

CHEMISTRY

BOOKS - UNIVERSAL BOOK DEPOT 1960 CHEMISTRY (HINGLISH)

CHEMICAL BONDING

Ordinary thinking (Electrovalent bonding)

- 1. Molecular compounds are usually formed by the combination between:
 - A. High ionisation potential and low electron affinity
 - B. Low ionisation potential and high electron affinity
 - C. High ionisation potential and high electron affinity
 - D. Low ionisation potential and low electron affinity

Answer: B

2. Bond formed in crystal by anion and cation is	
--	--

A. ionic

B. metallic

C. covalent

D. dipole

Answer: A

3. The species Ar, K^+ and Ca^{2+} contain the same number of electrons.

In which order do their radii increase?

A.
$$Ca^{2\,+}\, < Ar < K^{\,+}$$

B.
$$Ca^{2\,+}\,<\,K^{\,+}\,<\,Ar$$

C.
$$K^+ < Ar < Ca^{2+}$$

D.
$$Ar < K^+ < Ca^{2+}$$

Answer: B

Watch Video Solution

4. Two elements $X \, \operatorname{and} \, Y$ have following electronic configurations.

$$X \colon 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$Y \colon 1s^2 2s^2 2p^6 3s^2 3p^5$$

The expected compound formed by combination of X and Y will be expresed as

- A. XY_2
- B. X_5Y_2
- $\mathsf{C.}\, X_2Y_5$
- D. XY_5

Answer: A

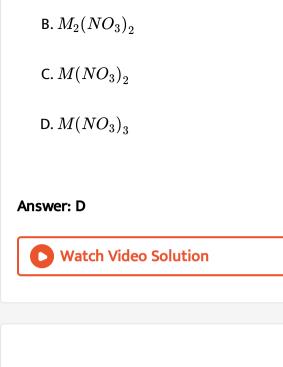
5. An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is

A. 11

B. 14

C. 16

D. 10


Answer: C

Watch Video Solution

6. The phosphate of a metal has the formula MPO_4 . The formula of its nitrate will be

A. MNO_3

7. Crystal structure of NaCl is

- A. NaCl molecules
- B. Na^+ and Cl^- ions
- C. Na and Cl atoms
- D. None of the above

Answer: B

8. The sulphate of a metal has the formula $M_2(SO_4)_3$. The formula for its phosphate will be

- A. $M(HPO_4)_2$
- B. $M_3(PO_4)_2$
- C. $M_2(PO_4)_3$
- D. MPO_4

Answer: D

- **9.** Which of the following is an electrovalent linkage?
 - A. CH_4
 - $\mathsf{B.}\,MgCl_2$
 - C. $SiCl_4$
 - D. BF_3

Answer: B

Watch Video Solution

- 10. Which of the following is least ionic?
 - A. AgCl
 - B. KCl
 - C. $BaCl_2$
 - D. $CaCl_2$

Answer: A

Watch Video Solution

11. Two elements whose electronegativities are 1.2 and 3.0 the bond formed between them would be

B. polar covalent C. co-ordinate D. metallic **Answer: A** Watch Video Solution 12. Which of the following is an electrovalent linkage? A. CH_3Cl B. NaCl $C. CH_4$ D. Cl_2 **Answer: B** Watch Video Solution

A. ionic

13. Formula of a metallic oxide is MO. The formula of its phosphate will be

- A. $M_2(PO_4)_2$
- $\operatorname{B.}M(PO_4)$
- $\mathsf{C}.\,M_2PO_4$
- D. $M_3(PO_4)_2$

Answer: D

14. The molecular formula of chloride of a metal M is MCl_3 . The formula of its carbonate would be

- A. MCO_3
- $\mathsf{B.}\, M_2(CO_3)_3$
- $\mathsf{C.}\,M_2CO_3$

Answer: B

Watch Video Solution

- 15. Which of the following is least soluble in water?
 - A. BeF_2
 - B. SrF_2
 - $\mathsf{C}.\,CaF_2$
 - D. MgF_2

Answer: B

Watch Video Solution

16. When NaCl is dissolved in water the sodium ion becomes

A. oxidized B. reduced C. hydrolysed D. hydrated **Answer: D Watch Video Solution** 17. As compared to covalent compounds, electrovalent compounds, generally have A. high M.P. and Low B.P. B. High dielectric constant C. High M.P. and High B.P. D. high polarity Answer: A

18. An electrovalent bond is formed between

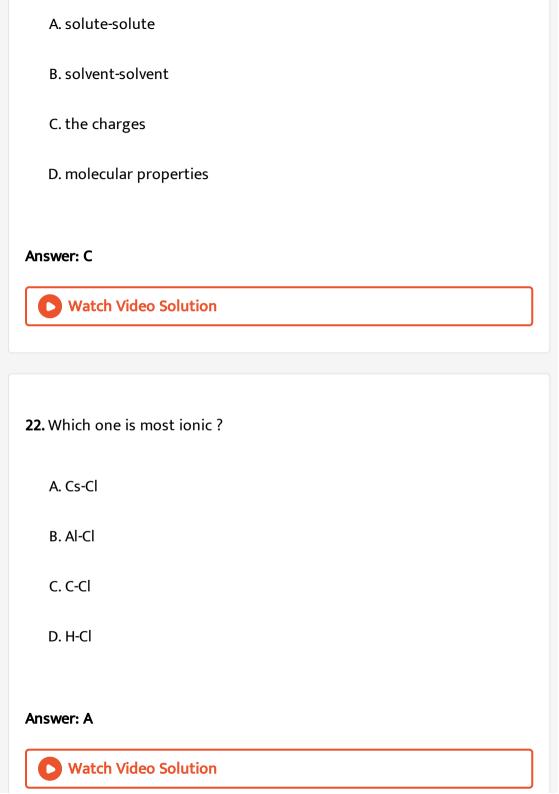
A. Good conductor of electricity

B. Polar in nature

C. Low M.P. and Low B.P.

D. Easily available

Answer: B


19. Solid NaCl is a bad conductor of electricity because

A. in Solid NaCl there are no ions

B. Solid NaCl is covalent

C. In solid NaCl there is no motion of ions

D. In solids NaCl there are no electrons
Answer: C
Watch Video Solution
20. The strongest bond is
A. Ionic
B. Covalent
C. Hydrogen bond
D. Metallic
Answer: A
Watch Video Solution
21. The interionic attraction depends on interaction of

23. A compound is formed by the substitution of two chlorine atoms for two hydrogen atoms in propane. Write the structures of the isomers possible.

Give the IUPAC name of the isomer which can exhibit enantiomerism.

- A. H-Cl
- B. Cl-Cl
- C. Na-Cl
- D. C-Cl

Answer: C

Watch Video Solution

24. What is the effect of more electronegative atoms on the strength of an ionic bond ?

A. Decreases B. Increases C. Decreases slowly D. Remains the same **Answer: B** Watch Video Solution 25. Which of the following compound contains ionic as well as covalent bonds? A. NaCl B. $NaClO_4$ $\mathsf{C}.\,PCl_3$ D. $POCl_3$ **Answer: B**

26. Out of the following which compound will have electrovalent bonding

A. He

B. CsF

C. NH_3

D. $CHCl_3$

Answer: B

27. Out of the following which compound will have electrovalent bonding

A. Ammonia

B. Water

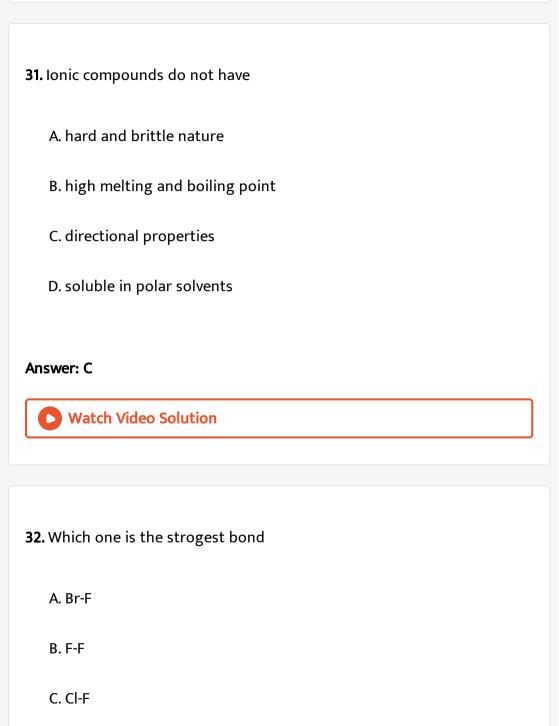
C. Calcium chloride

D. Chloromethane

Answer: C

Watch Video Solution

- **28.** The bonds present in $N_2 O_4$ are
 - A. only ionic
 - B. only covalent
 - C. covalent and coordinate
 - D. ionic and coordinate


Answer: C

View Text Solution

29. Which compound has electrovalent bond

A. H_2O_2 B. CCl_4 $\mathsf{C}.\,NaBr$ D. $CHCl_3$ **Answer: C** Watch Video Solution **30.** Which of the following is least ionic? A. C_2H_5Cl B. KCl $\mathsf{C}.\,BaCl_2$ D. $C_6H_5N^+H_3Cl^-$ **Answer: A Watch Video Solution**

D. Br-Cl
Answer: A Watch Video Solution
33. Highest melting point would be of
A. He
B. CsCl
C. NH_3
D. $CHCl_3$
Answer: B
Watch Video Solution
34. Which type of bonding exists in Li_2O and CaF_2 respectively

B. Ionic, ionic C. Ionic, covalent D. covalent, ionic **Answer: B Watch Video Solution** 35. Which of the following statements is not true for ionic compounds? A. high melting point B. least lattice energy C. least solubility in organic compounds D. soluble in water Answer: B **Watch Video Solution**

A. covalent, covalent

36. Which of the following has the highest melting point?
A. $BeCl_2$
B. $MgCl_2$
$C.CaCl_2$
D. $BaCl_2$
Answer: D
Watch Video Solution
37. Lattice energy of an ionic compound depedns upon :
37. Lattice energy of an ionic compound depedns upon : A. charge on the ion only

D. charge on the ion and size of the ion
Answer: D
Watch Video Solution
38. Which of the following compounds contains ionic bonds?
A. KI
B. CH_4
C. diamonds
D. H_2
Answer: A
Watch Video Solution

39. The electronic structure of four elements $A,\,B,\,C,\,D$ are

- (a) $1s^2$ (b) $1s^2,\,2s^2,\,2p^2$
- (c) $1s^2,\,2s^2,\,2p^5$ (d) $1s^2,\,2s^22p^6$

The tendency to form electrovalent bond is largest in

- A. A
- B. B
- C. C
- D. D

Answer: C

- **40.** The order of stability of metal oxides is
 - A. $Cr_2O_3 < MgO < Al_2O_3 < Fe_2O_3$
 - B. $Fe_2O_3 < Cr_2O_3 < Al_2O_3 < MgO$

C. $Fe_2O_3 < Al_2O_3 < Cr_2O_3 < MgO$

 ${\rm D.}\,Al_2O_3 < MgO < Fe_2O_3 < Cr_2O_3$

Answer: B

Watch Video Solution

41. An element X with the electronic configuration $1s^2,\,2s^22p^6,\,3s^2$ would be expected to form the chloride with the formula

A. XCl_3

B. XCl_2

C. XCl

D. X_2Cl

Answer: B

View Text Solution

42. The electronic configuration of four elements L,P,Q and R are given in brackets

$$L(1s^2, 2s^2, 2p^4), P(1s^2, 2p^6, 3s^1)$$

 $Q(1s^2, 2s^22p^6, 3s^23p^5), R(1s^2, 2s^22p^6, 3s^2)$

The formula of ionic compounds that can be formed between elements are

A. $L_2P,\,RL$,PQ and R_2Q

B. $LP,\,RL,\,PQ$ and RQ

C. P_2L ,RL,PQ and RQ_2

D. $LP,\,R_2L,\,P_2Q$ and RQ

Answer: C

Watch Video Solution

43. From the following which group of elements easily forms cation

A. F,Cl,Br

B. Li,Na,K

C. O,S,Se

D. N,P,As

Answer: B

Watch Video Solution

44. Chemical formula for calcium pyrophosphate is $Ca_2P_2O_7$. The formula for ferric pyrophosphate will be

A. $Fe_3(P_2O_7)_3$

B. $Fe_4P_4O_{14}$

C. $Fe_4(P_2O_7)_3$

D. Fe_3PO_4

Answer: C

45. Assertion : Water is a good solvent for ionic compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases sufficient energy to overcome lattice energy and break hydrogen bonds in water, white covalent bonded compound interact so weakly that even van der walls force between molecule of convalent compounds cannot be broken .

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

46. Assertion: Order of lattice energy for same halides are as

LiX < NaX < KX.

Reason: Size of alkaline -earth metal increases from Li to K

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

Watch Video Solution

47. Assertion:Born-Haber cycle is based on Hess's law.

Reason: Lattice enthalpy can be calculated by Born-Haber cycle

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: B

48. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1s^22s^22p^3$, the simplest formula for this compounds is

- A. Mg_2X_3
- $\mathsf{B.}\, MgX_2$
- $\mathsf{C}.\,Mg_2X$

Answer: D

View Text Solution

Ordinary thinking (Covalent bonding)

- 1. Ionic and covalent bonds are present in
 - A. CCl_4
 - $\mathsf{B.}\, CaCl_2$
 - C. NH_4Cl
 - D. H_2O

Answer: C

View Text Solution

2. The table shown below gives the bond dissociation emergies $(E_{
m diss})$ for single covalent bonds of carbon (C) atoms with element A,B,C and D. which element has the smallest atoms

Bond	E_{diss} (kJ mol ⁻¹)
C-A	240
C-B	328
C-C	276
C-D	485

A. A

B.B

C. C

D. D

Answer: D

3.	The	correct	seauence	of increa	sing covale	ent character	is represent by
	• • • •						

A.
$$LiCl < NaCl < BeCl_2$$

$${\tt B.}\, BeCl_2 < NaCl < LiCl$$

$$\mathsf{C.}\, NaCl < LiCl < BeCl_2$$

D.
$$BeCl_2 < LiCl < NaCl$$

Answer: C

- 4. Which one of the electron deficient compounds
 - A. ICI
 - B. NH_3
 - $\mathsf{C}.\,BCl_3$
 - D. PCl_3

Answer: C

- 5. Which of the following statements is correct for covalent bonds
 - A. Electrons are shared between two atoms
 - B. it may be polar or non-polar
 - C. Direction is non-polar
 - D. Valency electrons are attracted

Answer: A::B

- 6. The octet rule is not followed in
 - A. F_2

 $C. CaF_2$

D. BF_3

Answer: D

Watch Video Solution

7. With which of the given pairs, CO_2 resembles

A. $HqCl_2$, C_2H_2

B. $HgCl_2$, $SnCl_4$

 $C. C_2H_2, NO_2$

D. N_2O and NO_2

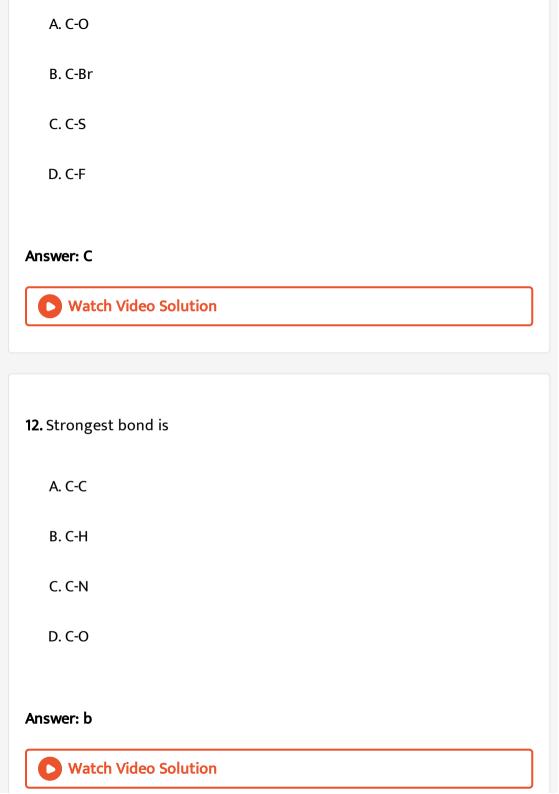
Answer: A

8. Covalent compounds are generallyin water
A. soluble
B. insoluble
C. dissociated
D. hydrolysed
Answer: B
Watch Video Solution
9. As compared to covalent compounds, electrovalent compounds, generally have
A. Low melting points and low boiling points
B. Low melting points and high boiling points
C. High melting point and low boiling points
D. high melting points and high boiling points

Answer: D

Watch Video Solution

10. If the atomic number of element X is 7, the best electron dot symbol for the element is _____.


- A.X.
- B. .X.
- $\mathsf{C}.\,.\,\dot{X}.$
- D. :X.

