answer: B

(D) Watch Video Solution

126. A machine which is 75 percent efficient, uses

12 joules of energy in lifting up a 1 kg mass through a certain distance. The mass is then
allowed to fall through that distance. The velocity
at the end of its fall is (in $m s^{-1}$)
A. $\sqrt{24}$
B. $\sqrt{32}$
C. $\sqrt{18}$
D. $\sqrt{9}$

Answer: C
(D) Watch Video Solution
127. Two bodies moving towards each other collide and move away in opposite directions.

There is some rise in temperature of bodies because a part of the kinetic energy is converted into
A. Heat energy
B. Electrical energy
C. Nuclear energy
D. Mechanical energy

Answer: A
128. A block of mass m at rest is acted upon by a force F for a time t. The kinetic energy of block after time t is
A. $\frac{F^{2} t^{2}}{m}$
B. $\frac{F^{2} t^{2}}{2 m}$
C. $\frac{F^{2} t^{2}}{3 m}$
D. $\frac{F t}{m}$

Answer: B
129. The potential energy of a weight less spring compressed by a distance a is proportional to
A. a
B. a^{2}
C. a^{-2}
D. a^{0}

Answer: B

D Watch Video Solution
130. Two identical blocks A and B, each of mass m resting on smooth floor are connected by a
light spring of natural length L and spring constant k, with the spring at its natural length.

A third identical block C (mass m) moving with a speed v along the line joining A and B collides
with A. The maximum compression in the spring is
A. $v \sqrt{\frac{m}{2 k}}$
B. $m \sqrt{\frac{v}{2 k}}$
C. $\sqrt{\frac{m v}{k}}$
D. $\frac{m v}{2 k}$

Answer: A
(Watch Video Solution
131. Two bodies of masses m and 4 m are moving
with equal K.E. The ratio of their linear
momentums is
A. $4: 1$
B. 1: 1
C. 1:2
D. 1: 4

Answer: C

D Watch Video Solution

132. A stationary partical explodes into two partical of a masses m_{1} and m_{2} which move in opposite direction with velocities v_{1} and v_{2}. The ratio of their kinetic energies E_{1} / E_{2} is
A. m_{1} / m_{2}
B. 1
C. $m_{1} v_{2} / m_{2} v_{1}$
D. m_{2} / m_{1}

Answer: D

(D) Watch Video Solution

133. The kinetic energy of a body of mass 3 kg and momentum 2 Ns is
A. 1 J
B. $\frac{2}{3} J$
C. $\frac{3}{2} J$

D. 4 J

Answer: B

D Watch Video Solution

134. A bomb of mass 3.0 Kg explodes in air into two pieces of masses 2.0 kg and 1.0 kg . The smaller mass goes at a speed of $80 \mathrm{~m} / \mathrm{s}$. The total energy imparted to the two fragments is
A. 1.07 kJ
B. 2.14 kJ
C. 2.4 kJ
D. 4.8 kJ

Answer: D

(Watch Video Solution

135. A bullet moving with a speed of $100 \mathrm{~ms}^{-1}$
can just penetrate into two planks of equal thickness. Then the number of such planks, if speed is doubled will be .
A. 4
B. 8
C. 6
D. 10

Answer: B

D Watch Video Solution

136. A particle of mass $m 1$ is moving with a velocity v_{1} and another particle of mass m_{2} is moving with a velocity v2. Both of them have the same momentum but their different kinetic
energies are E1 and E2 respectively. If $m_{1}>m_{2}$ then
A. $E_{1}<E_{2}$
B. $\frac{E_{1}}{E_{2}}=\frac{m_{1}}{m_{2}}$
C. $E_{1}>E_{2}$
D. $E_{1}=E_{2}$

Answer: A
(D) Watch Video Solution
137. A ball of mass $2 k g$ and another of mass $4 k g$
are dropped together from a 60 feet tall building
. After a fall of 30 feet each towards earth, their
respective kinetic energies will be the ratio of
A. $\sqrt{2}: 1$
B. 1: 4
C. 1:2
D. $1: \sqrt{2}$

Answer: C
138. Four particles given have same momentum which has maximum kinetic energy
A. Proton

B. Electron

C. Deutron
D. α-particle

Answer: B

D Watch Video Solution
139. A body moving with velocity v has momentum and kinetic energy numerically equal.

What is the value of v ?
A. $2 \mathrm{~m} / \mathrm{s}$
B. $\sqrt{2} m / s$
C. $1 \mathrm{~m} / \mathrm{s}$
D. $0.2 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

140. If a man increase his speed by $2 \mathrm{~m} / \mathrm{s}$, his K.E.
is doubled, the original speed of the man is
A. $(1+2 \sqrt{2}) m / s$
B. $4 m / s$
C. $(2+2 \sqrt{2}) m / s$
D. $(2+\sqrt{2}) m / s$

Answer: C

D Watch Video Solution

141. An object of mass 3 m splits into three equal fragments. Two fragments have velocities $v \hat{j}$ and $v \hat{i}$. The velocity of the third fragment is
A. $v(\hat{j}-\hat{i})$
B. $v(\hat{i}-\hat{j})$
C. $-v(\hat{i}+\hat{j})$
D. $\frac{v(\hat{i}+\hat{j})}{\sqrt{2}}$

Answer: C
142. A bomb is kept stationary at a point. It suddenly explodes into two fragments of masses

1 g and 3 g . the total K.E. of the fragments is $6.4 \times 10^{4} \mathrm{~J}$. What is the K.E. of the smaller fragment
A. $2.5 \times 10^{4} J$
B. $3.5 \times 10^{4} J$
C. $4.8 \times 10^{4} J$
D. $5.2 \times 10^{4} J$

Answer: C
143. Which among the followinig, is a form of energy
A. Light
B. Pressure
C. Momentum
D. Power

Answer: A
144. A body is moving with a velocity v , breaks up into two equal parts. One of the part retraces
back with velocity v. Then the velocity of the other part is
A. v in forward direction
B. 3 v in forward direction
C. v in backward direction
D. 3 v in backward direction.

Answer: B
145. If a shell fired from a cannon, explodes in mid air, then
A. Its total kinetic energy increases
B. Its total momentum increases
C. Its total momentum decreases
D. None of these

Answer: A

D Watch Video Solution

146. A particle of mass m moving with velocity V_{0}
stick a simple pendulum of mass m and stick to
it. The maximum height attained by the pendulum will be
A. $h=\frac{V_{0}^{2}}{8 g}$
B. $\sqrt{V_{0} g}$
C. $2 \sqrt{\frac{V_{0}}{g}}$
D. $\frac{V_{0}^{2}}{4 g}$

Answer: A
(D) Watch Video Solution
147. Two masses 1 g and 9 g are moving with equal kinetic energies. The ratio of the magnitudes of their respective linear momenta is
A. $1: 9$
B. $9: 1$
C. $3: 1$
D. $1: 3$

Answer: D

- Watch Video Solution

148. A body of mass $5 k g$ is moving with a momentum of $10 \mathrm{kgm} / \mathrm{s}$. A force of 0.2 N acts on
it in the direction of motion of the body for
10 sec . The increase in its kinetic energy.
A. 2.8 joules
B. 3.2 joules
C. 3.8 joules
D. 4.4 joules

Answer: D
149. If the momentum of a body increases by 0.01%, its kinetic energy will increase by
A. 0.0001
B. 0.0002
C. 0.0004
D. 0.0008

Answer: B
(Watch Video Solution
150. 1 a.m.u is equivalent to
A. 1.6×10^{-12} joule
B. 1.6×10^{-19} joule
C. 1.5×10^{-10} joule
D. 1.5×10^{-19} joule

Answer: C

- Watch Video Solution

A block of mass m initially at rest is dropped from
a height h on to a spring of force constant k. the maximum compression in the spring is x then
A. $m g h=\frac{1}{2} k x^{2}$
B. $m g(h+x)=\frac{1}{2} k x^{2}$
C. $m g h=\frac{1}{2} k(x+h)^{2}$
D. $m g(h+x)=\frac{1}{2} k(x+h)^{2}$

Answer: B

D Watch Video Solution

152. A spherical ball of mass 20 kg is stationary at
the top of a hill of height 100 m , it rolls down a smooth surface to the ground, then climbs up another bill of height of 30 m and final rolls down to a horizontal base at a height of 20 m about the ground. The velocity attained by the ball is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $10 \sqrt{30} \mathrm{~m} / \mathrm{s}$
C. $40 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

153. The block of mass M moving on the frictionless horizontal surface collides with the spring constant k and compresses it by length L.

The maximum momention of the block after

A. zero
B. $\frac{M L^{2}}{K}$
C. $\sqrt{M K} L$
D. $\frac{K L^{2}}{2 M}$

Answer: C
154. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The velocity of mass $18 \mathrm{kgis} 6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the other mass is
A. 256 J
B. 486 J
C. 524 J
D. 324 J

- Watch Video Solution

155. A mass of 100 g strikes the wall with speed $5 \mathrm{~m} / \mathrm{s}$ at an angle as shown in figure and it rebounds with the same speed it the contact time is $2 \times 10^{-3} \mathrm{sec}$. What is the force applied on the mass by the wall :

A. $250 \sqrt{3} N$ to right
B. $250 N$ to right
C. $250 \sqrt{3} N$ to left
D. $250 N$ to left

Answer: C

D Watch Video Solution

156. if a particle F is applied on a body and it moves with a velocity v , the power will be
A. $F \times v$
B. F / v
C. F / v^{2}
D. $F \times v^{2}$

Answer: A

D Watch Video Solution

157. A body of mass m accelerates uniformly from rest to v_{1} in time v_{2}. As a function of time t , the instantaneous power delivered to the body is

$$
\text { A. } \frac{m v_{1} t}{t_{1}}
$$

B. $\frac{m v_{1}^{2} t}{t_{1}}$
C. $\frac{m v_{1} t^{2}}{t_{1}}$
D. $\frac{m v_{1}^{2} t}{t_{1}^{2}}$

Answer: D

(Watch Video Solution

158. A man is riding on a cycle with velocity $7.2 \frac{\mathrm{~km}}{\mathrm{hr}}$ up a hill having a slope 1 in 20 . The total mass of the man and cycle is 100 kg . The power of the man is
A. 200 W
B. 175 W
C. 125 W
D. 98 W