Answer: C

Watch Video Solution

11. Which is the most covalent?

13. Which of the following has covalents bond
A. Na_2S
B. $AlCl_3$
C. NaH
D. $MgCl_2$
Answer: B
Watch Video Solution

14. Which type of bond is present in H_2S molecule

A. Ionic bond

B. covalent bond

C. co-ordinate

D. All of three	
Answer: B	
Watch Video Solution	
15. The major binding force of diamond, silicon and quartz is	
A. Electrostatic force	

B. Electrical attraction

C. Covalent bond force

Answer: C

D. Non-covalent bond force

16. Among the species $CO_2, CO_3^{2-}, CH_3COO^-$, CO, HCHO which has

longest carbon-oxygen bond

A. CO_2

B. CH_3COO^-

C. HCHO

D. CO_3^{2-}

Answer: D

Watch Video Solution

17. The covalent bond length is the shortest in which of the following bonds

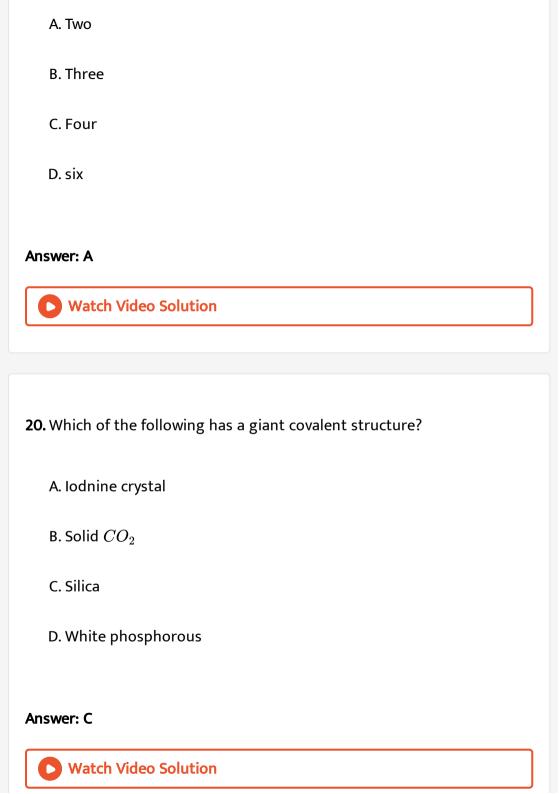
A. C-O

B. C-C

 $C.C \equiv N$

D.	0	_	H

Answer: D



Watch Video Solution

- **18.** The normality of 0.3M phosphorous acid H_3PO_3 is:
 - A. 2
 - B. 5
 - C. 4
 - D. 1

Answer: B

21. The nature of chemical bonding in graphite is
A. Covalent
B. ionic
C. Metallic
D. Coordinate
Answer: A Watch Video Solution
22 Which of the fallowing atoms has minimum accordant we dive
22. Which of the following atoms has miniumum covalent radius
A. B
B. C
C. N

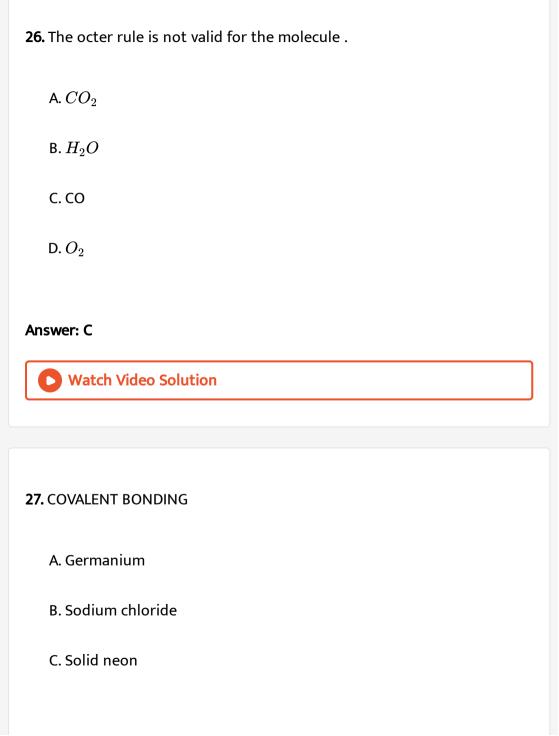
D.	Si

Answer: C

Watch Video Solution

- 23. Silicon has 4 elements in the outermost orbit. In forming the bonds,
 - A. It gains electrons
 - B. It loses electrons
 - C. It shares electrons
 - D. None of these

Answer: C



Watch Video Solution

24. Bond energy of covalent ${\it O}-{\it H}$ bond in water is

B. Equal to bond energy of H-bonds C. Less than bond energy of H-bond D. None of these Answer: A **Watch Video Solution** 25. Maximum covalent character is associated with the compound A. CaF_2 B. $CaCl_2$ C. $CaBr_2$ D. CaI_2 Answer: D **Watch Video Solution**

A. Greater than bond energy of H-bonds

Answer: A

Watch Video Solution

- **28.** The species $CO,\,CN^-$,and NO^+ which are isoelectronic with N_2 , are much more reactive than N_2 because
 - A. CO
 - $\mathrm{B.}\,N_{2}^{\,+}$
 - $\mathsf{C.}\,N_2^-$
 - D. O_2^+

Answer: A

29. A covalent bond is formed between

- A. Electron nuclear attraction
- B. Electron sharing
- C. Electron transfer
- D. Electrostatic attraction

Answer: B

- **30.** The electronic configuration of metal M is $1s^22s^22p^63s^1$. The formula of its oxide will be :
 - A. MO
 - B. M_2O
 - $\mathsf{C.}\,M_2O_3$
 - $\mathsf{D.}\,MO_2$

Answer: B

Watch Video Solution

31. Which of the following statements regarding covalent bond is not true

- A. The electrons are shared between atoms
- B. the bond is non-directional
- C. the strength of the bond depends upon the extent of overlaping
- D. the bond formed may or may not be polar

Answer: B

- A. Combining power of an atom B. Atomicity of an element C. oxidation number of an element D. Charge on an ion Answer: A **Watch Video Solution** 33. The molecule of sulphuric acid contains A. Only covalent bonds
 - B. Covalent and ionic bonds
 - C. Covalent and co-ordinate bonds
 - D. covalent, ionic and co-ordinate bonds

Answer: D

34. The interatomic distance in H_2 and CI_2 molecules are 74 an d198 pm respectively. The bond length of HCI is

- A. 272 pm
- B. 136 pm
- C. 124 pm
- D. 248 pm

Answer: B

Watch Video Solution

35. Among the following which property is commonly exhibited by a covalent compound

- A. High solubility in water
- B. High electrical conductance

- C. Low boiling point
- D. High melting point

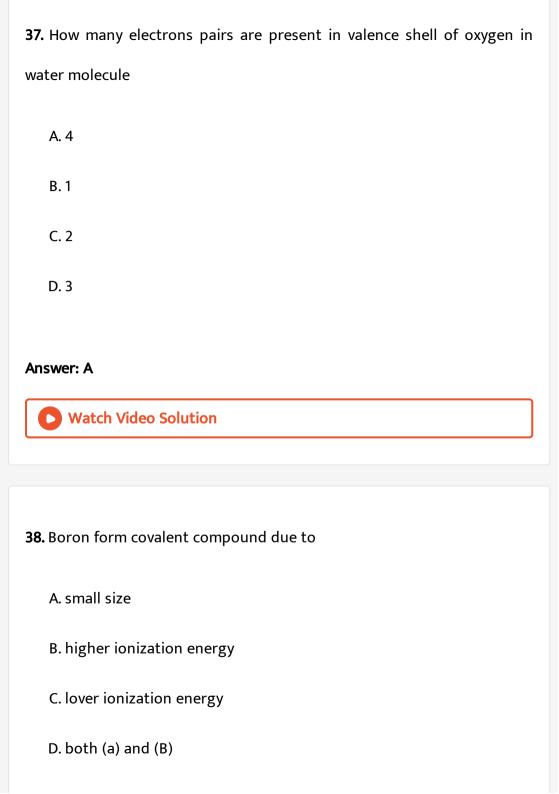
Answer: C

Watch Video Solution

36. Which of the following is the correct electron-dot structure of $N_2{\cal O}$

molecule?

A. :
$$N=N=\overset{\cdot \cdot \cdot}{O}$$


$$extsf{B.}: N \equiv N^+ - \stackrel{\cdot \cdot \cdot}{ extsf{O}:}^-$$

$$\text{C.}\overset{\cdot \cdot \cdot}{N}-\overset{\cdot \cdot \cdot}{N}=\overset{\cdot \cdot \cdot}{O}$$

$$\mathsf{D.}: N = N = \overset{\cdot}{\mathsf{O}}:$$

Answer: B

Answer: D Watch Video Solution 39. The following element forms a molecules with eight its own atoms A. Si B. S C. Cl D. F **Answer: B** Watch Video Solution 40. Number of electrons in the valence orbit of nitrogen in an ammonia

molecule are

A. 8 B. 5 C. 6 D. 7 Answer: A Watch Video Solution 41. Covalent compounds have low melting points because A. covalent bond is less exothermic B. covalent molecules have definite shape C. covalent bond is weaker than ionic bond D. covalent molecules are held by weak Vander waal's force of

attraction

Answer: D

42. Sodium chloride is an ionic compound whereas hydrogen chloride is a gas because

A. sodium is reactive

B. covalent bond is weaker than ionic bond

C. hydrogen chloride is a gas

D. covalent bond is stronger than ionic bond

Answer: B

Watch Video Solution

43. Which of the following is not the characteristic of a covalent compound?

A. low melting point

B. No definite geometry

C. insoluble in polar solvent

 $\ensuremath{\mathsf{D}}.$ small difference in electronegativily between the combining atoms

Answer: B

Watch Video Solution

44. Among the following groupings, which one represents the set of isoelectronic species

A.
$$NO^+, C_2^{2-}, O_2^-, CO$$

B. $N_2, C_2^{2\,+}, CO, NO$

C. CO,NO^+,CN^-,C_2^{2-}

D. NO, CN^-, N_2, O_2^-

Answer: C

45. Among $CaH_2,\,NH_3,\,NaH$ and B_2H_6 which are covalent hydrides?

A. NH_3 and B_2H_6

B. NaH and CaH_2

C. NaH and NH_{3}

D. CaH_2 and B_2H_6

Answer: A

46. Among the following the maximum covalent character is shown by the compound

A. $FeCl_2$

B. $SnCl_2$

C. $AlCl_3$

D.	$MgCl_2$
----	----------

Answer: C

Watch Video Solution

47. Which of the following substances when dissolved in water will give a solution that does not conduct electricity

A. Hydrogen chloride

B. potassium hydroxide

C. sodium acetate

D. Urea

Answer: D

48. Consider the molecules CH_4, NH_3 and H_2O which of the given statement is false ?

A. The H-CH-H bond angle in CH_4 , the H-N-H bond angle in NH_3 and the H-O-H bond angle in H_2O are all greater than 90°

B. The H-O-H bond angle in ${\cal H}_2 O$ is larger than the H-C-H bond angle in CH_4

C. The H-O-H bond angle in ${\cal H}_2O$ is smaller than the H-C-N bond angle in $N{\cal H}_3$

D. H-C-H bond angle in CH_4 is larger than the H-N-H bond angle in NH_3

Answer: B

49. If a molecule X_2 has a triple bond, then X will have the electronic configuration

A.
$$1s^2 2s^2 2p^5$$

 $\operatorname{B.}1s^22s^22p^3$

 $\mathsf{C.}\,1s^22s^1$

D. $1s^1 2s^2 2p^1$

Answer: B

Watch Video Solution

50. Which of the following compounds does not follow the octet rule the electron distribution

A. PCl_5

B. PCl_3

 $\mathsf{C}.\,H_2O$

D.	PH_3
----	--------

Answer: A

Watch Video Solution

- **51.** Why is H_2S more acidic than water ?
 - A. O is more electronegativity than S
 - B. O-H bond is stronger than S-H bond
 - C. O-H bond is weaker than S-H bond
 - D. None of these

Answer: B

52. The electronic configuration of four elements L,P,Q and R are given \vdots

in brackets

$$egin{aligned} Lig(1s^2,2s^2,2p^4ig), Pig(1s^2,2p^6,3s^1ig) \ Qig(1s^2,2s^22p^6,3s^23p^5ig), Rig(1s^2,2s^22p^6,3s^2ig) \end{aligned}$$

The formula of ionic compounds that can be formed between elements

A. Q

are

B. M

C. R

D. L

Answer: B

Watch Video Solution

53. Which of the following occurs, when two hydrogen atoms bond with each other

A. Potential energy is lowered B. Kinetic energy is lowered C. Electronic motion ceases D. Energy is absorbed

Answer: A

Watch Video Solution

54. Indicate the nature of bonding in CCl_4 and CaH_2

A. Covalent in CCl_4 and electrovalent in CaH_2

B. Electrovalent in both CCl_4 and CaH_2

C. Covalent in both CCl_4 and CaH_2

D. Electrovalent in CCl_4 and covalent in CaH_2

Answer: A

55. Carbon has a valency of 2 in CO and 4 in CO_2 and CH_4 . Its valency in acetylene (C_2H_2) is

- A. 1
- B. 2
- C. 3
- D. 4

Answer: D

Watch Video Solution

56. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason: In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Watch Video Solution

57. Assertion: Diborane is electron deficient.

Reason: There are no enough valence electrons to form the expected number of covalent bonds.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

- B. if both assertion and reason are true but reason is not the correct explanation of the assertion
- C. if assertion is true but reason is false
- D. if the assertion and reason both are false

Answer: A

Watch Video Solution

58. The bond between two identical nonmetal atoms has a pair of electrons

- A. If both assertion and reason are true and the reason is the correct explanation of the assertion
- B. if both assertion and reason are true but reason is not the correct
- C. if assertion is true but reason is false

explanation of the assertion

D. if the assertion and reason both are false

Answer: D

Watch Video Solution

59. Assertion (A): The fluorine has lower reactivity.

Reason (R): F-F bond has low bond dissociation energy.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

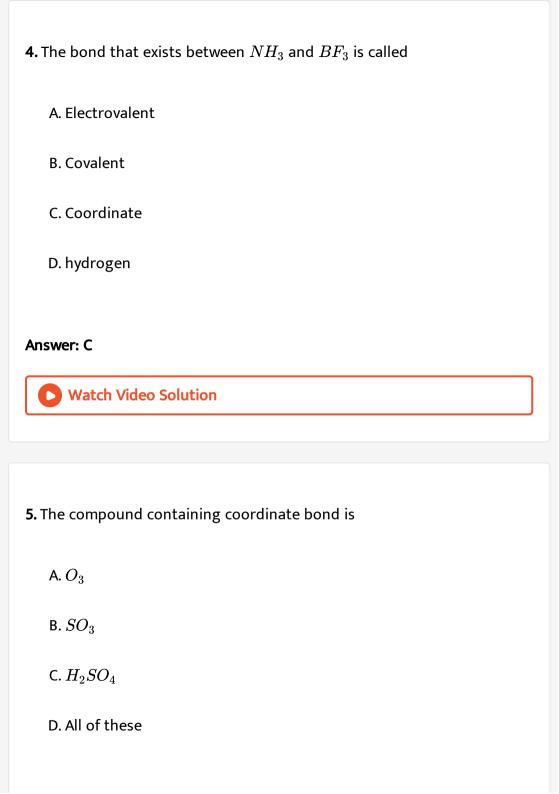
C. if assertion is true but reason is false

D. if assertion is false but reason in true.

Answer: D

Ordinary thinking (Coordinate or dative bonding)

- 1. A coordinate bond is formed when an atom an atom in a molecule has
 - A. electric charge on it
 - B. All its valency electrons shared
 - C. A single unshared electrons
 - D. one or more unshared electron pair.