Answer: D

D Watch Video Solution

159. A 12 HP motor has to be operated 8 hours /
day. How much will it cost at the rate of 50 paisa
/ kWh in 10 days
A. Rs 350/-
B. Rs.358/-
C. Rs.375/-
D. Rs.397/-

Answer: B

D Watch Video Solution

160. A motor boat is travelling with a speed of $3.0 \mathrm{~m} / \mathrm{sec}$. If the force on it due to water flow is

500 N , the power of the boat is
A. 150 kW
B. 15 kW
C. 1.5 kW
D. 150 W

Answer: C

D Watch Video Solution

161. An electric motor exerts a force of 40 N on a
cable and pulls it by a distance of 30 m in one
minute. The power supplied by the motor (in

Watts) is
A. 20
B. 200
C. 2
D. 10

Answer: A
(D) Watch Video Solution
162. An electric motor creates a tension of 4500 newton in a hoisting cable and reels it at the rate of $2 \mathrm{~m} / \mathrm{s}$. What is the power of the motor?
A. 15 kW
B. 9 kW
C. 225 W
D. 9000 HP

Answer: B
(D) Watch Video Solution
163. A weight lifter lifts 300 kg from the ground to
a height of 2 meter in 3 second. The average power generated by him is
A. 5880 watt
B. 4410 watt
C. 2205 watt
D. 1960 watt

Answer: D

D Watch Video Solution

164. The power of a water pump is 2 kW . If
$g=10 \mathrm{~m} / \mathrm{s}^{2}$, the amount of water it can raise in

1 min to a height of 10 m is :
A. 2000 litre
B. 1000 litre
C. 100 litre
D. 1200 litre

Answer: D
165. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of $40 \mathrm{~m}\left(g=10 \frac{\mathrm{~m}}{\sec ^{2}}\right)^{\prime}$?
A. 4 sec
B. 5 sec
C. 8 sec
D. 10 sec

Answer: C
(D) Watch Video Solution
166. A car of mass m is driven with acceleration a
along a straight level road against a constant external resistive force R. When the velocity of the car V, the rate at which the engine of the car is doing work will be
A. RV
B. maV
C. $(R+m a) V$
D. $(m a-R) V$

Answer: C
167. The average power required to lift a 100 kg mass through a height of 50 metres in approximately 50 seconds would be
A. $50 \mathrm{~J} / \mathrm{s}$
B. $5000 \mathrm{~J} / \mathrm{s}$
C. 100J/s
D. $980 \mathrm{~J} / \mathrm{s}$

Answer: D
168. From a waterfall, water is falling down at the
rate of $100 \mathrm{~kg} / \mathrm{s}$ on the blades of turbine. If the height of the fall is 100 m , then the power delivered to the turbine is approximately equal to
A. 100 kW
B. 10 kW
C. 1 kW
D. 1000 kW

Answer: A
169. The power of pump, which can pump 200 kg of water to height of 200 m in 10 s $\left(g=10(m) /\left(s^{2}\right)\right)$
A. 40 kW
B. 80 kW
C. 400 kW
D. 960 kW

Answer: A
170. A 10 H.P. motor pumps out water from a well of depth 20 m and fills a water tank of volume

22380 litres at a height of 10 m from the ground.
The running time of the motor to fill the empty water tank is $\left(g=10 \mathrm{~ms}^{-2}\right)$
A. 5 minutes
B. 10 minutes
C. 15 minutes
D. 20 minutes

Answer: C

D Watch Video Solution

171. A car of mass 1250 kg is moving at $30(m) /(s)$. Its engine delivers 30 kW while resistive force due to surface is 750 N . What maximum acceleration can be given to the car
A. $\frac{1}{3} m / s^{2}$
B. $\frac{1}{4} m / s^{2}$
C. $\frac{1}{5} m / s^{2}$

D. $\frac{1}{6} m / s^{2}$

Answer: C

D Watch Video Solution

172. A force applied by an engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ changes its velocity from 5 m / s to $25 \mathrm{~m} / \mathrm{s}$ in 5 minutes. The power of the engine is
A. 1.025 MW
B. 2.05 MW

C. 5 MW

D. 6 MW

Answer: B

D Watch Video Solution

173. A truck of mass $30,000 \mathrm{~kg}$ moves up an inclined plane of slope 1 in 100 at a speed of 30 kmph . The power of the truck is $\left(g=10 \mathrm{~ms}^{-1}\right)$
A. 25 kW
B. 10 kW
C. 5 kW
D. 2.5 kW

Answer: A

(D) Watch Video Solution

174. A 60 kg man runs up a staircase in 12
seconds while 50 kg man runs up the same staircase in 11, seconds, the ratio of the rate of doing their work is
A. $6: 5$
B. $12: 11$
C. 11: 10
D. 10: 11

Answer: C

D Watch Video Solution

175. A pump motor is used to deliver water at a certain rate from a given pipe.To obtain, twice as much water from the same pipe, in the same time, the power of motor has to be increased to:
A. 16 times
B. 4 times
C. 8 times
D. 2 times

Answer: C

D Watch Video Solution

176. What average horsepower is developed by an 80 kg man while climbing in 10 s a flight of stairs that rises 6 m vertically
A. 0.63 HP
B. 1.26 HP
C. 1.8 HP
D. 2.1 HP

Answer: A

(D) Watch Video Solution

177. A car of mass 1000kg accelerates uniformly
from rest to a velocity of $54 \mathrm{~km} / \mathrm{h}$ in 5 seconds.

Calculate (i) its acceleration (ii) its gain in KE (iii) average power of the engine during this period.
A. 2000 W
B. 22500 W
C. 5000 W
D. 2250 W

Answer: B
(D) Watch Video Solution
178. A quarter horse power motor runs at a speed of 600 r .p.m. Assuming 40\% efficiency the work done by the motor in one rotation will be
A. 7.46 J
B. 7400 J
C. 7.46 ergs
D. 74.6 J

Answer: A

- Watch Video Solution

179. An engine pumps up 100 kg water through a
height of 10 m in 5 s . If efficiency of the engine is
60%. What is the power of the engine?
Takeg $=10 \mathrm{~ms}^{2}$.
A. 3.3 kW
B. 0.33 kW
C. 0.033 kW
D. 33 kW

Answer: A
180. A force $2 \hat{i}+3 \hat{j}+4 \hat{k} \mathrm{~N}$ acts on a body for 4 sec, produces a displacement of $(3 \hat{i}+4 \hat{j}+5 \hat{k})$ m . the power used is
A. 9.5 W
B. 7.5 W
C. 6.5 W
D. 4.5 W

Answer: A

- Watch Video Solution

181. The power of pump, which can pump 200 kg of water to a height of 50 m in 10 sec , will be
A. 10×10^{3} watt
B. 20×10^{3} watt
C. 4×10^{3} watt
D. 60×10^{3} watt

Answer: A
(Watch Video Solution
182. From an automatic gun a man fires 360
bullet per minute with a speed of $360 \mathrm{~km} / \mathrm{hour}$. If each weighs 20 g , the power of the gun is
A. 600 W
B. 300 W
C. 150 W
D. 75 W

Answer: A
(D) Watch Video Solution
183. An engine pumps liquid of density d continuosly through a pipe of cross-section are A.

If the speed with which liquid passes through the pipe is v, then the rate at which kinetic energy is being imparted to the liquid by the pump is
A. $\frac{1}{2} A \rho v^{3}$
B. $\frac{1}{2} A \rho v^{2}$
C. $\frac{1}{2} A \rho v$
D. $A \rho v$

Answer: A
184. If the heart pushes 1 cc of blood in one second under pressure $20000 \mathrm{~N} / \mathrm{m} 2$ the power of heart is
A. 0.02 W
B. 400 W
C. $5 \times 10 \mathrm{~W}$
D. 0.2 W

Answer: A
185. A man does a given amount of work in 10 sec .

Another man does the same amount of work in

20 sec . The ratio of the output power of first man to the second man is
A. 1
B. $1 / 2$
C. $2 / 1$
D. none of these
186. The coefficient of restitution e for a perfectly
elastic collision is
A. 1
B. 0
C. ∞
D. -1

Answer: A
187. The principle of conservation of linear momentum can be strictly applied during a collision between two particles provided the time of impact is
A. Extremely small
B. Moderately small
C. Extremely large
D. Depends on a particular case
188. A shell initially at rest explodes into two pieces of equal mass, then the two pieces will
A. Be at rest
B. Move with different velocities in different directions
C. Move with the same velocity in opposite
directions
D. Move with the same velocity in same direction

Answer: C

D Watch Video Solution

189. A sphere of mass m moving with constant velocity u, collides with another stationary sphere of same mass. If e is the coefficient of restitution, the ratio of the final velocities of the first and second sphere is
A. $\frac{1-e}{1+e}$
B. $\frac{1+e}{1-e}$
C. $\frac{e+1}{e-1}$

D. $\frac{e-1}{e+1} t^{2}$

Answer: A

D Watch Video Solution

190. The solid rubber balls A and B having masses

200 and 400 gm respectively are moving in opposite directions with velocity of A equal to 0.3 m / s. After collision the two balls come to rest, then the velocity of B is
A. $0.15 \mathrm{~m} / \mathrm{sec}$
B. $1.5 \mathrm{~m} / \mathrm{sec}$
C. $-0.15 \frac{\mathrm{~m}}{\mathrm{sec}}$
D. none of the above

Answer: C

D Watch Video Solution

191. Two perfectly elastic particles A and B of equal masses travelling along a line joining them with velocities $15 \mathrm{~m} / \mathrm{s}$ and $10 \mathrm{~m} / \mathrm{s}$ respectively
collide. Their velocities after the elastic collision will be (in m / s) respectively
A. 0,25
B. 5,20
C. 10,15
D. 20,5

Answer: C

D Watch Video Solution

192. A cannot ball is fired with a velocity $200 \mathrm{~m} /$
sec at an angle of 60° with the horizontal. At the highest point of its flight it explodes into 3 equal
fragments, one going vertically upwards with a velocity $100 \mathrm{~m} / \mathrm{sec}$, the second one falling vertically downwards with a velocity $100 \mathrm{~m} / \mathrm{sec}$.

The third fragment will be moving with a velocity

A. $100 \mathrm{~m} / \mathrm{s}$ in the horizontal direction

B. $300 \mathrm{~m} / \mathrm{s}$ in the horizontal direction
C. $300 \mathrm{~m} / \mathrm{s}$ in a direction making an angle of
60° with the horizontal
D. $200 \mathrm{~m} / \mathrm{s}$ in a direction making an angle 60°
with the horizontal
193. A lead ball strikes a wall and falls down, a tennis ball having the same mass and velocity strikes the wall and bounces back. Check the correct statement
A. The momentum of the lead ball is greater than that of the tennis ball
B. The lead ball suffers a greater change in momentum compared with the tennis ball
C. The tennis ball suffers a greater change in momentum as compared with the lead ball

D. Both suffer an equal change in momentum

Answer: C

D Watch Video Solution

194. When two bodies collide elastic, then:
A. Kinetic energy of the system alone is
B. Only momentum is conserved
C. Both energy and momentum are conserved
D. Neither energy nor momentum is
conserved

Answer: C

D Watch Video Solution

195. Two balls at the same temperature collide inelastically. Which of the following is not conserved?
(1) Kinetic energy
(2) Velocity
(3) Temperature
(4) Momentum
A. Temperature
B. Velocity
C. Kinetic energy
D. Momentum

Answer: D
196. A body of mass 5 kg explodes at rest into three fragments with masses in the ratio 1:1:3.

The fragments with equal masses fly in mutually perpendicular directions with speeds of $21 \mathrm{~m} / \mathrm{s}$.

The velocity of the heaviest fragment will be
A. $11.5 \mathrm{~m} / \mathrm{s}$
B. $14.0 \mathrm{~m} / \mathrm{s}$
C. $7.0 \mathrm{~m} / \mathrm{s}$
D. $9.89 \mathrm{~m} / \mathrm{s}$

Answer: D
197. A heavy steel ball of mass greater than 1 kg moving with a speed of $2 \mathrm{~m} \mathrm{sec}^{-1}$ collides head on with a stationary ping-pong ball of mass less than 0.1 gm . The collision is elastic. After the collision the ping-pong ball moes approximately with speed
A. $2 m \mathrm{sec}^{-1}$
B. $4 m \mathrm{sec}^{-1}$
C. $2 \times 10^{4} \mathrm{~m} \mathrm{sec}^{-1}$
D. $2 \times 10^{3} m \mathrm{sec}^{-1}$

Answer: B

D Watch Video Solution

198. A body of mass ' M ' collides against a wall with a velocity v and retraces its path with the same speed. The change in momentum is (take initial direction of velocity as positive)
A. zero
B. 2 Mv
C. Mv

$$
\text { D. }-2 M v
$$

Answer: D

D Watch Video Solution

199. A gun fires a bullet of mass $50 g$ with a velociy of $30 \mathrm{~m} / \mathrm{s}$. Due to this, the gun is pushed back with a velocity of $1 \mathrm{~m} / \mathrm{s}$, then the mass of the gun is:
A. 15 kg
B. 30 kg
C. 1.5 kg
D. 20 kg

Answer: C

D Watch Video Solution

200. In an elastic collision between two particles
A. Momentum of each particle
B. Speed of each particle
C. Kinetic energy of each particle

D. Total kinetic energy of both the particles

Answer: D

D Watch Video Solution

201. which a U^{238} nucleus original at rest, decay by emitting an alpha particle having a speed u, the recoil speed of the residual nucleus is
A. $-4 v / 234$
B. $v / 4$
C. $-4 v / 238$
D. $4 v / 238$

Answer: A

D Watch Video Solution

202. A smooth sphere of mass M moving with velocity u directly collides elastically with another sphere of mass m at rest. After collision their final
velocities are V and v respectively. The value of v is

$$
\text { A. } \frac{2 u M}{m}
$$

B. $\frac{2 u m}{M}$
C. $\frac{2 u}{1+\frac{m}{M}}$
D. $\frac{2 u}{1+\frac{M}{m}}$

Answer: C

(D) Watch Video Solution

203. A body of mass m having an initial velocity v, makes head on collision with a stationary body of mass M. After the collision, the body of mass m
comes to rest and only the body having mass M moves. This will happen only when
A. $m \gg M$
B. $m \ll M$
C. $m=M$
D. $m=\frac{1}{2} M$

Answer: C

- Watch Video Solution

204. A particle of mass moving with velocity \vec{V} makes a head on elastic collision with another particle of same mass initially at rest. The velocity of the first particle after the collision will be
A. \vec{V}
B. $-\vec{V}$
C. $-2 \vec{V}$
D. zero

Answer: D
205. A particle of mass m moving with horizontal
speed $6 m / s$ as shown in the figure. If
$m \ll M$ then for one - dimensional elastic
collision , the speed of lighter particle after
collision will be

A. $2 \mathrm{~m} / \mathrm{sec}$ in original direction
B. $2 \mathrm{~m} / \mathrm{sec}$ opposite to the original direction
C. $4 \mathrm{~m} / \mathrm{sec}$ opposite to the original direction
D. $4 \mathrm{~m} / \mathrm{sec}$ in original direction

Answer: A

D Watch Video Solution

206. A shell of mass m moving with velocity v
suddenly breaks into 2 pieces. The part having mass $\mathrm{m} / 4$ remains stationary. The velocity of the other shell will be
A. v
B. 2 v
C. $\frac{3}{4} v$

D. $\frac{4}{3} v$

Answer: D

D Watch Video Solution

207. Two equal masses m_{1} and m_{2} moving along the same straight line with velocites $+3 m / s$ and $-5 \mathrm{~m} / \mathrm{s}$ respectively collide elastically. Their velocities after the collision will be respectively.
A. $+4 m / s$ for both
B. $-3 m / s$ and $+5 m / s$
C. $-4 m / s$ and $+4 m / s$

$$
\text { D. }-5 m / s \text { and }+3 m / s
$$

Answer: D

D Watch Video Solution

208. A rubber ball is dropped from a height of 5 m
on a plane, where the acceleration due to gravity
is not shown. On bouncing it rises to $1.8 m$. The
ball loses its velocity on bouncing by a factor of
A. 16/25
B. $2 / 5$
C. $3 / 5$
D. $9 / 25$

Answer: B

D Watch Video Solution

209. A metal ball falls from a height of 32 metre on a steel plate. If the coefficient of restitution is
0.5 , to what height will the ball rise after second bounce
A. 2 m
B. 4 m
C. 8 m
D. 16 m

Answer: A

D Watch Video Solution

210. At high altitude, a body explodes at rest into two equal fragments with one fragment receiving horizontal velocity of $10 \mathrm{~m} / \mathrm{s}$. Time taken by the
two radius vectors connecting of explosion to fragments to make 90° is
A. 10s
B. 4 s
C. 2s
D. 1 s

Answer: C
(D) Watch Video Solution
211. A ball of mass 10 kg is moving with a velocity
of $10 \mathrm{~m} / \mathrm{s}$. It strikes another ball of mass 5 kg
which is moving in the same direction with a velocity of $4 \mathrm{~m} / \mathrm{s}$. If the collision is elastic, their
velocities after the collision will be, respectively
A. $6 \mathrm{~m} / \mathrm{s}, 12 \mathrm{~m} / \mathrm{s}$
B. $12 \mathrm{~m} / \mathrm{s}, 6 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
D. $12 \mathrm{~m} / \mathrm{s}, 25 \mathrm{~m} / \mathrm{s}$

Answer: A
212. A body of mass 2 kg collides with a wall with speed $100 \mathrm{~m} / \mathrm{s}$ and rebounds with same speed. If the time of contact was $1 / 50$ second, the force exerted on the wall is
A. 8 N
B. $2 \times 10^{4} N$
C. $4 N$
D. $10^{4} N$

- Watch Video Solution

213. A body falls on a surface of coefficient of restitution 0.6 from a height of 1 m . Then the body rebounds to a height of
A. 0.6 m
B. 0.4 m
C. 1 m
D. 0.36 m
214. A ball is dropped from a height h. If the coefficient of restitution be e, then to what height will it rise after jumping twice from the ground
A. eh/2
B. 2eh
C. eh
D. $e^{4} h$

D Watch Video Solution

215. A ball of weight 0.1 kg coming with speed 30 m / s strikes with a bat and returns in opposite direction with speed $40 \mathrm{~m} / \mathrm{s}$, then the impulse is (Taking final velocity as positive)
A. $-0.1 \times(40)-0.1 \times(30)$
B. $0.1 \times(40)-0.1 \times(-30)$
C. $0.1 \times(40) \times 0.1(-30)$
D. $0.1 \times(40)-0.1 \times(20)$

Answer: B

D Watch Video Solution

216. A billiard ball moving with a speed of $5 \mathrm{~m} / \mathrm{s}$
collides with an identical ball, originally at rest. If
the first ball stop dead after collision, then the
second ball will move forward with a speed of:
A. $10 m s^{-1}$
B. $5 m s^{-1}$
C. $2.5 m s^{-1}$

D. $1.0 m s^{-1}$

Answer: B

D Watch Video Solution

217. If two balls each of mass 0.06 kg moving in opposite directions with speed $4 m / s$ collide and rebound with the same speed, then the impulse imparted to each ball due to other is
A. $0.49=8 k g-m / s$
B. $0.24 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
C. $0.81 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
D. zero

Answer: A

D Watch Video Solution

218. A ball of mass m falls vertically to the ground
from a height h_{1} and rebound to a height h_{2}. The change in momentum of the ball on striking the ground is.
A. $m g\left(h_{1}-h_{2}\right)$
B. $m\left(\sqrt{2 g h_{1}}+\sqrt{2 g h_{2}}\right)$
C. $m \sqrt{2 g\left(h_{1}+h_{2}\right)}$
D. $m \sqrt{2}\left(h_{1}+h_{2}\right)$

Answer: B

D Watch Video Solution

219. A body of mass 50 kg is projected vertically upward with velocity of $100 \mathrm{~m} / \mathrm{s}$. After $5 s$ this body breaks into 20 kg and 30 kg . If the 20 kg piece travels upwards with $150 \mathrm{~m} / \mathrm{s}$, then the velocity of other block will be
A. $15 \mathrm{~m} / \mathrm{sec}$ downwards
B. $15 \mathrm{~m} / \mathrm{sec}$ upwards
C. $51 \mathrm{~m} / \mathrm{sec}$ downwards
D. $51 \mathrm{~m} / \mathrm{sec}$ upwards