Answer: D

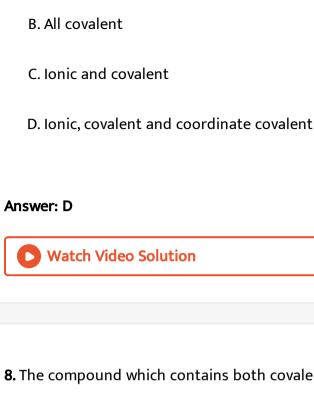
- 2. Which one of the following molecules has a coordinate bond
 - A. NH_4Cl
 - $\mathsf{B.}\,AlCl_3$

D. Cl_2
Answer: A
Watch Video Solution
3. Coordinate covalent compounds are formed by
A. Transfer of electrons
B. Sharing of electrons
C. Donation of electrons
D. None of these process
Answer: C
Watch Video Solution

 $\mathsf{C.}\,NaCl$

Answer: D

Watch Video Solution


- 6. Sulphuric acid provides a simple example of
 - A. co-ordinate bonds
 - B. non-covalent compound
 - C. covalent and co-orndinate bond
 - D. non-covalent ion

Answer: C

Watch Video Solution

- **7.** $K_4ig[Fe(CN)_6ig]$ is a
 - A. All ionic

8. The compound which contains both covalent and coordinate bond is

A. BF_3 . NH_3

B. CH_2Cl_2

 $C. C_2H_4$

D. CH_3NH_2

Answer: A

9. The number of dative bonds in sulphuric acid molecule is
A. 0
B. 1
C. 2
D. 4
Answer: C
Watch Video Solution
10. The compound containing coordinate bond is
A. SO_3^{2-}
B. CH_4
$C.CO_2$
C. CO_2

Answer: A

Watch Video Solution

- 11. The coordinate bond is absent in
 - A. $BH_4^{\,\Theta}$
 - B. CO_3^{-2}
 - $\mathsf{C.}\,H_3O^{\,+}$
 - D. $NH_4^{\,\oplus}$

Answer: B

Watch Video Solution

- 12. Which of the following contains a coordinate covalent bond?
 - A. CH_3NC

B. CH_3OH

C. CH_3Cl

D. NH_3

Answer: A

Watch Video Solution

13. The structure of orthophosphoric acid is

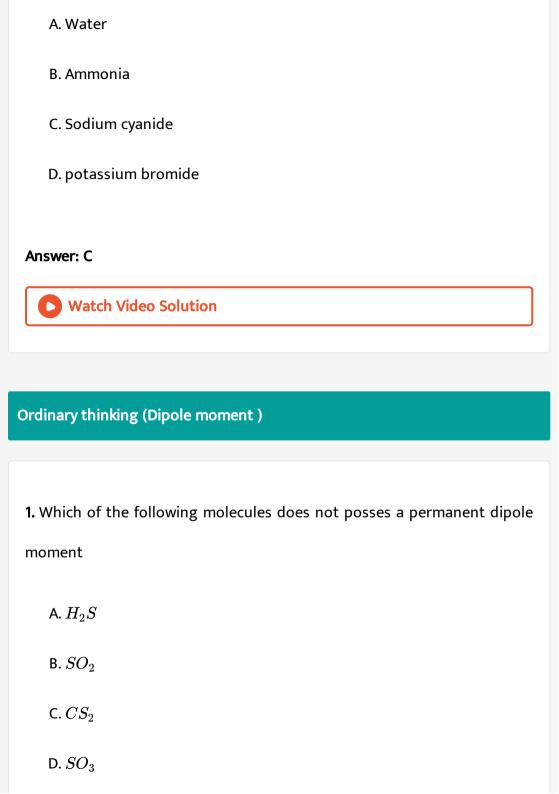
$$\begin{array}{c} \mathsf{A.}\,H - O - \overset{O}{\overset{\uparrow}{P}} - O - H \\ \overset{O}{\overset{\downarrow}{P}} \\ \overset{\downarrow}{H} \\ \mathsf{B.}\,O \leftarrow \overset{P}{\overset{\downarrow}{P}} - O - H \\ \overset{O}{\overset{\downarrow}{H}} \\ \overset{H}{\overset{H}{H}} \\ H \end{array}$$

$$D.H - O - P = C$$

Answer: A

Watch Video Solution

14. What is the nature of the bond between B and O in $(C_2H_5)_2OBH_3$


- A. Covalent
- B. Co-ordinate covalent
- C. Ionic bond
- D. Banana shaped bond

Answer: B

Watch Video Solution

15. Which of the following compounds shows ionic, covalent and coordinate bonds as well ?

Answer: C

Watch Video Solution

- 2. Which of the following would have permanent dipple moment?
 - A. BF_3
 - B. SiF_4
 - C. SF_4
 - D. XeF_4

Answer: C

Watch Video Solution

3. The electronegaivity difference between N and F is greater than that between N and H yet the dipole moment of NH_2 (1 .5 D) is larger than that of $NF_3(0.\ 2D)$. This is because :

A. In NH_3 as well as NF_3 the atomic dipole and bond dipole are in opposite directions

B. In $\,NH_3\,$ the atomic dipole and bond dipole are in the opposite directions whears in $NF_3\,$ these are in the same direction

C. in NH_3 as well as in NF_3 the atomic dipole and bond dipole are in the same direction

D. In NH_3 the atomic dipole and bond dipole are in the same direction wheras in NF_3 these are in opposite directions

Answer: D

4. Dipole-induced dipole interaction are present in which of the following pairs

A. SiF_4 and He atoms

B. H_2O and alcohol C. Cl_2 and CCl_4 D. HCl and He atoms **Answer: D Watch Video Solution** 5. Which of the following molecules has the maximum dipole moment? A. NH_3 B. NF_3 $C.CO_2$ D. CH_4 **Answer: A Watch Video Solution**

6. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule XY_2 ?

A.
$$heta=90^{\circ}$$

В.
$$heta=120^{\circ}$$

C.
$$heta=150^{\circ}$$

D.
$$heta=180^\circ$$

Answer: A

Watch Video Solution

7. The molecule which has zero dipole moment is

A. NH_3

B. H_2O

 $\mathsf{C}.\,BCl_3$

D. SO_2

Answer: C Watch Video Solution

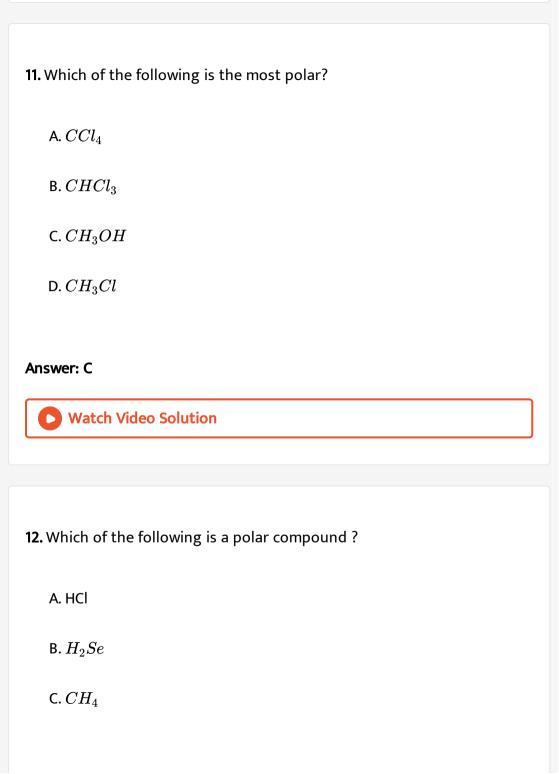
8. The molecule which has the largest dipole moment amongst the following is

A. HCl

B. Hl

C. HBr

D. HF


Answer: D

Watch Video Solution

9. The dipole moment of chlorobenzene is 1.73 D . The dipole moment of p-dichlorobenzene is expected to be

A. 3.46 D B. 0.00D C. 1.73 D D. 1.00 D **Answer: B** Watch Video Solution 10. Which of the following has zero dipole moment? A. CH_2Cl_2 B. CH_4 $\mathsf{C}.\,NH_3$ D. PH_3 **Answer: B Watch Video Solution**

_	_		
\Box		11	
	г	71	

Answer: A

Watch Video Solution

13. If the molecule of HCl were totally polar, the observed value of dipole moment is 1.03 D (debye) but the experimental value of dipole moment was 6.12 D. Calculate the percentage ionic character.

A. 17

B. 83

C. 50

D. 90

Answer: A

Watch Video Solution

14. Which of the following has the least dipole moment?
A. CCl_4
B. $CHCl_3$
$C.CH_3CH_2OH$
D. CH_3COCH_3
Answer: A
Watch Video Solution
15. Which of the following compounds possesses zero dipole moment ?
A. water
B. boron trifluoride
C. benzene
D. carbon tetrachloride

Answer: A **Watch Video Solution** 16. Among the following, the molecule with the highest dipole moment is : A. water B. boron trifluoride C. benzene

Answer: A

D. carbon tetrachloride

17. The unequal sharing of bonded pair of electrons between two atoms in a molecule causes _____.

B. covalent bond C. decomposition of molecule D. Answer: A **Watch Video Solution** 18. Which of the following has zero dipole moment? A. CCl_4 B. CH_3Cl $C. CH_3F$ D. $CHCl_3$ **Answer: A Watch Video Solution**

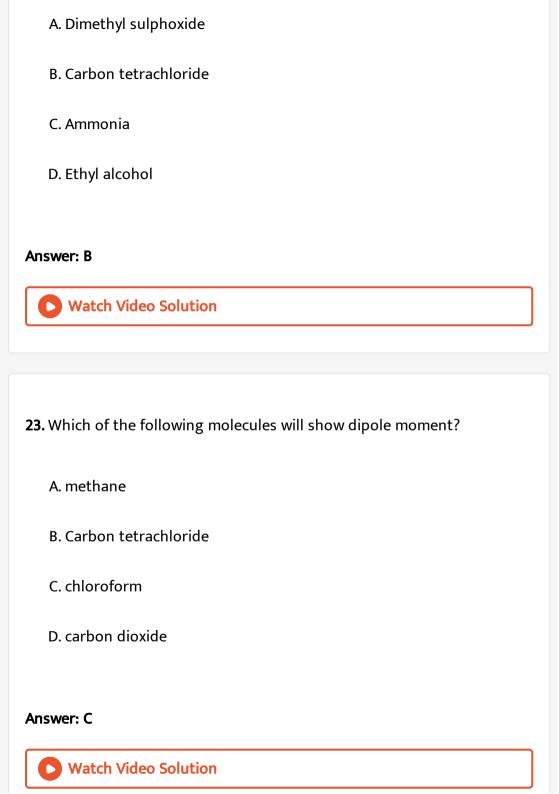
A. dipole radical formation

19. Which of the following fluorides of Xe has zero dipole moment? A. XeF_2 B. XeF_3 $\mathsf{C}.\,XeF_4$ D. XeF_6 **Answer: C** Watch Video Solution **20.** The dipole moment of HBr is $1.6 imes 10^{-30} cm$ and interatomic spacing is 1Å. The % ionic character of HBr is A. 7 B. 10 C. 15

\Box	27
υ.	21

Answer: B

Watch Video Solution


- 21. Which molecules does not show zero dipole moment
 - A. BF_3
 - $\mathsf{B.}\,NH_3$
 - C. CCl_4
 - D. CH_4

Answer: B

View Text Solution

 ${\bf 22.}\,{\bf Which}$ contains both polar and non-polar bonds ? .

24. Dipole moment is shown by

A. CCl_4

 $\operatorname{B.} C_6H_6$

 $\mathsf{C.}\,BF_3$

D. HF

Answer: D

Watch Video Solution

25. Fluorine is more electronegative than either boron or phosphorous. What conclusion can be drawn from the fact that BF_3 has no dipole moment but PF_3 does

A. BF_3 is not spherically symmetrical but PF_3 is symmetrical

B. BF_3 molecule must be linear

C. The atomic radius of F is larger than the atomic radius of B D. The BF_3 molecule must be planar triangular Answer: D **Watch Video Solution** 26. Which one of the following is least basic in character? A. Water B. ethanol

C. Ethane

D. Ether

Watch Video Solution

Answer: C

27. In a polar molecule , the ionic charge is 4.8×10^{-10} esu. If the interatomic distance is 1Å unit, then the dipole moment is

A. 41.8 debye

B. 4.18 debye

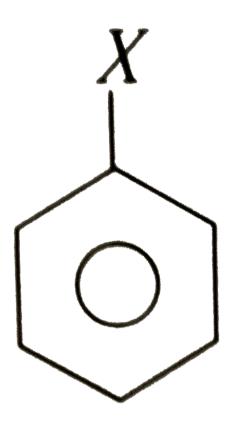
C. 4.8 debye

D. 0.48 debye

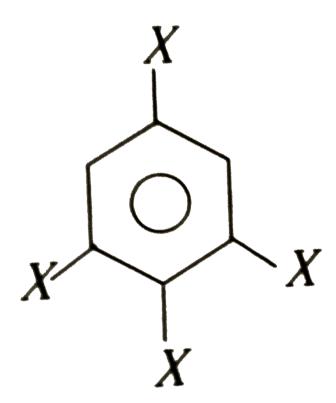
Answer: C

28. Among the following, the molecule with the highest dipole moment is

A. CO_2


B. BF_3

 $\mathsf{C}.\,SO_2$


D. Trans-2 -butane
Answer: C
Watch Video Solution
29. Which of the following is non polar species.
A. PCl_5
B. PCl_3
C. SF_6
D. IF_7

Answer: C

Watch Video Solution

Then the dipole moment of the following compound will be

A. 1.5 D

B. 2.25 D

C. 1D

D. 3 D

Answer: A

6.