Answer: A

D Watch Video Solution

220. A steel ball of radius 2 cm is at rest on a
frictionless surface. Another ball of radius 4 cm moving at a velocity of $81 \mathrm{~cm} /$ see collides elast
cally with first ball. After collision the smaller ball moves with speed of
A. $81 \mathrm{~cm} / \mathrm{sec}$
B. $63 \mathrm{~cm} / \mathrm{sec}$
C. $144 \mathrm{~cm} / \mathrm{sec}$
D. none of these

Answer: C
(D) Watch Video Solution
221. The spacecraft of mass M moves with velocity
v in free space at first, then it explodes breaking into two pieces. If after explosion a piece of mass m comes to rest, the other piece of space craft will have a velocity :

$$
\begin{aligned}
& \text { A. } \frac{M V}{M-m} \\
& \text { B. } \frac{M V}{M+m} \\
& \text { C. } \frac{m V}{M-m} \\
& \text { D. } \frac{(M+m) V}{m}
\end{aligned}
$$

Answer: A
222. A ball hits a vertical wall horizontal at $10 \mathrm{~m} / \mathrm{s}$ bounces back at $10 \mathrm{~m} / \mathrm{s}$
A. thereis no acceleration because

$$
10 \frac{m}{s}-10 \frac{m}{s}=0
$$

B. There may be an acceleration because its
initial direction is horizontal
C. There is an acceleration because there is a momentum change
D. Even though there is no change in momentum there is a change in direction. Hence it has an acceleration

Answer: C

D Watch Video Solution

223. A bullet of mass 50 gram is fired from a 5 kg gun with a velocity of $1 \mathrm{~km} / \mathrm{s}$. the speed of recoil of the gun is
A. $5 \mathrm{~m} / \mathrm{s}$
B. $1 \mathrm{~m} / \mathrm{s}$
C. $0.5 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: D

(D) Watch Video Solution

224. A body falling from a height of 10 m rebounds from hard floor. If it loses 20% energy in the impact, then coefficient of restitution is
A. 0.89
B. 0.56
C. 0.23
D. 0.18

Answer: A

D Watch Video Solution

225. A body of mass m_{1} moving with a velocity
$3 \mathrm{~m} / \mathrm{s}$ collides with another body at rest of m_{2}.
After collision the velocities of the two bodies are
$2 m / s$ and $5 m / s$, respectively, along the direction of motion of m_{1}. The ratio m_{1} / m_{2} is
A. $\frac{5}{12}$
B. 5
C. $\frac{1}{5}$
D. $\frac{12}{5}$

Answer: B

(D) Watch Video Solution

226. A 100 g iron ball having velocity $10 \mathrm{~m} / \mathrm{s}$
collies with a wall at an angle 30° and rebounds
with the same angle. If the period of contact
between the ball and wall is 0.1 second, then the force experinced by the wall is
A. 100 N
B. 10 N
C. 0.1 N
D. 1.0 N

Answer: B

D Watch Video Solution
227. Two bodies having same mass 40 kg are moving in opposite direction. One with a velocity of $10 \mathrm{~m} / \mathrm{s}$ and the other will $7 \mathrm{~m} / \mathrm{s}$. if they collide nd move as one body, the velocity of the combination is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $7 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $1.5 \mathrm{~m} / \mathrm{s}$
228. A body at rest breaks up into 3 parts. If 2 parts having equal masses fly off perpendicularly each after with a velocity of $12 m / s$ when the velocity of the third part which has $3 \times$ mass of each part is
A. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 45° from each body
B. $24 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at an angle of 135° from each
body
C. $6 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at 135° from each body
D. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at 135° from each body

Answer: D

D Watch Video Solution

229. A partical falls from a height h upon a fixed horizontal plane and rebounds. If e is the coefficient of restitution, the total distance travelled before rebounding has stopped is

$$
\text { A. } h\left(\frac{1+e^{2}}{1-e^{2}}\right)
$$

B. $h\left(\frac{1-e^{2}}{1+e^{2}}\right)$
C. $\frac{h}{2}\left(\frac{1-e^{2}}{1+e^{2}}\right)$
D. $\frac{h}{2}\left(\frac{1+e^{2}}{1-e^{2}}\right)$

Answer: A

D Watch Video Solution

230. The bob A of a simple pendulum is released when the string makes an angle of 45° with the vertical. It hits another bob B of the same material and same mass kept at rest on the table.

If the collision is elastic, then

A. Both A and B rise to the same height
B. Both A and B come to rest at B
C. Both A and B move with the same velocity of A
D. A comes to rest and B moves with the velocity of A

Answer: D

D Watch Video Solution

231. A big ball of mass M, moving with velocity u strikes a small ball of mass m, which is at rest.

Finally small ball obtains velocity u and big ball v. Then what is the value of v
A. $\frac{M-m}{M} u$
B. $\frac{m}{M+m} u$
C. $\frac{2 m}{M+m} u$
D. $\frac{M}{M+m} u$

Answer: A
(D) Watch Video Solution
232. A body of mass 5 kg moving with a velocity
$10 \mathrm{~m} / \mathrm{s}$ collides with another body of the mass 20 kg at, rest and comes to rest. The velocity of the second body due to collision is
A. $2.5 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$
C. $7.5 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: A
233. A ball of mass m moving with velocity V, makes a head on elastic collision with a ball of the same moving with velocity $2 V$ towards it.

Taking direction of V as positive velocities of the two balls after collision are.
A. $-V$ and $2 V$
B. $2 V$ and $-V$
C. V and $-2 V$
D. $-2 V$ and V
234. A body of mass M_{1} collides elastically with another mass M_{2} at rest. There is maximum transfer of energy when :
A. $M_{1}>M_{2}$
B. $M_{1}<M_{2}$
C. $M_{1}=M_{2}$
D. same for all values of M_{1} and M_{2}
235. A body of mass 2 kg makes an elastic head on collision another body at rest and continues
to move in the original direction with one fourth of its original speed. The mass of the second body which collides with the first body is
A. 2 kg
B. 1.2 kg
C. 3 kg
D. 1.5 kg

Answer: B

- Watch Video Solution

236. In the elastic collision of objects
A. Only momentum remains constant
B. Only K.E. remains constant
C. Both remains constant
D. None of these

Answer: C
237. Two particles having position verctors
$\vec{r}_{1}=(3 \hat{i}+5 \hat{j})$
$\vec{r}_{2}=(-5 \hat{i}-3 \hat{j})$ metres are moving with
velocities
$\vec{v}_{1}=(4 \hat{i}+3 \hat{j}) m / s$ and $\vec{v}_{2}=(\alpha \hat{i}+7 \hat{j}) \mathrm{m} / \mathrm{s}$
. If they collide after 2 seconds, the value of α is
A. 2
B. 4
C. 6
D. 8

Answer: D

D Watch Video Solution

238. A neutron makes a head-on elastic collision
with a stationary deuteron. The fraction energy
loss of the neutron in the collision is
A. $16 / 81$
B. $8 / 9$
C. $8 / 27$
D. $2 / 3$

Answer: B

D Watch Video Solution

239. A body of mass m is at rest. Another body of same mass moving with velocity V makes head on
elastic collision with the first body. After collision the first body starts to move with velocity
A. V
B. 2 V
C. Remain at rest
D. No predictable

Answer: A

D Watch Video Solution

240. A body of mass M moves with velocity v and collides elasticity with another body of mass $m(M \gg m)$ at rest, then the velocity of the body of mass m is
A. v
B. 2 v
C. $v / 2$
D. zero

Answer: B

D Watch Video Solution

241. Four smooth steel balls of equal mass at rest are free to move along a straight line without friction. The first ball is given a velocity of $0.4 \mathrm{~m} / \mathrm{s}$. It collides head on with the second elastically, the second one similarly with the third and so on.

The velocity of the last ball is
A. $0.4 \mathrm{~m} / \mathrm{s}$
B. $0.2 \mathrm{~m} / \mathrm{s}$
C. $0.1 \mathrm{~m} / \mathrm{s}$
D. $0.05 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

242. The spacecraft of mass M moves with
velocity v in free space at first, then it explodes
breaking into two pieces. If after explosion a
piece of mass m comes to rest, the other piece of space craft will have a velocity :

$$
\text { A. } \frac{M V}{M-m}
$$

B. v
C. $\frac{M v}{m}$
D. $\frac{M-m}{m} v$

Answer: A

- Watch Video Solution

243. Two masses m_{A} and m_{B} moving with velocities v_{A} and v_{B} in opposite direction collide elastically after that the masses m_{A} and m_{B} move with velocity v_{B} and v_{A} respectively. The ratio $\left(m_{A} / m_{B}\right)$ is
A. 1
B. $\frac{v_{A}-v_{B}}{v_{A}+v_{B}}$
C. $\left(m_{A}+m_{B}\right) / m_{A}$
D. v_{A} / v_{B}

Answer: A
244. A ball is allowed to fall from a height of 10 m .

If there is 40% loss of energy due to impact, then after one impact ball will go up to
A. 10 m
B. 8 m
C. 4 m
D. 6 m

Answer: D
245. Which of the following statements is true
A. In elastic collisions, the momentum is
conserved but not in inelastic collisions
B. Both kinetic energy and momentum are
conserved in elastic as well as inelastic
collisions
C. Total kinetic energy is not conserved but
momentum is conserved in inelastic
collisions
D. Total kinetic energy is conserved in elastic collision but momentum is not conserved in elastic collisions

Answer: C

D Watch Video Solution

246. A tennis ball dropped from a height of 2 m rebounds only 1.5 metre after hitting the ground.

What fraction of energy is lost in the impact?

$$
\text { A. } \frac{1}{4}
$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{8}$

Answer: A

(D) Watch Video Solution

247. A body of mass m moving with velocity v makes a head-on collision with another body of mass 2 m which is initially at rest. The loss of kinetic energy of the colliding body (mass m) is
A. $\frac{1}{2}$ of its intial kinetic energy
B. $\frac{1}{9}$ of its initial kinetic energy
C. $\frac{8}{9}$ of its initial kinetic energy
D. $\frac{1}{4}$ of its initial kinetic energy

Answer: C

D Watch Video Solution

248. The quantities remaining constant in colision are
A. Momentum, kinetic energy and
temperature
B. Momentum and kinetic energy but not
temperature
C. Momentum and temperature but not kinetic energy
D. Momentum but neither kinetic energy nor
temperature

Answer: D

249. An inelastic ball falls from a height of 100 metres. It loses 20% of its total energy due to impact. The ball will now rise to a height of
A. 80 m
B. 40 m
C. 60 m
D. 20 m

Answer: A
(D) Watch Video Solution
250. A ball is projected vertically down with an initial velocity from a height of 20 m onto a horizontal floor. During the impact it loses 50% of its energy and rebounds to the same height.