.....

Watch Video Solution

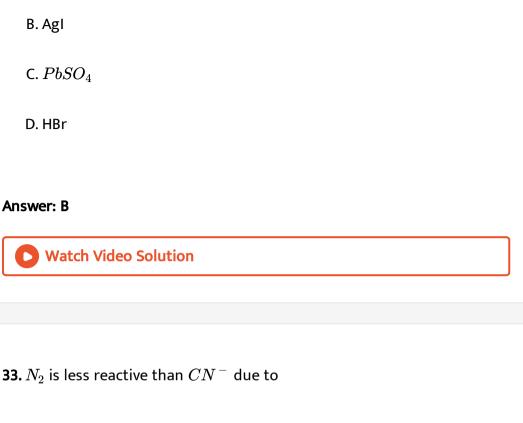
31. CO is practically non-polar since

A. The $\,\sigma\text{-electron}\,$ drift from C to D is almost nullified by the $\,\pi$ -electron drift from O to C

B. The $\,\sigma\text{-electron}\,$ drift from O to C is almost nullified by the $\,\pi\,$ -electron drift from C to D

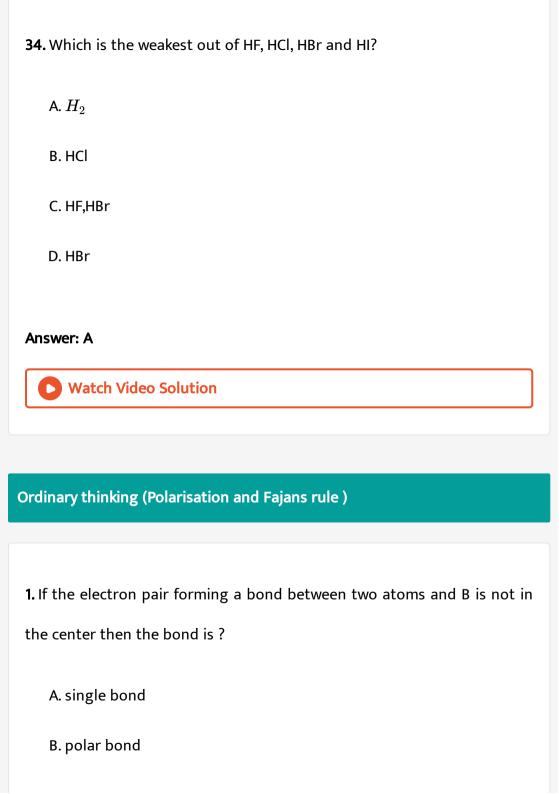
C. the bond moment in low

D. there is a triple bond between C and O


Answer: A

Watch Video Solution

32. Which molecules has zero dipole moment ?


A. H_2O

- A. presence of more electrons in orbitals
- B. absence of dipole moment
- C. difference in spin quantum no
- D. none of these

Answer: B

C. non-polar bond
D. π bond

Answer: B

Watch Video Solution

- 2. Which of the following have both polar and non-polar bonds?
 - A. C_2H_6
 - B. NH_4Cl
 - C. HCl
 - D. $AlCl_3$

Answer: B

Watch Video Solution

3. According to Fazan rule, the covalent bond is favoured by:
A. large cation and small anion
B. large cation and large anion
C. small cation and large anion
D. small cation and small anion
Answer: C
Watch Video Solution
4. Which of the following is a polar compound?
A. HF
B. HCl
$C.HNO_3$
D. H_2SO_4

Answer: A **Watch Video Solution** 5. Which of the following possesses highest melting point? A. chlorobenzene B. o-dichlorobenzene C. m-dichlorobenzene D. p-dichlorobenzene Answer: D **Watch Video Solution**

6. Which of the following bonds has the most polar character?

A. C-O

B. C-Br	
C. C-S	
D. C-F	
Answer: D	
Watch Video Solution	
7. The ICl molecule is	

- A. purely electrovalent
- B. purely covalent
- C. covalent but polar with negative end on iodine
- D. covalent but polar with negative end on chlorine

Answer: D

8. Which of the following is the most polar bond
A. O-H
B. S-H
C. N-H
D. C-H
Answer: A
Watch Video Solution
9. Dipole moment of HCl = 1.03 D, HI-0.38 D. Bond length of $HCI-1.3A^{\circ}$
and $HI=1.6A^{\circ}$ The ratio of fraction of electric charge, delta, existing
on each atom in HCI and HI is
A. 12:1
B. 2.7:1

D. 1:3.3

Answer: C

Watch Video Solution

10. The ionic radii of $N^{3\,-}\,O^{2\,-}\,,\,F^{\,-}\,,\,Na^{\,+}\,$ follows the order

A.
$$N^{3\,-} > F^{\,-} > O^{2\,-}$$

B.
$$O^{2-} > N^{3-} > F^{-}$$

C.
$$O^{2-} > F^- > N^{3-}$$

D.
$$N^{3-} > O^{2-} > F^{-}$$

Answer: D

Watch Video Solution

11. In which of the following molecules, is the covalent bond most polar?

A. HI B. HBr C. HCl $D.H_2$ **Answer: C Watch Video Solution** 12. Which of the following statement is correct A. SF_4 is polar and non-reactive B. SF_6 is non-polar and very reactive C. SF_6 is a strong fluorinating agent D. SF_4 is prepared by fluorinating SCl_2 with NaF**Answer: B Watch Video Solution**

13. The bonds between P atoms and Cl atoms in PCl_5 are likely to be

A. Ionic with no covalent character

B. covalent with some ionic character

C. covalent with non ionic character

D. ionic with some metallic character

Answer: B

Watch Video Solution

14. Among $CIF_3,\,BF_3\,$ and $\,NH_3\,$ molencules the one with non-planar geometry is

A. ClF_3

 $\mathsf{B.}\,NH_3$

 $\mathsf{C.}\,BF_3$

D. none of these
Answer: B
Watch Video Solution
15. Which of the following has zero dipole moment?
A. CIF
B. PCl_3
C. SiF_4
D. $CFCl_3$
Answer: C
Watch Video Solution
16. Maximum covalent character is associated with the compound

A. Nal B. MgI_2 $\mathsf{C}.\,AlCl_3$ D. AlI_3 Answer: D **Watch Video Solution** 17. Choose the correct statement A. Anion polarisation is more pronounced by highly charged cation B. small cation has minimum capacity to polarise an anion C. small anion has maximum polarizability D. none of these Answer: A **Watch Video Solution**

18. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, K^+ , Ca^{2+} , Mg^{2+} , Be^{2+}

A.
$$Mg^{2+} \, < Be^{2+} \, < K^{+} \, < Ca^{2+}$$

B.
$$Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$$

C.
$$K^+ < Ca^{2+} < Mq^{2+} < Be^{2+}$$

D.
$$Ca^{2+} < Mg^{2+} < Be^{2+} < K^+$$

Answer: C

Watch Video Solution

19. Two electrons of one atom A and two electrons of another atom B are utilized to form a compound AB. This is an example of

A. polar covalent bond

B. non-polar covalent bond

C. polar bond

D. dative bond

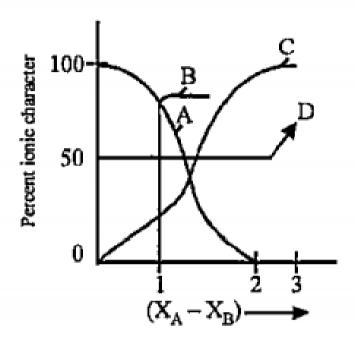
Answer: A

Watch Video Solution

20. polarisibility of halid ions increasing in the order

A. F^-, I^-, Br^-, Cl^-

 $\operatorname{B.}Cl^-,Br^-,I^-,F^-$


C. I^-, Br^-, Cl^-, F^-

D. F^-,Cl^-,Br^-,I^-

Answer: D

21. For AB bond if percent ionic character is plotted against electro nehativity difference (X_A-X_B) , the shape of the curve would look like

- A. (A)
- B. (B)
- C. (C)
- D. (D)

22. Planar molecule among the following is

- A. CCl_4
- $\mathsf{B.}\,CO_2$
- C. CH_2Cl_2
- D. $CH_2=CH_2$

Answer: C

- 23. The polarity of the covalent bond among the following is maximum in
 - A. F-F
 - B. O-F
 - C. N-F

D	C-F
υ.	C-I

Answer: D

Watch Video Solution

24. Amongst LiCl, RbCl, $BeCl_2$ and $MgCl_2$, the compounds whith the greatrest and the least ionic character respecitely are :

A. LiCl and RbCl

B. RbCl and $BeCl_2$

C. RbCl and $MgCl_2$

D. $MgCl_2$ and $BeCl_2$

Answer: B

A. Difference in electron affinities of the two atoms
B. difference in electronegativities of the two atoms
C. Difference in ionisation potential
D. All of these
Answer: B
Watch Video Solution
26. Pauling's electronegativity values for elements are useful in predicting
A. polarity of bonds in molecules
B. Position of element in electrochemical series
C. Co-ordination number
D. Dipole moment of various molecules

25. Bond polarity of diatomic molecule is because of _____.

Answer: A

Watch Video Solution

- 27. Which of the following is a polar molecule
 - A. XeF_4
 - B. BF_3
 - C. SF_4
 - D. SiF_4

Answer: C

- 28. Which of the following has a high polarising power
 - A. $Mg^{2\,+}$

B. Al^{3+}

C. Na^+

D. Ca^{2+}

Answer: B

Watch Video Solution

29. Among CaH_2 , BeH_2 , BaH_2 , the order of ionic character is

A. $BeH_2 < CaH_2 < BaH_2$

 $\operatorname{B.}\operatorname{\it CaH}_2 < \operatorname{\it BeH}_2 < \operatorname{\it BaH}_2$

 $\mathsf{C.}\,BeH_2 < BaH_2 < CaH_2$

D. $BaH_2 < BeH_2 < CaH_2$

Answer: A

Ordinary thinking (Overlapping - σ and π -bonds)

- 1. Which of the following is not correct
 - A. A sigma bond is weaker than π bond
 - B. A sigma bond is stronger than π bond
 - C. A double bond is stronger than a single bond
 - D. A double bond is shorter than a single bond

Answer: A

- **2.** In which of the following $p\pi-d\pi$ bonding is observed ?
 - A. NO_3^-
 - $\mathsf{B.}\,CO_3^{-2}$
 - $\mathsf{C.}\,BO_3^{-3}$

D. <i>SC</i>	O_3^{-2}
--------------	------------

Answer: D

Watch Video Solution

- 3. Angular shape of ozone molecule consists of
 - A. 1 sigma and 1 pi bonds
 - B. 2 sigma and 1 pi bonds
 - C. 1 sigma and 2 pi bonds
 - D. 2 sigma and 2 pi bonds

Answer: B

Watch Video Solution

4. In a double bond connecting two atoms there is a sharing of

Watch Video Solution 5. In which of the following there exists a $p\pi-p\pi$ bonding A. Diamond B. Graphite C. Dimethyl amine D. Trisilylamine **Answer: D** Watch Video Solution

A. 2 electrons

B. 1 electron

C. 4 electrons

D. All elements

Answer: C

- **6.** Which of the following statement is false
 - A. H_2 molecule has one sigma bond
 - B. HCl molecule has one sigma bond
 - C. water molecule has five sigma bonds and one pi bond
 - D. Acetylene molecule has three pi bonds and three sigma bonds

Answer: D

- **7.** Which type of overlapping results in the formation of a π bonds
 - A. Axia overlapping of S-S orbitals
 - B. Lateral overlapping of p-p orbitals
 - C. Axial overlapping of p-p orbitals

D. Axial overlapping of S-P orbitals

Answer: B

Watch Video Solution

- 8. Strongest bond is
 - A. C-C
 - B. C=C
 - $\mathsf{C}.\,C \equiv C$
 - D. All are equally strong

Answer: C

9. The number of $(p\pi-d\pi)$ π -bonds present in XeO_3 and XeO_4 respectively are

B. 4,2

C. 2,3

D. 3,2

Answer: A

- 10. The type of bonds present in sulphuric anhydride
- A. 3σ and three $p\pi-d\pi$
 - B. 3σ one $p\pi-p\pi$ and two $p\pi-d\pi$
 - C. 2σ three $p\pi-d\pi$
 - D. 2σ and two $p\pi-d\pi$

Answer: B

Watch Video Solution

11. All the four sigma bonds in perchlorate ion are

A.
$$sp^3-sp^3$$
 bond

B.
$$sp^3-p$$
 bond

C.
$$sp^3-sp^2$$
 bond

D.
$$sp^2-p$$
 bond

Answer: C

Watch Video Solution

12. The C-C bond length is shortest in

A. sp-sp

$$B. sp^2 - sp$$

$$\mathsf{C.}\, sp^2 - sp^2 \,\mathsf{bond}$$

D.
$$sp^2 - sp$$

Answer: A

Watch Video Solution

13. How many σ and π bonds are in the molecule of tetracyanoethylene

$$N \equiv C$$

$$N \equiv C \longrightarrow C = C \subset C \equiv N$$

$$C \equiv N$$

A. Nine σ and nine π

B. five σ and nine π

C. nine σ and seven π

D. five σ and eight π

Answer: A

- 14. The bond in the formation of fluorine molecule will be
 - A. due to s-s overlapping
 - B. due to s-p overlapping
 - C. due to p-p overlapping
 - D. due to hybridization

Answer: C

- **15.** Which of the molecule has p-p overlapping?
 - A. hydrogen

B. hydrogen bromide

C. hydrogen chloride

D. chlorine

Answer: D

Watch Video Solution

16. Assertion(A) - In N_2 molecule, the N atoms are bonded by one sigma and two π -bonds.

Reason(R) :N atoms assume sp^2 hybrid state to constitute N_2 molecule.

A. one σ , two π

B. one σ , one π

C. two σ , one π

D. three σ bonds

Answer: A

17. How many σ and π bonds are present in the given compound

$$Ph-CH= {\displaystyle \mathop{C}_{|}}_{CH_{3}}-C_{2}H_{5}$$

A. 19σ and 4π bonds

B. 22σ and 4π bonds

C. 25σ and 4π bonds

D. 19σ and 4π bonds

Answer: C

Watch Video Solution

18. The number of σ bonds in P_4O_{10} is

A. 6

B. 7

C. 17

D. 16

Answer: D

Watch Video Solution

19. The bond dissociation energy of B-F in BF_3 is $646kJmol^{-1}$ whereas that of C-F in CF_4 is $515kJmol^{-1}$. The correct reason for higher B-F bond dissociation energy as compared to that of C-F in CF_4 is

A. smaller size of B -atom as compared to that of C- atom

- B. Stronger σ bond between B and F in BF_3 as compared to that between C and F in CF_4
- C. Significant $p\pi-d\pi$ interaction between B And F in BF_3 whereas there is no possibility of such interaction between C and F in CF_4

D. Lower degree of $p\pi-d\pi$ interaction between B and F in BF_3 than

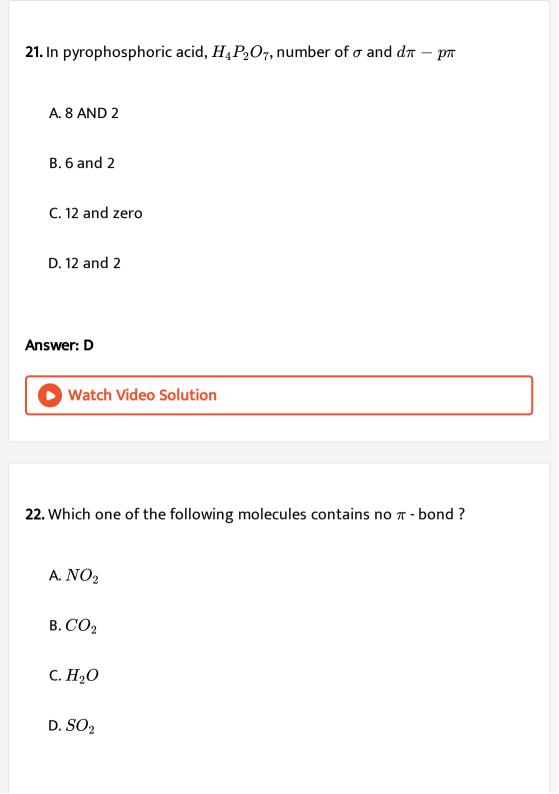
Answer: C

Watch Video Solution

that between C and F in CF_4

20. Number of bond in SO_2

A. two σ and two π


B. two σ and one π

C. two σ , two π one lone pair

D. none of these

Answer: C

Answer: C

Watch Video Solution

23. The outer orbitals of C in ethene molecule can be considered to be hybridized to given three equivalent sp^2 orbitals. The total number of sigma (σ) and pi (π) bonds in ethene molecule is

- A. 3 sigma (σ) and 2 pi (π) bonds
- B. 4 sigma (σ) and 1 pi (π) bonds
- C. 5 sigma (σ) and 1 pi (π) bond
- D. 1σ (sigma) and 2π (pi') bonds

Answer: C

- A. The same in all the three compound
- B. Greatest in ethane
- C. Greatest in ethylene
- D. Greatest in acetylene

Answer: D

Watch Video Solution

25. Assertion : σ -bond is strong white π -bond is a weak bond.

Reason :Atomic rotate freely about π -bond.

- A. If both assertion and reason are true and the reason is the correct
 - explanation of the assertion
- B. if both assertion and reason are true but reason is not the correct
 - explanation of the assertion
- C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

Watch Video Solution

Ordinary thinking (Hybridisation)

1. Which of the following possesses only sp hydridized carbonds?

A.
$$CH_2 = C. \ Cl - CH = CH_2$$

B.
$$C. Cl_2 = C. Cl_2$$

$$C. CH_2 = C = CH_2$$

$$D. CH_2 = CH - CH = CH_2$$

Answer: C

2. The structural formula of a compound is $CH_3-CH=C=CH_2$. The type of hybridization at the four carbons from left to right are

A.
$$sp^2, sp, sp^2, sp^3$$

B.
$$sp^2,\,sp^3,\,sp^2,\,sp$$

C.
$$sp^3, sp^2, sp, sp^2$$

D.
$$sp^3,\,sp^2,\,sp^2sp^2$$

Answer: C

3. In which one of the following molecules , the central atom said to adopt sp^2 hybridisation ?

A.
$$BeF_2$$

B.
$$BCl_3$$

$$\mathsf{C.}\,C_2H_2$$

D. NH_3

Answer: B

Watch Video Solution

4. Which one of the following formulae does not correctly represent the bonding capacities of the atoms involved ?

A.
$$\begin{bmatrix} H & H & H \\ H & -P & H \end{bmatrix}^{ au}$$

В.

$$C. \qquad \begin{array}{c} (c) & O \leftarrow N \\ \hline O - H \end{array}$$

(d)
$$H-C=C$$
 $O-H$

- **5.** Which contains both polar and non-polar bonds?
 - A. sp^3
 - $\mathsf{B.}\, dsp^2$
 - C. sp^2
 - D. sp

Answer: A

- **6.** In which of the following molecule has the maximum bond angle is ?
 - A. CH_4
 - B. H_2O
 - C. NH_3

П	CO
υ.	OO_2

Answer: D

Watch Video Solution

- **7.** The structure and hybridization of $Si(CH_3)_4$ is
 - A. Bent, sp
 - B. Trigonal, sp^2
 - C. Octahedral , sp^3d
 - D. Tetrahedral , sp^3

Answer: D

Watch Video Solution

8. In graphite, electrons are

A. Localised on every third C atoms B. present in antibonding orbital C. Localised on each C atom D. Spread out between the structure

Answer: D

Watch Video Solution

9. The structure of H_2O_2 is

A. Planar

B. Non-planar

C. Spherical

D. Linear

Answer: B

10. In a regular octahedral molecule MX_6 the number of X-M-X bonds at 180° is

A. Six

B. Four

C. Three

D. Two

Answer: C

Watch Video Solution

11. In an octahedral structure , the pair of d orbitals involved in d^2sp^2 hybridization is

A. $d_{x^2},\,d_{xz}$

B. $d_{xy},\,d_{yz}$

C. $d_{x^2-y^2},\,d_{z^2}$

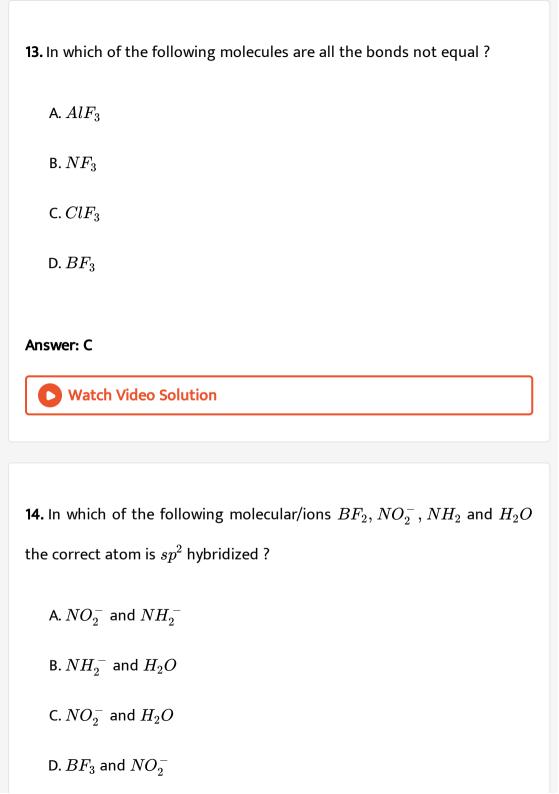
D. $d_{xz},\,d_{x^2-y^2}$

Answer: C

Watch Video Solution

12. Which of the following molecule has trigonal planner geometry?

A. IF_3


B. PCl_3

 $\mathsf{C}.\,NH_3$

D. BF_3

Answer: D

Answer: D

Watch Video Solution

15. In which one of the following species , the central atom has the tuype of hybdridiztion which is not the same as that present in other three?

- A. PCl_5
- B. SF_4
- $\mathsf{C}.\,I_3^{\,-}$
- D. $SbCl_5^{2-}$

Answer: D

Watch Video Solution

16. In which of the following molecules the central atom does not have sp^3 hybridization ?

Δ	CH
Д.	O_{114}

B. SF_4

C. $BF_{\scriptscriptstyle A}^{\;-}$

D. $NH_4^{\,+}$

Answer: B

Watch Video Solution

17. Some of the properties of the two species, NO_3^- and H_3O^+ are described below.Which one of them is correct?

A. Dissimilar is hybridization for the central atom with different structures

B. Isostructural with same hybridization for the central atom

C. isostructural with different hybridisation for the central atom

D. similar in hybridization for the central atom with structures

Answer: A

Watch Video Solution

18. Which of the two lons from the list given have the geometry that is explained by the same hybridization of orbitals $NO_2^-,NO_3^-,NH_2^-NH_4^+SCN^-$?

- A. NO_2^- and NH_2^-
- B. NO_2^- and NO_3^-
- C. $NH_4^{\,+}$ and $NO_3^{\,-}$
- D. SCN^- and NH_2^-

Answer: B

19. Which of the following pairs is isostractural (i.e having the same shape and hybridization?

A.
$$[BCl_3$$
 and $BrCl_3]$

B. $\left[NH_3 \text{and} NO_3^-\right]$ C. $[NF_3 \text{ and } BF_3]$

D. $\left[BF_4^{-}\text{and }NH_4^{+}\right]$

Answer: D

Watch Video Solution

20. XeF_2 is iso-structural with

A. $BaCl_2$

B. TeF_2

C. $I\mathbb{C}l_2^-$

D. $SbCl_3$

Answer: C

Watch Video Solution

21. Which of the following species has plane tringular shape?

- A. NO_2^-
- B. CO_2
- $\mathsf{C}.\,N_3$
- $\mathsf{D.}\,NO_3^-$

Answer: D

Watch Video Solution

22. Which of the following statement is not correct

A. Hybridization is the mixing of atomic orbitals prior to their combining into molecular orbitals

B. sp^2 hybrid orbitals are formed from two p atomic orbitals and one s atomic orbitals

C. d^2sp^3 hybrid orbitals are directed towards the corners of a regular octahedron

D. dsp^3 hybride orbitals are all at 90° to one another

Answer: D

23. When the hybridization state of a carbon atom changes from sp^3 to sp^2 and finally to sp, the angle between the hybridized orbitals

A. decreases gradually

B. increases gradually

C. decreases considerably

D. all of these

Answer: B

Watch Video Solution

24. in $\left[Cu(NH_3)_4\right]SO_4,\,Cu$ has following hybridization

A. dsp^2

B. sp^3

 $\mathsf{C.}\, sp^2$

D. sp^3d^2

Answer: A

25. The single, double and triple bond lengths of carbon in carbon dioxide are respectively

A. 1.15, 1.22 and 1.10 Å

B. 1.22,1.15 and 1.10 Å

C. 1.10,1.15 and 1.22 Å

D. 1.15 , 1.10 and 1.22 Å

Answer: B

26. The smallest bond angle around the central atom will be there in

A. IF_7

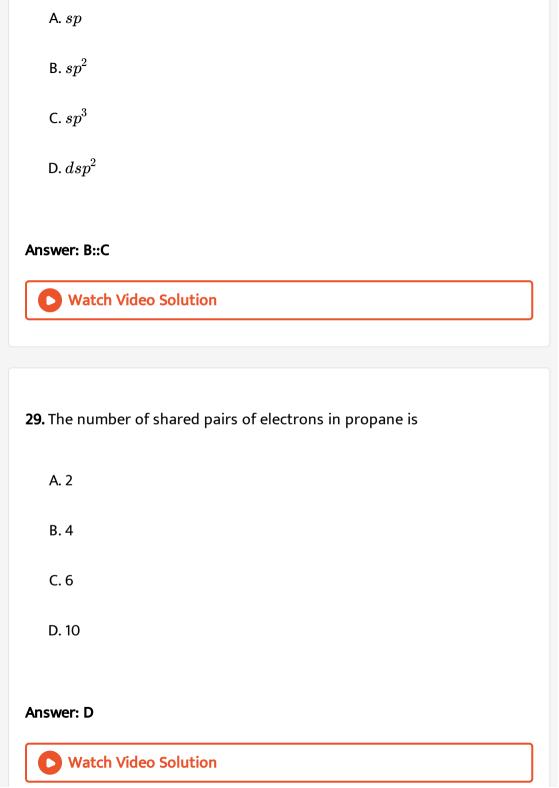
B. CH_4

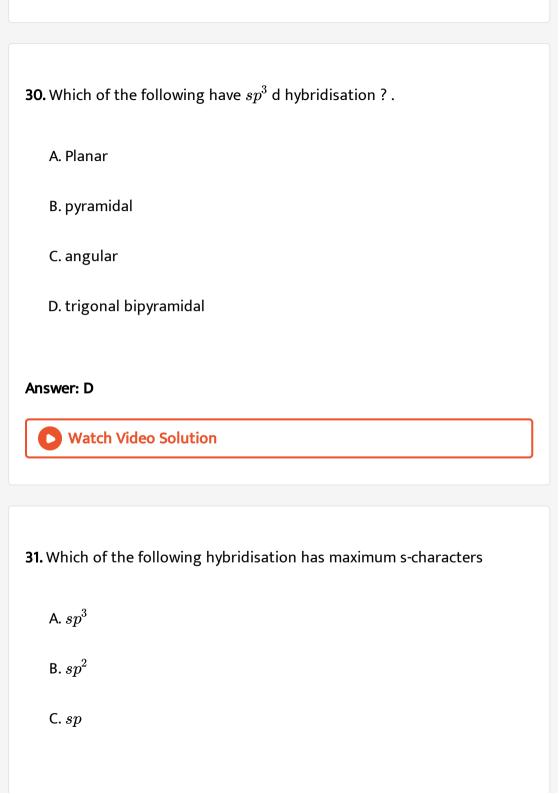
C. BeF_2

D. BF_3

Answer: A

Watch Video Solution


- **27.** The hybridization of Ag in the linear complex $\left[Ag(NH_3)_2
 ight]^+$ is
 - A. dsp^2
 - $\mathsf{B}.\,sp$
 - $\mathsf{C.}\,sp^2$
 - D. sp^3


Answer: B

Watch Video Solution

28. In diborane, the H-B-H bond angle is 120° . The hybridization of borons is likely to be

Answer: C
Watch Video Solution
32. As the s-character of hybridisation orbital increases, the bond angle
A. increases
B. decreases
C. becomes zero
D. does not change

D. none of these

Answer: A

33. Which of the following pair has same structure but different hybridisation?

A. PH_3 and BCl_5

B. SO_2 and NH_3

C. PCl_5 and SF_6

D. $NH_4^{\,+}$ and $SO_4^{2\,-}$

Answer: D

34. An sp^3 hybrid orbital possesses

- A. $\frac{1}{4}$ s -character
- B. $\frac{1}{2}$ s -character
- C. $\frac{2}{3}$ s -character
- D. $\frac{3}{4}$ s -character

Answer: A

Watch Video Solution

35. Carbon atoms in diamond show

A. tetrahedral

B. planar

C. linear

D. octahedral

Answer: A

Watch Video Solution

36. Geometry of ammonia molcule and the hybridisation of nitrogen involved in it are

A. sp^3 -hybridization and tetrahedral geometry

B. sp^3 -hybridization and distorted tetrahedral geometry

C. sp^2 -hybridization and triangular geometry

D. none of these

Answer: B

Watch Video Solution

37. In CO_2, CH_4 and CH_3^+ the hybridisation of carbon atoms are

A. sp^2 , sp^3 and sp^2 respectively

B. sp, sp^3 and sp^2 respectively

C. sp, sp^3 and sp respectively

D. sp^2 , sp^3 and sp respectively

Answer: B

38. The structure of H_2O_2 is

(a)
$$H \longrightarrow O \rightarrow O$$

B. H-O-O-H (straight line)

(c)
$$O-O$$

Where $\angle H-O-O=\angle O-O-H'=101.5^{\circ}$ and all the four

atoms are in the same plane

$$(d) \quad \begin{array}{c} P \\ P \\ O \end{array}$$

Where $\angle H-O-O=\angle H-O-H'=97^{\circ}$ and the angle

between H-O-O plane and O-O-H' plane is 101°

Answer: D

D.