The initial velocity of its projection is
A. $20 m s^{-1}$
B. $15 m s^{-1}$
C. $10 m s^{-1}$
D. $5 m s^{-1}$

Answer: A
251. A tennis ball is released from height h above ground level. If the ball makes inelastic collision with the ground, to what height will it rise after third collision
A. $h e^{6}$
B. $e^{2} h$
C. $e^{3} h$
D. None of these

- Watch Video Solution

252. A mass ' m ' moves with a velocity ' v ' and collides inelastieally with another identical mass.

After collision the $1^{\text {st }}$ mass moves with velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed of the $2^{n d}$ mass after collision.

$$
\left.\underset{\substack{\text { bef ore } \\
\text { colision }}}{\rightarrow} \cdot m \text {. } \uparrow \begin{array}{cc}
\text { after } \\
\text { collision }
\end{array}\right\rangle
$$

A. $\frac{2}{\sqrt{3}} v$
B. $\frac{v}{\sqrt{3}}$
C. v
D. $\sqrt{3} v$

Answer: A

D Watch Video Solution

253. A sphere collides with another sphere of identical mass. After collision, the two spheres move. The collision is inelastic. Then the angle between the directions of the two spheres is
A. 90°
B. 0°
C. 45°
D. Different from 90°

Answer: D

D View Text Solution

254. A particle of mass m moving eastward with a speed v collides with another particle of the same mass moving northward coalesce on collision. The new particle of mass $2 m$ will move in the north - easterly direction with a velocity
A. $v / 2$
B. 2 v
C. $v / \sqrt{2}$
D. v

Answer: C

(D) Watch Video Solution

255. The coefficient of restitution (e) for a perfectly elastic collision is
A. 1
B. 0
C. ∞
D. -1

Answer: B

- Watch Video Solution

256. When two bodies stick together after collision, the collision is said to be
A. Partially elastic
B. Total elastic
C. Total inelastic
D. None of the above

Answer: C

(D) Watch Video Solution

257. A bullet of mass a and velocity b is fired into a large block of mass c. The final velocity of the system is
A. $\frac{c}{a+b} . b$
B. $\frac{a}{a+c} . b$

$$
\begin{aligned}
& \text { C. } \frac{a+b}{c} \cdot a \\
& \text { D. } \frac{a+c}{a} \cdot b
\end{aligned}
$$

Answer: B

D Watch Video Solution

258. A mass of 10 gm moving with a velocity of $100 \mathrm{~cm} / \mathrm{s}$ strikes a pendulum bob of mass 10 gm
. The two masses stick together. The maximum height reached by the system now is $\left(g=10 m / s^{2}\right)$
A. zero
B. 5 cm
C. 2.5 cm
D. 1.25 cm

Answer: D

- Watch Video Solution

259. A completely inelastic collision is one in which the two colliding particles
A. Are separated after collision

B. Remain together after collision

C. Split into small fragments flying in all directions
D. None of the above

Answer: B

D Watch Video Solution

260. A bullet hits and gets embedded in a solid block resting on a frictionless surface. In this process, which of the following is correct ?
A. Momentum and kinetic energy
B. Kinetic energy alone
C. Momentum alone
D. Neither momentum nor kinetic energy

Answer: C

D Watch Video Solution

261. A body of mass 2 kg moving with a velocity of $3 \mathrm{~m} / \mathrm{sec}$ collides head on with a body of mass 1 kg moving in opposite direction with a velocity of 4
$\mathrm{m} / \mathrm{sec}$. After collision, two bodies stick together
and move with a common velocity which in $\mathrm{m} / \mathrm{sec}$
is equal to
A. $1 / 4$
B. $1 / 3$
C. $2 / 3$
D. $3 / 4$

Answer: C
(D) Watch Video Solution
262. A body of mass m moving with a constant velocity v hits another body of the same mass moving with the same velocity v but in the opposite direction and sticks to it. The velocity of the compound body after collision is
A. v
B. 2 v
C. zero
D. $\mathrm{v} / 2$
263. In the above question, if another body is at rest, then velocity of the compound body after collision is
A. $\mathrm{v} / 2$
B. 2 v
C. v
D. zero

Answer: A
264. A bag of mass M hangs by a long massless rope. A bullet of mass in, moving horizontally with velocity u, is caught in the bag. Then for the combined (bag + bullet) system, just after collision
A. Momentum is $\frac{m v M}{M+m}$
B. kinetic energy is $\frac{m v^{2}}{2}$
C. Momentum is $\frac{m v(M+m)}{M}$
D. kinetic energy is $\frac{m^{2} v^{2}}{2(M+m)}$

Answer: D

D Watch Video Solution

265. A 50 g bullet moving with velocity $10 \mathrm{~m} / \mathrm{s}$
strikes a block of mass 950 g at rest and gets
embedded in it. The loss in kinetic energy will be
A. 1
B. 2.375
C. 0.05
D. 0.5

Answer: B

D Watch Video Solution

266. Two putty balls of equal mass moving with equal velocity in mutually perpendicular direction, stick together after collision. If the balls
were initially moving with a velocity of
$45 \sqrt{2} j m s^{-1}$ each, the velocity of their combined mass after collision is
A. $45 \sqrt{2} m s^{-1}$
B. $45 \mathrm{~ms}^{-1}$

C. $90 m s^{-1}$

$$
\text { D. } 22.5 \sqrt{2} m s^{-1}
$$

Answer: B

D Watch Video Solution

267. A particle of mass m moving with velocity v
strikes a stationary particle of mass $2 m$ and sticks to it. The speed of the system will be.
A. v/2
B. 2v
C. $v / 3$
D. 3 v

Answer: C

D Watch Video Solution

268. A body of mass m moving with velocity $3 \mathrm{~km} / \mathrm{h}$ collides with a body of mass 2 m at rest. Now, the coalesced mass starts to move with a velocity
A. $3 \mathrm{~kg} / \mathrm{h}$
B. $2 \mathrm{~kg} / \mathrm{h}$
C. $1 \mathrm{~km} / \mathrm{h}$
D. $4 \mathrm{~km} / \mathrm{h}$

Answer: C

D Watch Video Solution

269. If a skater of weight 3 kg has initial speed 32 m / s and second one of weight 4 kg has $5 \mathrm{~m} / \mathrm{s}$.

After collision, they have speed (couple) $5 \mathrm{~m} / \mathrm{s}$.
Then the loss in K.E. is
A. 48 J
B. 96 J
C. zero
D. none of these

Answer: D

D Watch Video Solution

270. A ball is dropped from height 10 m . Ball is
embedded in sand 1 m and stops, then
A. Only momentum remains conserved
B. Only kinetic energy remains conserved
C. Both momentum and K.E. are conserved
D. Neither K.E. nor momentum is conserved

Answer: A

D Watch Video Solution

271. A metal ball of mass 2 kg moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$ has a head on collision with a stationery ball of mass 3 kg . If after the collision, the two balls move together, the loss in kinetic energy dur to collision is
A. 40 J
B. 60 J
C. 100 J
D. 140 J

Answer: B

D Watch Video Solution

272. A body of mass 2 kg is moving with velocity
$10 \mathrm{~m} / \mathrm{s}$ towards east. Another body of same mass and same velocity moving towards north
collides with former and coalsces and moves

towards northeast. Its velocity is

A. $10 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$
C. $2.5 \mathrm{~m} / \mathrm{s}$
D. $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: D
(D) Watch Video Solution
273. Which of the following is not a perfectly inelastic collision
A. Striking of two glass balls
B. A bullet striking a bag of sand
C. An electron captured by a proton
D. A man jumping onto a moving cart

Answer: A

D Watch Video Solution

274. A mass of 20 kg moving with a speed of 10 m
/ s collides with another stationary mass of . 5 kg
As a result of the collision, the two masses stick together. The kinetic energy of the composite mass will be
A. 600 Joule
B. 800 joule
C. 1000 joule
D. 1200 joule
275. A neutron having a mass of $1.67 \times 10^{-27} \mathrm{~kg}$ and moving at $10^{8} \mathrm{~m} / \mathrm{scollides}$ with a deuteron at rest and sticks to it. If the mass of the deuteron is $3.33 \times 10^{-27} \mathrm{~kg}$ then the speed of the combination is
A. $2.56 \times 10^{3} \mathrm{~m} / \mathrm{s}$
B. $2.98 \times 10^{5} \mathrm{~m} / \mathrm{s}$
C. $3.33 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $5.01 \times 10^{9} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

276. The quantity that is not conserved in an inelastic collision is
A. Momentum
B. Kinetic energy
C. Total energy
D. All of these
277. An object of mass 40 kg and having velocity
$4 \mathrm{~m} / \mathrm{s}$ collides with another object of mass 60 kg
having velocity $2 m / s$. The loss of energy when the collision is perfectly inelastic is
A. 440 J
B. 392 J
C. 48 J
D. 144 J

Answer: C

D Watch Video Solution

278. A body of mass m_{1} is moving with a velocity
V. it collides with another stationary body of mass m_{2}. They get embedded. At the point of collision, the velocity of the system.
A. increases
B. decreases but does not become zero
C. remains same

D. become zero

Answer: B

D Watch Video Solution

279. A bullet of mass m moving with velocity v strikes a block of mass M at rest and gets embedded into it. The kinetic energy of the composite block will be
A. $\frac{1}{2} m v^{2} \times \frac{m}{(m+M)}$
B. $\frac{1}{2} m v^{2} \times \frac{M}{(m+M)}$

> C. $\frac{1}{2} m v^{2} \times \frac{(M+m)}{M}$
> D. $\frac{1}{2} M v^{2} \times \frac{m}{(m+M)}$

Answer: A

D Watch Video Solution

280. In an inelastic collision, what is conseved.
A. Kinetic energy
B. Momentum
C. Both (a) and (b)

D. neither (a) nor (b)

Answer: B

D Watch Video Solution

281. Two bodies of masses 0.1 kg and 0.4 kg move towards each other with the velocities $1 \mathrm{~m} / \mathrm{s}$ and $0.1 \mathrm{~m} / \mathrm{s}$ respectively, After collision they stick together. In 10 sec the combined mass travels
A. 120 m
B. 0.12 m
C. 12 m
D. 1.2 m

Answer: D

D Watch Video Solution

282. A body of mass $4 k g$ moving with velocity
$12 \mathrm{~m} / \mathrm{s}$ collides with another body of mass 6 kg at rest. If two bodies stick together after collision , then the loss of kinetic energy of system is
A. zero
B. 288 j
C. 172.8 j
D. 144 j

Answer: C

(D) Watch Video Solution

283. Which of the following is not a perfectly inelastic collision
A. A bullet fired into a block if bullet gets
B. Capture of electrons by an atom
C. A man jumping on to a moving boat
D. A ball bearing striking another ball bearing

Answer: D

- Watch Video Solution

284. A ball hits the floor and rebounds after an inelastic collision. In this case
A. The momentum of the ball just after the collision is the same as that just before the
collision
B. The mechanical energy of the ball remains
the same in the collision
C. The total momentum of the ball and the
earth is conserved
D. The total energy of the ball and the earth is
conserved

Answer: C

D Watch Video Solution
285. A uniform chain of length L and mass M is
lying on a smooth table and one-third of its
length is hanging vertically down over the edge of the table. If g is the acceleration due to gravity,
the work required to pull the hanging part on to the table is
A. $M g L$
B. $\mathrm{MgL} / 3$
C. $\mathrm{MgL} / 9$
D. $\mathrm{MgL} / 18$
286. If $W_{1} W_{2}$ and W_{3} represent the work done in moving a particle from A to B along three different paths 1.2 and 3 respectively (asshown) in the gravitational fieled of a point mass m, find the correct relation between $W_{-}(1) W_{-}(2)$ and

W_(3)'

A. $W_{1}>W_{2}>W_{3}$
B. $W_{1}=W_{2}=W_{3}$
C. $W_{1}<W_{2}<W_{3}$
D. $W_{2}>W_{1}>W_{3}$

Answer: B

(D) Watch Video Solution

287. A particle of mass m is moving in a
horizontal circle of radius r, under a centripetal
force equal to $\left(-K / r^{2}\right)$, where k is a constant.
The total energy of the particle is -

$$
\begin{aligned}
& \text { A. } \frac{K}{2 r} \\
& \text { B. }-\frac{K}{2 r} \\
& \text { C. }-\frac{K}{r} \\
& \text { D. } \frac{K}{r}
\end{aligned}
$$

Answer: B
(D) Watch Video Solution
288. The displacement x of particle moving in one
dimension, under the action of a constant force is related to the time t by the equation
$t=\sqrt{x}+3$
where xis \in meters and $t \in \sec$ onds. Find
(i) The displacement of the particle when its
velocity is zero, and
(ii) The work done by the force in the first 6 sec onds.
A. 9 J
B. ${ }^{5}$
C. 0 J
D. 3J

Answer: C

D Watch Video Solution

289. A force $F=-K(y \hat{i}+x \hat{j})$ (where K is a positive constant) acts on a particle moving in the $x-y$ plane. Starting from the origin, the particle is taken along the positive x-axis to the point $(a, 0)$, and then parallel to the y-axis to the
point (a, a). The total work done by the force F on the particle is
A. $-2 K a^{2}$
B. $2 K a^{2}$
C. $-K a^{2}$
D. $K a^{2}$

Answer: C
(D) Watch Video Solution
290. If g is the acceleration due to gravity on the earth's surface, the gain in the potential energy of an object of mass m raised from the surface of the earth to a height equal to the radius R of the earth, is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m g R \\
& \text { B. } 2 m g R \\
& \text { C. } m g R \\
& \text { D. } \frac{1}{4} m g R
\end{aligned}
$$

Answer: A
291. A lorry and a car moving with the same $K E$ are brought to rest by applying the same retarding force. Then
A. Lorry will come to rest in a shorter distance
B. Car will come to rest in a shorter distance
C. Both come to rest in a same distance
D. None of the above
292. A particle free to move along the (x - axis)
hsd potential energy given by
$U(x)=k\left[1-\exp \left(-x^{2}\right)\right] f$ or $-o o \leq x \leq+o o$
, where (k) is a positive constant of appropriate dimensions. Then.
A. At point away from the origin, the particle
is in unstable equilibrium
B. For any finite non-zero value of x, there is a
force directed away from the origin
C. If its total mechanical energy is $k / 2$, it has
its minimum kinetic energy at the origin
D. For small displacements from $x=0$, the motion is simple harmonic

Answer: D

D Watch Video Solution

293. The KE acquired by a mass m in travelling a certain distance s, starting from rest, under the
action of a constant force is directly proportional to :
A. \sqrt{m}
B. independent of m
C. $1 / \sqrt{m}$
D. m

Answer: B
(D) Watch Video Solution
294. An open knife of mass m is dropped from a height h on a wooden floor. If the blade penetrates up to the depth d into the wood. The average resistance offered by the wood to the knife edge is .
A. $m g$
B. $m g\left(1-\frac{h}{d}\right)$
C. $m g\left(1+\frac{h}{d}\right)$
D. $m g\left(1+\frac{h}{d}\right)^{2}$

Answer: C
295. Consider the following two statements:
A. Linear momentum of a system of partcles is zero.
B. Kinetic energ of a system of particles is zero.
A. 1 implies 2 and 2 implies 1
B. 1 does not imply 2 and 2 does not imply 1
C. 1 implies 2 but 2 does not imply 1
D. 1 does not imply 2 but 2 implies 1
296. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body is time t is proptional to
A. $t^{1 / 2}$
B. $t^{3 / 4}$
C. $t^{3 / 2}$
D. t^{2}
297. A shell is fired from a cannon with a velocity
$v(m / s e c$.$) at an angle \theta$ with the horizontal
direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed (in $m / s e c$.) of the other piece immediately after the explosion is
A. $3 v \cos \theta$
B. $2 v \cos \theta$
C. $\frac{3}{2} v \cos \theta$

$$
\text { D. } \frac{\sqrt{3}}{2} v \cos \theta
$$

Answer: A

D Watch Video Solution

298. A vessel at rest exlodes breaking it into three
piecess. Two pieces having equal mass fly off prependicular to one anther with the same speed of $30 \mathrm{~m} / \mathrm{s}$. The third pieces has three times the mass of each other piece. What is the direction (w.r.t. the piece having equal masses) and
magnitude of its velocity immediately after the explosion?
A. $10 \sqrt{2} \mathrm{~m} /$ seconds and 135° from either
B. $10 \sqrt{2} m /$ second and 45° from either
C. $\frac{10}{\sqrt{2}} m /$ second and 135° from either
D. $\frac{10}{\sqrt{2}} m /$ second and 45° from either

Answer: A
(Watch Video Solution
299. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2}, respectively, at time $t=0$. They collide at time t_{0} . Their velocities become ${\overrightarrow{v^{\prime}}}_{1}$ and $\vec{v}^{\prime}{ }_{2}$ at time $2 t_{0}$
while still moving in air. The value of $\left|\left(m_{1} \vec{v}^{\prime}{ }_{1}+m_{2} \overrightarrow{v^{\prime}}{ }_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
A. zero
B. $\left(m_{1}+m_{2}\right) g t_{0}$
C. $\left(2 m_{1}+m_{2}\right) g t_{0}$
D. $\frac{1}{2}\left(m_{1}+m_{2}\right) g t_{0}$

Answer: A

- Watch Video Solution

300. Consider elastic collision of a particle of mass m moving with a velocity u with another particle of the same mass at rest. After the collision the projectile and the struck particle move in direction making angles θ_{1} and θ_{2} respectively with the initial direction of motion.

The sum of the angles. $\theta_{1}+\theta_{2}$, is
A. 45°
B. 90°
C. 135°
D. 180°

Answer: B

D Watch Video Solution

301. A body of mass m moving with velocity v makes a head-on collision with another body of mass 2 m which is initially at rest. The loss of kinetic energy of the colliding body (mass m) is
A. 1:1
B. $2: 1$
C. $4: 1$
D. $9: 1$

Answer: D

D Watch Video Solution

302. A particle P moving with speed v undergoes
a head -on elastic collision with another particle

Q of identical mass but at rest. After the collision the collision
A. Both P and Q move forward with speed $\frac{v}{2}$ B. Both P and Q move forward with speed $\frac{v}{\sqrt{2}}$
C. P comes of rest and Q moves forward with
speed v
D. P and Q move in opposite direction with

$$
\text { speed } \frac{v}{\sqrt{2}} .
$$

Answer: C
303. A set of n identical cubical blocks lies at rest parallel to each other along a line on a smooth horizontal surface. The separation between the near surfaces of any two adjacent blocks is L. The block at one end is given a speed v towards the next one at time 0 t . All collisions are completely inelastic, then
A. The last block starts moving at

$$
t=\frac{(n-1) L}{v}
$$

B. The last block starts moving at

$$
t=\frac{n(n-1) L}{2 v}
$$

C. the centre of mass of the system will have a final speed v
D. The centre of mass of the system will have a final speed $\frac{v}{n}$.

Answer: B::D

D Watch Video Solution

304. A batsman hits a sixes and the ball touches
the ground outside the cricket ground. Which of the following graph describes the variation of the
cricket ball's vertical velocity v with time between the time t_{1} as it hits the bat and time t_{2} when it touches the ground?

Answer: C
305. The relationship between force and position is shown in the figure given (in one dimensional case). The work donw by the force in displacing a body from $x=1 \mathrm{~cm}$ to $x=5 \mathrm{~cm}$ is

A. 20ergs
B. 60 ergs
C. 70 ergs
D. 700 ergs

Answer: A

D Watch Video Solution

306.

Load (kg) \longrightarrow

The pointer reading vs load graph for a spring
balance is as given in the figure. The spring constant is
A. $0.1 \mathrm{~kg} / \mathrm{cm}$
B. $5 \mathrm{~kg} / \mathrm{cm}$
C. $0.3 \mathrm{~kg} / \mathrm{cm}$
D. $1 \mathrm{~kg} / \mathrm{cm}$

Answer: A
(D) Watch Video Solution
307. A force - time graph for a linear motion is shown in the figure where the segments are circular. The linear momentum gained between zero and $8 s$ is

A. -2π newton \times second
B. Zero newton \times second
C. $+4 \pi$ newton \times second
D. -6π newton \times second

Answer: B

- Watch Video Solution

308.