39. Which of the following molecules is not linear?

A. $SnCl_2$

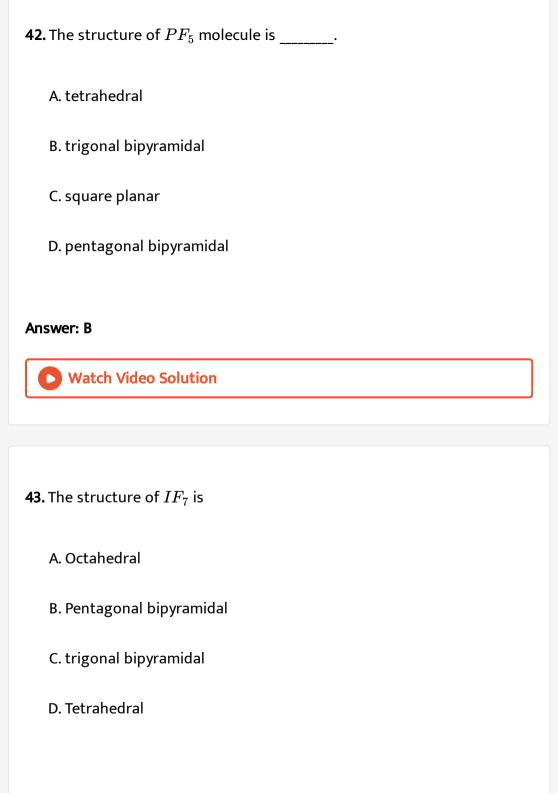
B. HCl

 $\mathsf{C}.\,CO_2$

D. $HgCl_2$

Answer: A

Watch Video Solution


40. Which of the following is isoelectronic as well as has the same

structure as that of N_2O ?

A. N_3H

B. H_2O

$C.NO_2$		
D. CO_2		
Answer: D		
Watch Video Solution		
41. What is the geometry of the molecule with sp^3d^2 hybridised contral		
atom is		
A. square planar		
B. Trigonal bipyramidal		
C. octahedral		
D. square puramidal		
Answer: C		
Watch Video Solution		

Answer: B

Watch Video Solution

44. The molecule of CO_2 has $180\,^\circ$ bond angle it one be explained on the basic of

- A. sp^3 hybridisation
- ${\sf B.}\, sp^2$ hybridisation
- C. sp hybridisation
- D. d^2sp^3 hybridisation

Answer: C

Watch Video Solution

45. The hydrogen bond is the strongest in

A. HF B. HI $C. CH_4$ D. PH_3 **Answer: A Watch Video Solution 46.** Among the compounds BF_3 , NCI_3 , H_2S , SF_4 and $BeCI_2$., identify the ones in which the central atom has the same type of hybridisation A. BF_3 and NCl_3 B. H_2S and $BeCl_2$ C. BF_3, NCl_3 and H_2S D. NCl_3 and H_2S Answer: D

47. Which of the following molecule is planar?

- A. CH_4
- B. NH_3
- $\mathsf{C}.\,C_2H_4$
- D. $SiCl_4$

Answer: C

48. The bond enthalpy is highest for:

- A. F_2
- B. Cl_2
- C. Br_2

$\overline{}$	TT
υ.	112

Answer: D

Watch Video Solution

- **49.** All carbon atoms are sp^2 -hybridised in:
 - A. 1,3-butadiene

$$B. CH_2 = C = CH_2$$

C. Cyclohexane

D. 2-butene

Answer: A

Watch Video Solution

50. The incorrectly matched pair, among the following is

- Molecules Shape A. BrF_5
- Trigonal bipyramidal Molecules Shape

Shape

- В. SF_4 See Saw Molecules
- ClF_3 T-shape
- Molecules Shape D. $NH_4^{\ +}$ Tetrahedral

Answer: A

Watch Video Solution

51. Experiment shows that H_2O has a dipole moment while CO_2 has not .

Point out the structure which best illustrate these facts

(a)
$$O = C = O$$
; H

$$\mathsf{B.}\,O=C=O,H-O-H$$

(c)
$$C = C$$
 ; $H-H-O$

C.

D.
$$\overset{O}{C}=O,\overset{H}{O}-H$$

Answer: A

Watch Video Solution

52. In which of the following molecules the central atom does not have

A. NH_3

 sp^3 hybridization?

B. CH_4

 $\mathsf{C}.\,H_2O$

D. CO_2

Answer: D

Watch Video Solution

53. Explain hybridisation in XeF_2 . Also draw its molecular structure.

A. sp^3 $\mathsf{B.}\, sp^3d$ C. sp^3d^2 D. none of these **Answer: B** Watch Video Solution 54. As the p - charcter increases the bond angle in in hydrid orbital formed by a and atomic orbitals A. decreases B. increases C. doubles D. remains unchanged **Answer: A**

55. Which of the following molecule/molecules have zero dipole moment?

 $NH_3, H_2O, CO_2, CBr_4, CHBr_3, BCl_3, BeCl_2$

A. $sp^2,\,sp^3$ and sp

B. $sp,\,sp^2$ and sp^3

C. sp^2, sp^3 and sp^2

D. $sp^2,\,sp$ and sp^3

Answer: B

Watch Video Solution

56. Which of the following having plane of symmetry?

A. H_2SO_4

B. H_2O

C. HNO_3
D. CCl_4
Answer: C
Watch Video Solution
57. Which of the following statements is true for ammonium ion

A. All bonds are ionic

Watch Video Solution

Answer: D

B. All bonds are coordinate covalent

C. H atoms are situated at the corners of a square

D. H atoms are situated at the corners of a tetrahedron

58. Which of the following is a planar molecule? A. NH_3 B. H_3O^+ $\mathsf{C}.\,BCl_3$ D. PCl_3 **Answer: C Watch Video Solution** 59. Which of the following is a correct set with respect to molecule, hybridization, and shape? A. $BeCl_2$, sp^2 linear

B. $BeCl_2, sp^2$ triangular planar

C. BCl_3 , sp^2 , triangular planar

D. BCl_3, Sp^3 , tetrahedral

Answer: C

Watch Video Solution

60. In which of the following molecule in the bond angle is maximum?

A. 120°

B. 180°

C. $109^{\circ}28$

D. $104\,^{\circ}\,30$ '

Answer: D

Watch Video Solution

61. In ethene, the bond angles are exactly

A. $109^{\circ}\,28$ '

B. 120°
C. 180°
D. different
Answer: B
Watch Video Solution
62. Which molecules has zero dipole moment ?
A. CH_4
B. C_2H_6
C. NH_3
D. C_6H_6
Answer: D
Watch Video Solution

63. What is the correct mode of hybridization of the central atom in the following compounds. $NO_2^+,\,SF_4,\,PF_6^-$

- A. $sp^2,\,sp^3,\,d^2sp^3$
- $\mathrm{B.}\,sp^3,\,sp^3d^2,\,sp^3d^2$
- $\mathsf{C}.\,sp,\,sp^3d,\,sp^3d^2$
- D. $sp,\,sp^2,\,sp^3$

Answer: C

Watch Video Solution

64. Which of the following species has square planar geometry?

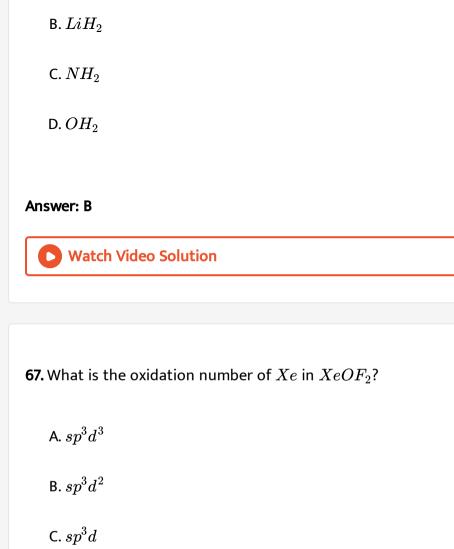
- A. sp^3d
- $\mathsf{B.}\,dsp^3$
- $\mathsf{C}.\,dsp^2$
- D. sp^3

Answer: C

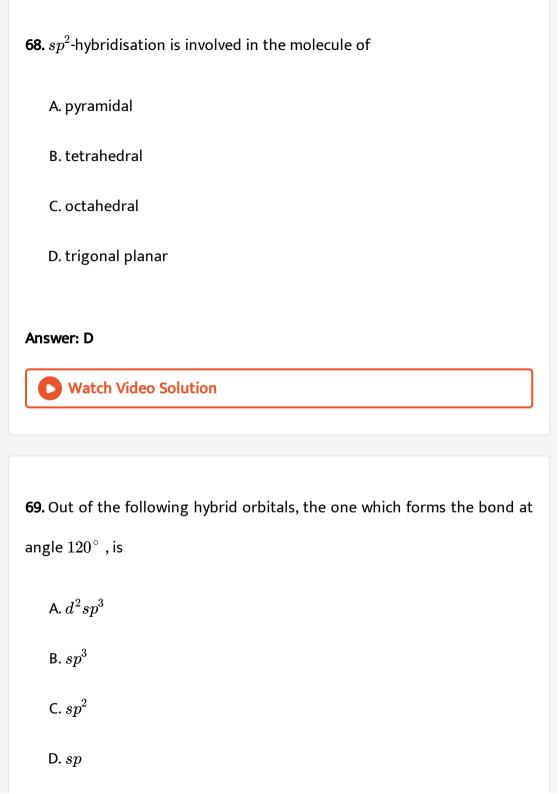
Watch Video Solution

65. Which of the following compounds has square pyramidal geometry?

- A. XeF_6
- B. XeO_3
- $\mathsf{C.}\,BrF_5$
- D. XeF_4


Answer: C

Watch Video Solution


66. Which of the following species has a linear shape?

A. H_3^+

D. sp^3

Answer: C

Answer: C

70. Which of the following molecule is linear?

- A. SO_2
- B. NO_2^+
- $\mathsf{C.}\,NO_2^-$
- D. SCl_2

Answer: B

Watch Video Solution

71. Which of the following is not tetrahedral?

A. SCl_4

B. SO_4^{2-} C. $Ni(CO)_4$ D. $NiCl_4^{2-}$ Answer: A

Watch Video Solution

72. Which one of the following compounds has sp^2 hybridisation ? .

- A. CO_2
- B. N_2O
- $\mathsf{C}.\,SO_2$
- D. CO

Answer: C

73. $HgCl_2$ is a solid containing

- A. An angular Cl-Hg-Cl molecule
- B. A linear Cl-Hg-Cl molecule
- C. A T-shaped Cl-Hg-Cl molecule
- D. A pyramidal Cl-Hg-Cl molecule

Answer: B

Watch Video Solution

74. Hybridisation shown by N in HNO_3 is

- A. sp^2
- B. sp^3d
- $\mathsf{C}.\,sp$
- $\mathsf{D.}\,sp^3$

Answer: A

Watch Video Solution

75. State of hybridization of carbon atoms in vinyl acetylene is/are

- A. sp^2
- B. sp
- $\mathsf{C}.\,sp^2$ and sp
- $D. sp^3, sp^2 \text{ and } sp$

Answer: C

Watch Video Solution

76. In which of the following pairs of molecule/ions , the central atom has sp^2 hybridization?

B. H_2S $\mathsf{C}.\,BeCl_2$ D. $SnCl_2$ **Answer: D** Watch Video Solution **77.** The PCl_5 molecule is a result of the hybridisation of A. sp^2d^2 $\mathsf{B.}\, sp^3d$ $\mathsf{C.}\, spd^3$ D. sp^2d^3 **Answer: B Watch Video Solution**

A. OF_2

78. Which one is false in the following statements

A. Each carbon in ethylene is in sp^2 hybridisation

B. Each carbon in acetylene in in ${\it sp}^3$ hybridisation

C. Each carbon in benzene is in ${\it sp}^2$ hybridisation

D. Each carbon in ethane is in sp^3 hybridisation

Answer: B

Watch Video Solution

79. Which of the following will be octahedral?

A. SF_6

B. BF_4^-

 $\mathsf{C}.\,PCl_5$

Answer: A

Watch Video Solution

- **80.** The length of C-C bonds in benzene is
 - A. Tautomerism
 - ${\sf B.}\,sp^2$ hybridisation
 - C. Isomerism
 - D. Inductive effect

Answer: B

81. Which of the following does not involves dsp^2 -hybridisation and are square planar ?

A.
$$NiCl_4^{2\,-}$$

 $\operatorname{B.}SCl_{4}$

C. $NH_4^{\ +}$

D. $PtCl_4^{2\,-}$

Answer: D

Watch Video Solution

82. Match List I with List II. Select the correct answer using the codes given below the list

List I		List II	
	(Molecule/ion)		(Type of hybridization)
(A)	NH_4^+	1.	sp^3d^3
(B)	PCI ₅	2.	sp ³ d
(C)	SF ₆	3.	sp ³
(D)	IF ₇	4.	sp^3d^2

Answer the code

Answer: A

Watch Video Solution

83. The correct order towards bond angle is

A.
$$sp < sp^2 < sp^3$$

 $\mathrm{B.}\, sp^2 < sp < sp^3$

 $\mathsf{C.}\, sp^3 < sp^2 < sp$

D. Bond angle does not depends on hybridisation

Answer: C

Watch Video Solution

84. Bond angle in PH_3 is

A. Much less than $NH_{
m 3}$

B. Equal to that of NH_{3}

C. Much greater than $NH_{
m 3}$

D. Slightly greater than NH_3

Answer: A

85. The	hybridis	ation	present	in	IF_3	is
	,		F		5	

 $\mathrm{A.}\,sp^3d$

B. sp^3

 $\mathsf{C.}\, sp^3d^2$

D. sp^3d^3

Answer: A

Watch Video Solution

86. Which of the following compounds doesn't have linear structure

A. CO_2

 $\mathsf{B.}\,SO_2$

 $\mathsf{C.}\,BeCl_2$

D. C_2H_2

Answer: B

View Text Solution

87. Which compound does not possess linear geometry

A.
$$CH_2=CH_2$$

B.
$$HC \equiv CH$$

 $\mathsf{C}.\,BeCl_2$

D. CO_2

Answer: A

Watch Video Solution

88. In which of the following pairs , bond angle is $109^{\circ}\,28'\,?$

A.
$$NH_3, \left(BF_4
ight)^{-1}$$

B. $(NH_4)^+$, BF_3

 $C. NH_3, BF_4$

D. $(NH_2)^{-1}, BF_3$

Answer: A

Watch Video Solution

orbitals?