Adjacent figure shows the force-displacement
graph of a moving body, the work done in displacing body from $x=0$ to $x=35 m$ is equal to
A. 50 J
B. 25 J
C. 2875 J
D. 200 J

Answer: C

- Watch Video Solution

309. A 10 kg mass moves x -axis. Its acceleration as
function of its position is shown in the figure.
What is the total work done on the mass by the
force as the mass moves from $x=0$ to $x=8 \mathrm{~cm}$?

A. 8×10^{-2} joules
B. 16×10^{-2} joules
C. 4×10^{-4} joule
D. 1.6×10^{-3} joules

Answer: A

D Watch Video Solution

310.

A toy car of mass 5 kg moves up a ramp under the influence of force F plotted against displacement x. The maximum height attained is given by
A. $y_{\text {max }}=20 m$
B. $y_{\max }=15 m$
C. $y_{\text {max }}=11 m$
D. $y_{\text {max }}=5 m$

Answer: C

D Watch Video Solution

311. The graph between the resistive force F acting on a body and the distance covered by the body is shown in the figure. The mass of the body is 25 kg and initial velocity is $2 \mathrm{~m} / \mathrm{s}$. When the distance covered by the body is $4 m$, its kinetic
energy would be

A. 50 J
B. 40 J
C. 20 J
D. 10 J

- Watch Video Solution

312.

A particle of mass 0.1 kg is subjected to a force which varies with distance as shown in figure. If it starts its journey from rest at $x=0$, its velocity at $x=12 m$ is
A. $0 \mathrm{~m} / \mathrm{s}$
B. $20 \sqrt{2} m / s$
C. $20 \sqrt{3} m / s$
D. $40 \mathrm{~m} / \mathrm{s}$

Answer: D

(D) Watch Video Solution

The relation between the displacement X of an object produced by the application of the variable force F is represented by a graph shown in the figure. If the object undergoes a displacement from $X=0.5 m$ to $X=2.5 m$ the work done will approximately equal to
A. 14 J
B. 32 J
C. 1.6 J
D. 8 J

Answer: A

D Watch Video Solution

314. A particle is dropped a height h . A constant
horizontal velocity is given to the particle. Taking
g to be constant every where, kinetic energy E of the particle w. r.t. time t is correctly shown in
A.
(a)

B.

C.

D.

Answer: A
315. The adjoining diagram shows the velocity versus time plot for a particle. The work done by the force on the particel is positive from

A. A to B
B. B to C
C. C to D

D. D to E

Answer: A

D Watch Video Solution

316. A particle, which is constrained to move along the x-axis, is subjected to a force from the origin as $F(x)=-k x+a x^{3}$.Here k and a are positive constants. For $x=0$, the functional form of the potential energy $U(x)$ of particle is.

B.
(b)

C.

(d)
D.

Answer: D

(D) Watch Video Solution

317. A Force F acting on an object varies with distance x as shown in the here. The force is in
newton and x in metre. The work done by the force in moving the object from $x=0$ to $x=6 m$ is

A. 4.5 J
B. 13.5 J
C. 9.0 J
D. 18.0 J

Answer: B

D Watch Video Solution

318. The potential energy of the system is represented in the first figure. The force acting on the system will be represented by

A.

(b)

C.

(d)
$F(x) \uparrow \underset{a}{ }$

Answer: C

D Watch Video Solution

319. A particle initially at rest on a frictionless horizontal surface, is acted upon by a horizontal force which is constant is size and direction. A graph is plotted between the work done (W) on the particle, against the speed of the particle, (v).

If there are no other horizontal forces acting on the particle the graph would look like
A.
${ }^{(a)}{ }^{n}$
(b) $\underbrace{w \uparrow}_{v}$
B.

Answer: D

- Watch Video Solution

320. Which of the following graph is correct
between kinetic energy E, potential energy (U)
and height (h) from the ground of the partical
(a)

[CASE PMT 2005]

A.
(b)

C.

(d)

Answer: A

- Watch Video Solution

321. The graph betwee \sqrt{E} and $\frac{1}{p}$ is ($\mathrm{E}=$ kinetic energy and $\mathrm{p}=$ momentum)
(a)

B.

C.
(c) ${ }^{\sqrt{ } E}$
(d)

Answer: C
322. The force acting on a body moving along x axis varies with the position of the particle as shown in the fig. The body is in stable equilibrium at.

A. $x=x_{1}$
B. $x=x_{2}$
C. both x_{1} and x_{2}
D. neither x_{1} nor x_{2}

Answer: B

(D) Watch Video Solution

323. The potential energy of a partical veries with distance x as shown in the graph.

$U(x) \uparrow \quad B$

The force acting on the partical is zero at
A. C
B. B
C. B and C
D. A and D

Answer: C

324.

Figrue shows the $\mathrm{F}-\mathrm{x}$ graph. Where F is the force applied x is the distance covered by the body along a straight line path. Given that F is in newton and x in metre, what is the work done?
A. 10 J
B. 20 J
C. 30 J
D. 40 J

Answer: A
(D) Watch Video Solution

325.

The force required to stretch a spring varies with
the distance a shown in the figure. If the experiment is performed with the above spring of half length, the line OA will
A. Shift towards F-axis

B. Shift towards X-axis

C. Remain as it is
D. Become double in length

Answer: A

- Watch Video Solution

326. The graph between E and v is
A.

(b)

B.
C.

(d)

Answer: A

D Watch Video Solution

327. A particle of mass m moving with a velocity u makes an elastic one-dimensional collision with a
stationary particle of mass m establishing a contact with it for extermely small time. T. Their force of contact increases from zero to F_{0} linearly in time $T / 4$, remains constant for a further time $T / 2$ and decreases linearly from F_{0} to zero in further time $T / 4$ as shown. The magnitude possessed by F_{0} is.

A. $\frac{m u}{T}$
B. $\frac{2 m u}{T}$
C. $\frac{4 m u}{3 T}$
D. $\frac{3 \mu u}{4 T}$

Answer: C

D Watch Video Solution

328. A body moves from rest with a constant acceleration. Which one of the following graphs
represents the variation of its kinetic energy K with the distance travelled x ?

B.

C.
(c)

Answer: C
329. These diagrams represent the potential energy U of a diatomic molecule as a function of the inter-atomic distance r. The diagram corresponds to stable molecule found in nature is.
A.

B.

C.

D.
 (d)

Answer: A

D Watch Video Solution

330. The relationship between the force F and position x of body is as shown in figure. The work done in displacing the body in displacing the
body from ($x=1 m$ to $x=5 m$) will be

A. 30 J
B. 15 J
C. 25 J
D. 20 J

- Watch Video Solution

331. A particle is placed at the origin and a force
$\mathrm{F}=\mathrm{Kx}$ is acting on it (where k is a positive constant). If $U_{(0)}=0$, the graph of $U(x)$ verses x will be (where U is the potential energy function.)
A.
(a) $\xrightarrow{u(x) \uparrow} x$
B.

C.

Answer: A

D Watch Video Solution

332. How much work does a putting force of 40 N do on the 20 kg box in pulling it 8 m across the floor at a constant speed. The pulling force is directed at 60° above the horizontal
A. 160 J
B. 277 J
C. 784 J

D. none of the above

Answer: A

D Watch Video Solution

333. A horizontal force of 5 N is required to maintain a velocity of $2 \mathrm{~m} / \mathrm{s}$ for a block of 10 kg mass sliding over a rough surface. The work done by this force in one minute is
A. 600 J
B. 60 J
C. 6 J
D. 6000 J

Answer: A

(D) Watch Video Solution

334. Work done in time t on a body of mass m which is accelerated from rest to a speed v in time t_{1} as a function of time t is given b
A. $\frac{1}{2} m \frac{v}{t_{1}} t^{2}$
B. $m \frac{v}{t_{1}} t^{2}$
C. $\frac{1}{2}\left(\frac{m v}{t_{1}}\right)^{2} t^{2}$
D. $\frac{1}{2} m \frac{v^{2}}{t_{1}^{2}} t^{2}$

Answer: D

D Watch Video Solution

335. What is the shape of the graph between the speed and kinetic energy of a body
A. Straight line
B. Hyperbola

C. Parabola

D. Exponential

Answer: C

D Watch Video Solution

336. When a body moves with some friction on a surface
A. It loses kinetic energy but momentum is constant
B. It loses kinetic energy but gains potential

energy

C. Kinetic energy and momentum both
decrease
D. Mechanical energy is conserved

Answer: C

D Watch Video Solution

337. A bullet of mass m moving with velocity v_{1} strikes a suspended wooden block of mass M as
shown in the figure and sticks to it. If the block rises to a height y. the initial of the bullet is

A. $\sqrt{2 g h}$
B. $\frac{M+m}{m} \sqrt{2 g h}$
C. $\frac{m}{M+m} 2 g h$
D. $\frac{M+m}{M} \sqrt{2 g h}$

Answer: A

D Watch Video Solution

338. There will be decrease in potential energy of
the system, if work is done upon the system by
A. Any conservative or non-conservative force
B. A non-conservative force
C. A conservative force
D. None of the above
339. The slope of kinetic energy displacement curve of a particle in motion is
A. Equal to the acceleration of the particle
B. Inversely proportional to the acceleration
C. Directly proportional to the acceleration
D. None of the above

Answer: C
340. The energy required to accelerate a car from $10 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ is how many times the energy required to accelerate the car from rest to 10 m /s
A. Equal to the acceleration of the particle
B. 4 times
C. 2 times
D. 3 times

Answer: D

341.