89. A square planar complex is formed by hybridisation of which atomic

A. s, p_x, p_y, d_{yz}

B. $s, p_x, p_y, d_{x^2-y^2}$

 $\mathsf{C}.\,s,\,p_x,\,p_y,\,d_{z^2}$

D. s, p_y, p_z, d_{xy}

Answer: B

90. The correct order of decreasing bond angles in $H_2S,\,NH_3,\,BF_3$ and SiH_4 is

A.
$$H_2S < NH_3 < SiH_4 < BF_3$$

B.
$$NH_3 < H_2S < SiH_4 < BF_3$$

C.
$$H_2S < SiH_4 < NH_3 < BF_3$$

$$\mathrm{D.}\,H_2S < NH_3 < BF_3 < SiH_4$$

Answer: A

91. Which of the following has the regular tetrahedral structure?

A. $BF_4^{\,-}$

B. SF_4

 $\mathsf{C.}\,XeF_4$

D.
$$\left\lceil Ni(CN)_4
ight
ceil^{2-}$$

Answer: A

Watch Video Solution

- **92.** The states of hybridisation of boron and oxygen atoms in boric acid (H_3BO_3) are respecitivelty:
 - A. sp^3 and sp^2
 - B. sp^2 and sp^3
 - C. sp^2 and sp^2
 - D. sp^3 and sp^3

Answer: B

93. In which of the following molecules /ions , are all the bonds not equal

?

A. SF_4

B. SiF_4

C. XeF_4

D. $BF_{\scriptscriptstyle 4}^{\,-}$

Answer: A

Watch Video Solution

94. The correct order regarding the electronegativity of hybrid orbitals of carbon is?

A. $sp < sp^2 > sp^3$

B. $sp < sp^2 < sp^3$

 $\mathsf{C}.\, sp > sp^2 < sp^3$

D.
$$sp>sp^2>sp^3$$

Answer: D

Watch Video Solution

- 95. In which of the following pairs, the two species are not isostructural?
 - A. $CO_3^{2\,-}$ and $NO_3^{\,-}$
 - B. $PCl_4^{\,+}$ and $SiCl_4$
 - C. PF_5 and BrF_5
 - D. $AlF_6^{3\,-}$ and SF_6

Answer: C

Watch Video Solution

96. The C-H bond distance is the longest in:

A. C_2H_2 B. C_2H_4 C. $C_2H_4Br_2$ D. C_6H_6 **Answer: C** Watch Video Solution 97. In which of the following the central atom does not use sp^3 hybrid orbitals in its bonding A. BeF_3^- B. $OH_3^{\,+}$ $\mathsf{C}.\,NH_2^-$ D. NF_3 **Answer: A**

98. In the complex $\left[SbF_5\right]^{2-}, sp^3d$ hybridization is present. Geometry of the complex is

A. square

B. Square pyramidal

C. Square bipyramidal

D. Tetrahedral

Answer: B

Watch Video Solution

99. Bond angle is minimum for

A. H_2Te

B. H_2Se

(С.	H	$I_{2}^{(}$

 $\operatorname{D.} H_2S$

Answer: A

Watch Video Solution

100. Be in $BeCl_2$ undergoes

A. Linear hybridization

B. Trigonal hybridization

C. Tetrahedral hybridization

D. No hybridization

Answer: A

A. $d_{x^2-y^2}$

B. d_{xy}

 $\mathsf{C}.\,d_{z^2}$

 $D.d_{zx}$

Answer: C

Watch Video Solution

102. The pair having similar geometry is

A. PCl_3 , NH_3

B. $BeCl_2$, H_2O

 $C. CH_4, CCl_4$

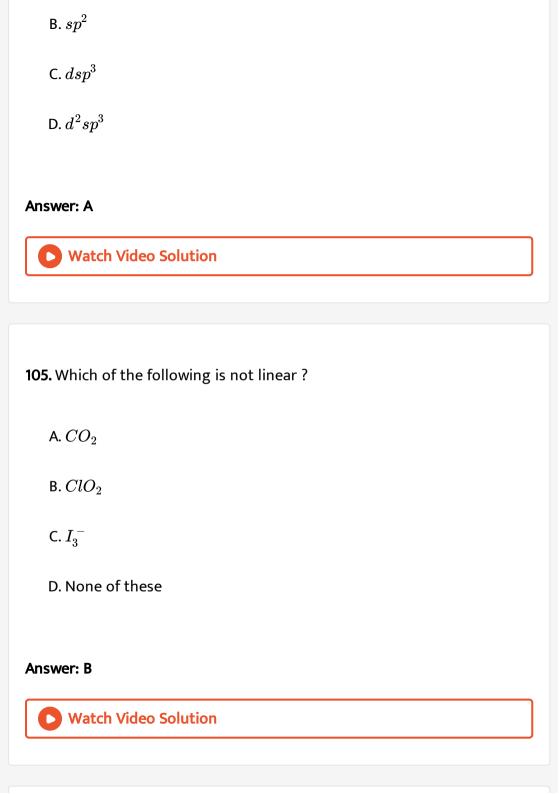
D. IF_5 , PF_5

Answer: A::C

Watch Video Solution

103. The shape of the ammonia molecule is

- A. tetrahedral
- B. Trigonal pyramid
- C. trigonal bipyramidal
- D. trigonal planar


Answer: B

Watch Video Solution

104. The hybridization in PF_3 is

A. sp^3

106. Which of the following is non-linear molecule

A. $CO_3^{2\,-}$

B. CO_2

 $\mathsf{C}.\,CS_2$

D. $BeCl_2$

Answer: A

View Text Solution

107. The hybrid state of sulphur in SO_3 molecule is

 $\mathsf{A.}\, sp^3d$

B. sp^3

 $\mathsf{C.}\, sp^3d^2$

D. sp^2

Answer: D

Watch Video Solution

108. The molecule which has pyramidal shapes is:

- A. PCl_3
- B. SO_3
- $\mathsf{C.}\,CO_3^{2\,-}$
- D. NO_3^-

Answer: A

Watch Video Solution

109. The pair of species having identical shapes for molecules of both species is

- A. CF_4 , SF_4
- B. BF_3 , PCl_3
- $\mathsf{C}.\,XeF_2,\,CO_2$
- D. PF_5 , IF_5

Answer: C

Watch Video Solution

- **110.** SF_2, SF_4 and SF_6 have the hybridisation at sulphur atom respectively as .
 - A. sp^2, sp^3, sp^2d^2
 - $\mathsf{B.}\, sp^3, sp^3, sp^3d^2$
 - C. sp^{3} , $sp^{3}d$, $sp^{3}d^{2}$
 - D. sp^3 , spd^2 , d^2sp^3

Answer: C

111. In which pair of species both species do have the similar geometry?.

- A. $CO_2,\,SO_2$
- B. NH_3 , BH_3
- C. CO_3^{2-} , SO_3^{2-}
- D. SO_4^2-,ClO_4^-

Answer: D

Watch Video Solution

112. The percentage s-character of the hybrid orbitals in methane, ethene are respectively

- A. 25,33,50
- B. 25,50,75

C. 50,75,100

D. 10,20,40

Answer: A

Watch Video Solution

113. Which of the following conversion involves change in both hybridization and shape ?

A.
$$CH_4
ightarrow C_2 H_6$$

B.
$$NH_3
ightarrow NH_4^{\ +}$$

$$\mathsf{C.}\,BF_3\to BF_4^{\,-}$$

D.
$$H_2O o H_3O^+$$

Answer: C

114. The percentage of p character of hybrid orbitals in graphite and diamond are respectively

- A. 33 and 25
- B. 50 and 75
- C. 67 and 75
- D. 33 and 75

Answer: C

Watch Video Solution

115. The state of hybridization of the central atom and the number of lone pairs over the central atom in $POCl_3$ are

- A. sp,0
- $\mathsf{B.}\,sp^2,\,0$
- C. $sp^3,\,0$

D. dsp^2	,	
$\mathbf{D}.asp$,	•

Answer: C

Watch Video Solution

- **116.** Hybridisation of central atom in NF_3 is
 - A. sp^3
 - $\mathsf{B}.\,sp$
 - $\mathsf{C.}\, sp^2$
 - D. dsp^2

Answer: A

Watch Video Solution

117. Explain why all bonds in SF_4 molecule are not equivalent.

- A. 89° , 117°
- B. 120° , 180°
- $\mathsf{C.45}^{\circ}$, 118°
- D. 117° , 92°

Answer: A

118.

Watch Video Solution

approximately.

Pentagonal bipyramidal structure contains

bond angles

- A. 120° , 90° , 180°
- B. 120° , 72° , 180°
- C. 72° , 90° , 120°
- D. 72° , 90° , 180°

Answer: D

119. a completely filled d orbital $\left(d^{10}
ight)$

A. Spherically symmetrical

B. Has octahedral symmetrical

C. Has octahedral symmetry

D. Depends on the atom

Answer: B

120. Which of the following has sp^3 hybridisation of central atom?

A. PCl_3

B. SO_3

 $\mathsf{C}.\,BF_3$

D.
$$NO_3^-$$

Answer: A

Watch Video Solution

121. Which of the following bonds require the largest amount of bond energy to dissociate the atoms concerned ?

A. H-H bond in H_2

B. C-C bond in CH_4

C. $N \equiv N$ bond in N_2

D. O = O bond in O_2

Answer: C

122. The trigonal bipyramidal geometry results from the hybridisation

123. The hybridization of atomic orbitals of nitrogen is NO_2^+ , NO_3^- , and

A. dsp^3 or sp^3d

B. dsp^2 or sp^2d

C. d^2sp^3 and sp^2

D. d^3sp^2 or d^2sp^3

Answer: A

Watch Video Solution

 $N{H_{{\scriptscriptstyle A}}^{}}^{+}$ respectively are

A. sp^2 , sp and sp^3

B. sp, sp^3 and sp^2

C. sp^2 , sp^3 and sp

D. sp, sp^2 and sp^3

Answer: D

Watch Video Solution

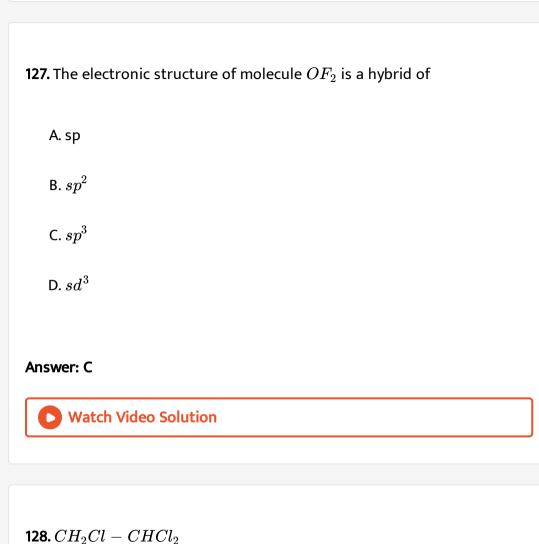
124. Identify the incorrect statements, regarding the molecule XeO_4

- A. XeO_4 molecule is square planar
- B. There are four $p\pi-d\pi$ bonds
- C. There are four sp^3 -p, σ bonds
- D. XeO_4 molecule is tetrahedral

Answer: A

Watch Video Solution

125. In which of the following species the underlined C atom has sp^3 hybridization?


Answer: B Watch Video Solution 126. Which of the following has tetrahedral structure A. $CO_3^{2\,-}$ B. $NH_4^{\,+}$ $\mathsf{C.}\,K_4\big[Fe(CN)_6\big]$ D. None of these **Answer: B Watch Video Solution**

A. SiF_4 , BeH_2

B. NF_3 , H_2O

 $\mathsf{C}.\,NF_3,\,BF_3$

D. H_2S , BF_3

A. sp

 $\mathsf{B.}\, sp^2$

C. sp^3

D. sp^2d

Answer: C

Watch Video Solution

- 129. As compared to pure atomic orbitals, hybrid orbitals have
 - A. Low energy
 - B. Same energy
 - C. High energy
 - D. None of these

Answer: A

130. The valency of carbon in four. On what principle it can be explained in a better way

- A. Resonance
- B. Hybridization
- C. Electron transfer
- D. None of the above

Answer: B

Watch Video Solution

131. A) C-H bond in ethyne is shorter than C-H bonds in ethene.

R) Carbon atom in ethene is sp-hybridised while it is sp^2 in ethyne.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

Watch Video Solution

132. Assertion: Bond order can assume any value number including zero.

Reason :Higher the bond order ,shorter is bond length and greater is bond energy.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false
Answer: B
Watch Video Solution
33. The species, having bonds angle of 120° is
A. CF_3
B. NCl_3
C. BCl_3
D. PH_3
Answer: C
Watch Video Solution

Ordinary thinking (Resonance)

1. Which molecule does not show resonance
A. Benzene
B. Aniline
C. Ethyl amine
D. Toluene
Answer: C
Watch Video Solution
2. In PO_4^{3-} the formal charge on each O-atom and $P-O$ bond order respectively are .
A. $-0.75,1.25$
B. $-0.75, 1.0$
C. - 0.75, 0.6
D3,1.25

Answer: A

Watch Video Solution

- 3. Explain the important aspects of resonance with reference to the CO_3^{2-} ion.
 - A. 2
 - B. 3
 - C. 6
 - D. 9

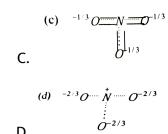
Answer: B

Watch Video Solution

4. Point out incorrect statement about resonance

- A. Resonance structure should have equan energy
- B. In resonance structure, the constituents atoms should be in the same position
- C. In resonance structure, there should not be the same number of electron pairs.
- D. Resonance structure should differ only in the location of electrons around the constituent atoms

Answer: C



В.

Watch Video Solution

5. Resonance Hybrid of nitrate ion is:

(b)
$$^{-2/3}O^{\cdots}N^{\cdots}O^{-2/3}$$
 \vdots \vdots $O^{-2/3}$

D.