A body of mass 2 kg slides down a curved track which is quadrant of a circle of radius 1 metre . All
the surfaces are frictionless. If the body starts from rest, its speed at the bottom of the track is
A. $4.43 \mathrm{~m} / \mathrm{sec}$
B. $2 \mathrm{~m} / \mathrm{sec}$
C. $0.5 \mathrm{~m} / \mathrm{sec}$
D. $19.6 \mathrm{~m} / \mathrm{ec}$

Answer: A
(D) Watch Video Solution
342. The kinetic energy of a body decreases by 36% the decrease in its momentum is
A. 0.36
B. 0.2

C. 0.08

D. 0.06

Answer: B

D Watch Video Solution

343. A bomb of mass 3 m kg explodes into two pieces of mass mkg and mkg . If the velocity of m kg mass is $16 \mathrm{~m} / \mathrm{s}$, the total kinetic energy released in the explosion is
A. 192 mJ
B. 96 mJ
C. 384 mJ
D. 768 mJ

Answer: A

- Watch Video Solution

344. Which one of the following statement does
not hold good when two balls of masses m_{1} and
m_{2} undergo elastic collision
A. When $m_{1} \ll m_{2}$ and m_{2} at rest, there
will be maximum transfer of momentum
B. When $m_{1} \gg m_{2}$ and m_{2} at rest, after
collision the ball of mass m_{2} moves with
four times the velocity of m_{1}
C. When $m_{1}=m_{2}$ and m_{2} at rest, there will be maximum transfer of K.E.
D. When collision is oblique and m_{2} at rest
with $m_{1}=m_{2}$ after collision the balls move in opposite direction.

Answer: B::D

D View Text Solution

345. A neutron travelling with a velocity v and kinetic energy E collides perfectly elastically head on with the nucleus of an atom of mass number
A at rest. The fraction of the total kinetic energy
retained by the neutron is
A. $\left(\frac{A-1}{A+1}\right)^{2}$
B. $\left(\frac{A+1}{A-1}\right)^{2}$
C. $\left(\frac{A-1}{A}\right)^{2}$
D. $\left(\frac{A+1}{A}\right)^{2}$

Answer: A

(D) Watch Video Solution

346. A body of mass m_{1} moving with uniform velocity of $40 \mathrm{~m} / \mathrm{s}$ collides with another mass m_{2}
at rest and then the two together begin to moe wit h uniform velocity of $30 \mathrm{~m} / \mathrm{s}$. the ratio of their masses $\frac{m_{1}}{m_{2}}$ is
A. 0.75
B. 1.33
C. 3
D. 4

Answer: C

D Watch Video Solution

347. Six steel balls of identical size are lined up
along a straight frictionless groove. Two similar
balls moving with speed v along the groove
collide with this row on the extreme left end.

Then
A. One ball from the right rolls out with a
speed 2 v and the remaining balls will
remain at rest
B. Two balls from the right roll out with speed
v each and the remaining balls will remain
stationary
C. All the six balls in the row will roll out with
speed $v / 6$ each and the two colliding balls

D. The colliding balls will come to rest and no

ball rolls out from right

Answer: B

D Watch Video Solution

348. A wooden block of mass M rests on a horizontal surface. A bullet of mass moving in the horizontal direction strikes and gets embedded in it. The combined system covers a
distance x on the surface. If the coefficient of friction between wood and the surface is μ, the
speed of the bullet at the time of striking the
block is (where m is mass of the bullet)
A. $\sqrt{\frac{2 M g}{\mu m}}$
B. $\sqrt{\frac{2 \mu m g}{M x}}$
C. $\sqrt{\mu g x}\left(\frac{M+m}{m}\right)$
D. $\sqrt{\frac{2 \mu m x}{M+m}}$

Answer: C
349. A ball moving with speed v hits another identical ball at rest. The two balls stick together after collision. If specific heat of the material of the balls is S, the temperature rise resulting from the collision is
A. $\frac{v^{2}}{8 S}$
B. $\frac{v^{2}}{4 S}$
C. $\frac{v^{2}}{2 S}$
D. $\frac{v^{2}}{S}$

Answer: A
350. A bag of sand of mass M is suspended by a string. A bullet of mass m is fired at it with velocity v and gets embedded into it. The loss of kinetic energy in this process is
A. $\frac{1}{2} m v^{2}$
B. $\frac{1}{2} m v^{2} \times \frac{1}{M+m}$
C. $\frac{1}{2} m v^{2} \times \frac{M}{m}$
D. $\frac{1}{2} m v^{2}\left(\frac{M}{M+m}\right)$

- Watch Video Solution

Assertion

1. Statement-1: A person walking on a horizontal road with a load on his head does no work on the load against gravity.

Statement-2: No work is said to be done, it directions of force and displacement of load are perpendicular to each other.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

2. Assertion : The work done during a round trip is always zero. Reason : No force is required to move a body in its round trip.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false

D. If the assertion and reason both are false

Answer: D

D Watch Video Solution

3. Assertion : Work done by friction on a body sliding down an inclined plane is positive. Reason
: Work done is greater than zero, if angle between force and displacement is acute or both are in same direction.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If assertion is false but reason is true.
4. Assertion : When a gas is allowed to expand,
work done by gas is positive. Reason : Force due to gaseous pressure and displacement (of piston) are in the same direction
A. If both assertion and reason are true and the reason is the correct explanation of the assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false

D. If the assertion and reason both are false

Answer: A

- Watch Video Solution

5. Assertion: A light body and a heavy body have same momentum. Then they also have same kinetic energy.

Reason: Kinetic energy does not depand on mass of the body.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: D
6. Assertion: The instantaneous power of an agent is measured as the dot product of instantaneous velocity and the force acting on it at that instant.

Reason: The unit of instantaneous power is watt.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: B

D Watch Video Solution

7. Assertion: The change in kinetic energy of a particle is equal to the work done on it by the net force.

Reason: Change in kinetic energy of particle is equal to the work done in case of a system of one particle.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: C

8. Assertion: A spring has potential energy, both when it is compressed or stretched.

Reason: In compressing or stretching, work is done on the spring against the restoring force.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

9. Statement-1:Comets move around the sun in
elliptical orbits, the gravitational force on the
comet due to sun is not normal to the comet's
velocity, but the work done by the gravitational force over every complete orbit of the comet is zero.

Statement-2: Gravitational force is a conservative force and the work done by a conservative force over a closed path is always zero.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: C

- Watch Video Solution

10. Assertion: Internal forces cannot change
linear momentum.

Reason: Internal forces can change the kinetic energy of a system.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If assertion is false but reason is true.

D Watch Video Solution

11. Assertion : Water at the foot of the water fall
is always at different temperature from that at
the top. Reason : The potential energy of water at
the top is converted into heat energy during falling.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

12. Assertion : The power of a pump which raises

100 kg of water in 10 sec to a height of 100 m is
10 KW . Reason : The practical unit of power is horse power.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false

D. If the assertion and reason both are false

Answer: B

D Watch Video Solution

13. Assertion: According to law of conservation of mechanical energy change in potential energy is
equal and opposite to the change in kinetic energy

Reason: Mechanical energy is not a conserved quantity.
A. If both assertion and reason are true and
the reason is the correct explanation of the assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false

D. If the assertion and reason both are false

Answer: C

D Watch Video Solution

14. Assertion : When the force retards the motion of a body, the work done is zero. Reason : Work done depends on angle between force and displacement.
A. If both assertion and reason are true and
assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If assertion is false but reason is true.
15. Assertion: In an elastic collision of two bodies,
the momentum and energy of each body is conserved.

Reason: If two bodies stick to each other, after colliding, the collision is said to be perfectly elastic.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the

assertion

C. If asserti on is true but reason is false

D. If the assertion and reason both are false

Answer: D

D Watch Video Solution

16. Assertion : A body cannot have energy without possessing momentum but it can have momentum without having energy.

Reason : Momentum and energy have same dimensions.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: D
17. Assertion : Power developed in circular motion
is always zero. Reason : Work done in case of
circular motion is zero.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false

D. If assertion is false but reason is true.

(D) Watch Video Solution

18. Assertion : A kinetic energy of a body is quadrupled, when its velocity is doubled. Reason :

Kinetic energy is proportional to square of velocity
A. If both assertion and reason are true and
the reason is the correct explanation of the
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A
(D) Watch Video Solution
19. Assertion: A quick collision between two bodies is more violent that show collision, even
when initial and final velocity are identical.

Reason: The rate of change of momentum determine that force is small or large.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

20. Assertion : Work done by or against gravitational force in moving a body from one point to another is independent of the actual path followed between the two points.

Reason : This is because gravitational forces are conservative forces.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A
(D) Watch Video Solution
21. Assertion : When current is drawn from a cell, chemical energy is converted into heat energy.

Reason : This is because wire through which current flows gets heated.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

D Watch Video Solution

22. Statement-1: Graph between potential energy
of spring versus the extension or comparision of the spring is a straight line.

Statement-2: Potential energy of a stretched or compressed spring is proportional to square of extension or comparision.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If assertion is false but reason is true.

23. Heavy water is used as moderator in a nuclear

 reactor. The function of the moderator isA. If both assertion and reason are true and
the reason is the correct explanation of the
assertion

B. If both assertion and reason are true but

reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: C

D Watch Video Solution

24. Assertion: Mass and energy are not conserved separately, but are conserved as a single entity called mass-energy.

Reason: Mass and energy conservation can be obtained by Einstein equation for energy.
A. If both assertion and reason are true and
the reason is the correct explanation of the
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

25. Assertion(A): In bringing an electron towards
a proton electrostatic potential energy of the
system increases
Reason (R):Potential due to proton is positive.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: B

D Watch Video Solution

26. Assertion : In case of bullet fired from gun, the ratio of kinetic energy of gun and bullet is equal to ratio of mass of bullet and gun. Reason : In firing, momentum is conserved
A. If both assertion and reason are true and
the reason is the correct explanation of the assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

27. Assertion: Power of machine gun is determined by body both the number of bullet
fired per secondand kinetic energy of bullets.

Reason: Power of any machine is defined as work done(by it) per unit time.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

28. Assertion : A work done in moving a body over
a closed loop is zero for every force in nature.
Reason : Work done does not depend on nature of force.
A. If both assertion and reason are true and
the reason is the correct explanation of the
assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: D

D Watch Video Solution

29. Assertion : Mountain roads rarely go straight
up the slope. Reason : Slope of mountains are
large therefore more chances of vehicle to slip from roads.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion
B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

30. Assertion : Soft steel can be made red hot by continued hammering on it, but hard steel cannot. Reason : Energy transfer in case of soft iron is large as in hard steel.
A. If both assertion and reason are true and
the reason is the correct explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion
C. If asserti on is true but reason is false
D. If the assertion and reason both are false

Answer: A

D View Text Solution