Answer: C

Watch Video Solution

- **6.** The bond order in CO_2^{2-} ion between C O is
 - A. Zero
 - B. 0.88
 - C. 1.33
 - D. 2

Answer: C

7. Reonance i	is d	lue	to
----------------------	------	-----	----

- A. Delocalization of sigma electrons
- B. Delocalization of pi electrons
- C. Migration of H atoms
- D. Migration of protons

Answer: B

Watch Video Solution

- **8.** Select the incorrect statement about the following :
 - A. O_3 is used as germicide for purification of air
 - B. In $\,O_3,\,O-O\,$ bond length is identical with that of molecular

oxygen

C. O_3 molecule is angular in shape

 $\mathsf{D}.\,O_3$ is an oxidizing agent

Answer: B

Watch Video Solution

- **9.** Which one in the following is not the resonance structure of CO_2
 - A. O=C=O

$$\mathrm{B..}^- \ O - C \equiv O^+$$

$$\mathsf{C..}^+ O \equiv C - O^-$$

$$\mathrm{D.}\,O\equiv C=O$$

Answer: D

10. Which iof the following molecule contains one pair of non-bonding electrons?

A. CH_4

 $\mathsf{B.}\,NH_3$

 $\mathsf{C}.\,H_2O$

 $\mathsf{D}.\,HF$

Answer: B

Watch Video Solution

11. A resonance hybrid is always more stable than any of its canonical structures.

This stability is due to delocalization of electrons.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Watch Video Solution

Ordinary thinking (VSEPR Theory)

1. The $H-{\cal O}-H$ bond angle in water is

A. $120^{\circ}\,28$ $^{\prime}$

B. 60°

C. 90°

D. 105°

Answer: D

Watch Video Solution

2. Which of the following molecule does not have a linear arrangement of atoms ?

A. H_2S

B. C_2H_2

 $\mathsf{C}.\,BeH_2$

D. CO_2

Answer: A

Watch Video Solution

3. H_2O is depolar, wheras BeF_2 is not. it because

A. H_2O is linear and BeF_2 is angular B. H_2O is angular and BeF_2 is linear C. The electronegativity of F is greater than that of O D. H_2O involves hydrogen bonding whereas BeF_2 is a discrete molecule Answer: B **Watch Video Solution** 4. Which one has a pyramidal structure A. CH_4 B. NH_3 $\mathsf{C}.\,H_2O$ D. CO_2

Answer: B

5. BCl_3 molecule is planar while NCl_3 is pyramidal because

A. BCl_3 has no lone pair of electrons but NCl_3 has a lone pair of electrons

B. B-Cl bond is more polar than N-Cl bond

C. Nitrogen atom is smaller than boromatom

D. N-Cl bond is more covalent than B-Cl bond

Answer: A

Watch Video Solution

6. In BrF_3 molecule, the lone pair occupies equatorial position minimize

A. Lone pair-lone pair repulsion and lone pair-bond pair repulsion

B. Lone pair -lone pair repulsion only

- C. Lone pair -bond pair repulsion only
- D. Bond pair-bond pair repulsion only

Answer: B

Watch Video Solution

- **7.** Among the following the pair in which the two species are not isostructural is
 - A. $BH_4^{\,-}$ and $NH_4^{\,+}$
 - B. $PF_6^{\,-}$ and SF_6
 - C. SiF_4 and SF_4
 - D. IO_3^- and XeO_3

Answer: C

- **8.** Which of the following is not a correct statement
 - A. Every AB_5 molecules does in fact have square pyramid structure
 - B. Multiple bonds are always shorter than corresponding single bond
 - C. The electron-deficient molecules can act as lewis acids
 - D. The canonical structure have no real existence

Answer: A

- **9.** In which of the following pairs, the two species are isostructural:
 - A. SF_4 and XeF_4
 - B. SO_3^{2-} and NO_3^-
 - C. BF_3 and NF_3
 - D. BrO_3^- and XeO_3

Answer: D

Watch Video Solution

10. The correct order of increasing bond angles in the following triatomic species is

A.
$$NO_2^+ < NO_2 < NO_2^-$$

$${\sf B.}\,NO_2^+ < NO_2^- < NO_2^-$$

$$\mathsf{C.}\,NO_2^- < NO_2^+ < NO_2^+$$

D.
$$NO_2^- < NO_2 < NO_2^+$$

Answer: D

Watch Video Solution

11. Predict the correct order omong the following:

A. Lone pair-lone pair gt lone pair -bond pair gtbond pair-bond pair

B. Lone pair-lone pair gt bond pair-bond pairgtlone pair bond pair

C. Bond pair -bond pair gt lone pair-bond pair gt lone pair-lone pair

D. Lone pair-bond pair gt bond pair gt lone pair-lone pair

Answer: A

Watch Video Solution

12. The isoelectronic pair is

A. Cl_2O , Icl_2^-

 $B. ICl_2^-, ClO_2$

D. ClO_2^- , ClF_2^+

 $\mathsf{C}.\,IF_{2}^{\,+}\,,\,I_{2}^{\,-}$

Answer: D

13. Planar structure is shown be	13.	Planar	structure	is	shown	b١
---	-----	--------	-----------	----	-------	----

- A. $CO_3^{2\,-}$
- $\mathsf{B.}\,BCl_3$
- C. $N(SiH_3)_3$
- D. All of these

Answer: D

Watch Video Solution

14. XeF_2 molecule is

- A. Linear
- B. Triangular planar
- C. Pyramidal

D. Square planar

Answer: A

Watch Video Solution

15. The decreasing order of bond angle is

A.
$$NH_3 < CH_4 < C_2H_2 < H_2O$$

$${\rm B.}\, C_2 H_2 > N H_3 > H_2 O < C H_4$$

$${\sf C.}\ NH_3 > H_2O > CH_4 < C_2H_2$$

D.
$$H_2O < NH_3 > CH_4 < C_2H_2$$

Answer: B

16. Which of the following gives correct arrangement of compounds involved based on their bond strength?

A. HF gtHCl gt HBr gtHI

B. HIgtHBr gtHCl gtHF

C. HFgtHBr gtHCl gtHI

D. HCl gtHF gtHBr gtHI

Answer: A

Watch Video Solution

17. The shape of SO_4^{2-} ion is

A. Square planar

B. tetrahedral

C. trigonal bipyramidal

D. Hexagonal

Answer: B

18. Which of the following has maximum bond angle?

- A. CHF_3
- B. $CHCl_3$
- C. $CHBr_3$
- D. All have maximum bond angle

Answer: A

Watch Video Solution

19. Which of the following is a non-linear molecule?

A. CO_2

B. CS_2

C. $HgCl_2$

D. H_2O involves hydrogen bonding whereas BeF_2 is a discrete molecule

Answer: D

Watch Video Solution

20. In water molecule, the bond angle of 104.5° around oxygen is accounted due to

A. Repulsion between lone pair and bond pair

B. sp^3 hybridization of O

C. Bonding of $H_2{\cal O}$

D. Higher electronegativity of O

Answer: A

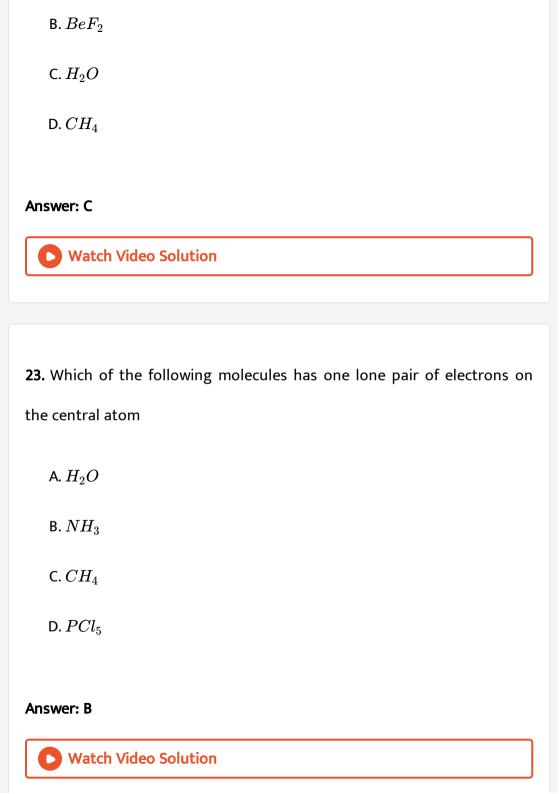
21. Among the following molecules : SO_2 , SF_4 , CIF_3 , BrF_5 , and XeF_4 , which of the following shapes does not describe any of the molecules mentioned ?

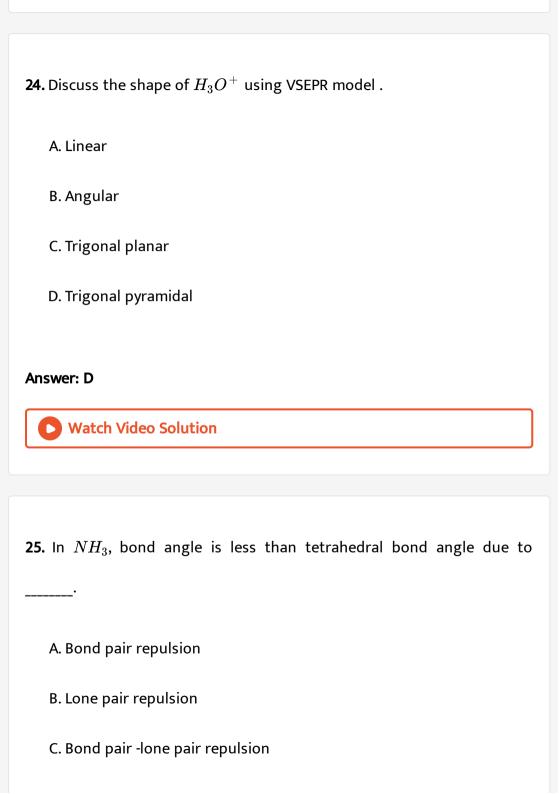
A. Bent

B. trigonal bipyramidal

C. See-saw

D. T-Shape


Answer: B



Watch Video Solution

22. Which of the following has the least bond angle?

A. NH_3

D. None of these

Answer: C

Watch Video Solution

26. In XeF_6 , oxidation state and of hybridisation of Xe and shape of the molecule are, respectively

A. $+6, sp^3d^3, \,\, {
m distorted} \,\, {
m octahedral}$

 ${\sf B.}+4, sp^3d^2, \; {\sf square \; planar}$

 $\mathsf{C.}+6, \mathit{sp}^3$ pyramidal

 ${\sf D.}+6, sp^3d^2$, square pyramidal

Answer: A

27. Which of the following is a non-linear molecule?

A. ICl_2^-

B. $I_3^{\,-}$

 $\mathsf{C.}\,N_3^{\,-}$

D. ClO_2^-

Answer: D

Watch Video Solution

28. The bond angle and % of d-character in SF_6 are

A. $120^\circ\,,\,20~\%$

B. 90° , 33~%

C. 109° , 25~%

D. 90° , 25~%

Answer: B

Watch Video Solution

29. Using the VSEPR theory, identify the type of hybisation and draw the structure of OF_2 What are the oxidation states of O and F?

- A. Linear
- B. Square planar
- C. Tetrahedral
- D. Octahedral

Answer: C

Watch Video Solution

30. The structure of $\left[Cu(H_2O)_4
ight]^{+\,+}$ ion is

A. Square planar B. tetrahedral C. Distorted rectangle D. Octahedral Answer: A Watch Video Solution **31.** Which one of the following compounds has bond angle close to 90° ? A. H_2O B. H_2S and $BeCl_2$ $\mathsf{C}.\,NH_3$ D. CH_4 **Answer: B Watch Video Solution**

32. Bond angle between two hybrid orbitals is $105\,^\circ$ Percentage of sorbital character of hybrid orbital is between

A. Between 20-21%

B. Between 19-20%

C. Between 21-22%

D. Between 22-23%

Answer: D

Watch Video Solution

33. In which of the following moleucles, all atoms are coplanar?

A. CH_4

B. BF_3

C. PF_5 and BrF_5

Answer: B

Watch Video Solution

- 34. One of the following is having square planar structure
 - A. $NH_4^{\ +}$
 - $\mathrm{B.}\,BF_4^{\,-}$
 - C. XeF_4
 - D. SCl_4

Answer: C

35. According to VSEPR theory, the most probable shape of the molecule

having 4 electrons pairs in the outer shell of the central atom is

- A. Linear
- B. Tetrahedral
- C. Hexahedral
- D. Octahedral

Answer: B

36. The correct sequence of decrease in the bond angles of the following hydrides is

- A. $NH_3>PH_3>AsH_3>SbH_3$
- $\mathsf{B.}\,NH_3>AsH_3>PH_3>NH_3$
- $\mathsf{C.}\,SbH_3>AsH_3>PH_3>NH_3$

$$\mathrm{D.}\,PH_3>NH_3>AsH_3>SbH_3$$

Answer: A

Watch Video Solution

37. Among KO_2, ALO_2^Θ , BaO_2 and NO_2^+ ,unpaired electrons is present in .

- A. $NO_2^{\,+}$ and BaO_2
- B. KO_2 and AlO_2^-
- C. KO_2 only
- D. BaO_2 only

Answer: C

38. Which of the following set do not have sp^3d hybridization

A. $ClF_3,$ $IF_3,$ $XeF_3^{\ +}$

 ${\rm B.}\, Icl_2^-, ClF_2^-, I_3^-$

 $\mathsf{C}.\,ClF,\,BrF,\,IF$

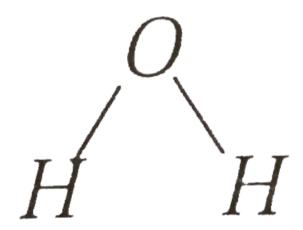
D. $PCl_3, AsCl_3, PF_5$

Answer: C

Watch Video Solution

39. The actual geometry of NO_2^- is

A. Planar


B. Linear

C. V shape

D. Tetrahedral

Watch Video Solution

40.

The bond angle in H_2O is $104.5\,^\circ$. This fact can be best explained with the help of

- A. Valence shell electron pair repulsion (VSEPR) theory
- B. Molecular orbital theory
- C. Presence of hydrogen bond

D. Electronegativity difference between hydrogen and oxygen atom

Answer: A

Watch Video Solution

41. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in

A. dsp^2 hybridization

B. sp^3d hybridization

C. dsp^3 hybridization

D. sp^3d^2 hybridization

Answer: D

42. Of the following sets which one does not contain isoclectronic species

?

A. $PO_4^{3-}, SO_4^{2-}, ClO_4^{-}$

B. $CN^-,N_2,C_2^{2\,-}$

 $\mathsf{C.}\,SO_3^{2-},CO_3^{2-},NO_3^{-}$

D. BO_3^{3-} , CO_3^{2-} , NO_3^{-}

Answer: C

Watch Video Solution

43. The molecule having smallest bond angle is

A. NCl_3

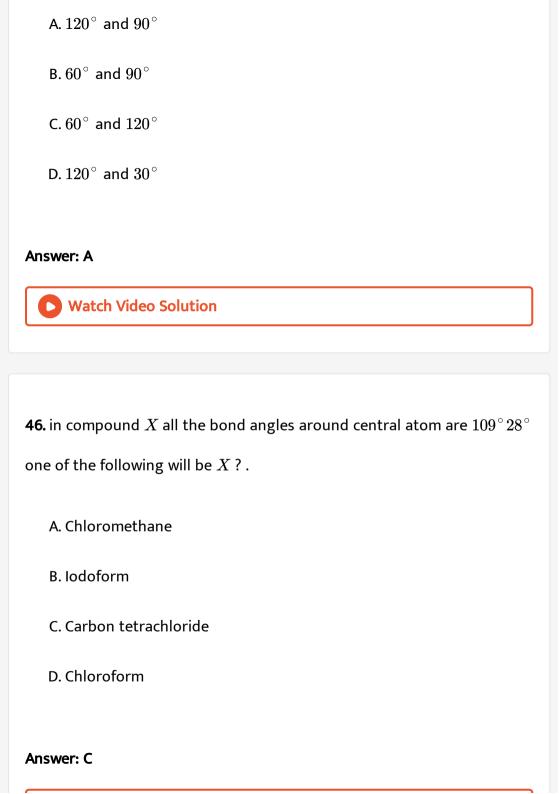
B. $AsCl_3$

C. $SbCl_3$

D. PCl_3

Answer: C

44. On comparision with H-C-H bond angle of methane, the C-N-C bond angle of trimethylamine is


- A. Higher
- B. No change
- C. Not comparable
- D. Lower

Answer: A

Watch Video Solution

45. Cl-P-Cl bond angles in PCl_5 molecule are

- **47.** The largest bond angle in
 - A. AsH_3
 - B. NH_3
 - $\mathsf{C}.\,H_2O$
 - D. PH_3

Answer: B

48. The shape of $XeOF_2$ on the basis of VSEPR theory is

A. See saw

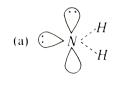
B. V-shaped

C. Trigonal planar

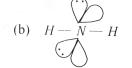
D. T-Shape
Answer: D
Watch Video Solution
19. According to VSEPR theory, the shape of the water molecule is
A. ClF_3
B. NH_3
C. BF_3
D. H_2O
Answer: A
Watch Video Solution

50. Two types FXF angles are presnet in which of the following molecule

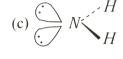
(X = S, Xe, C)?.

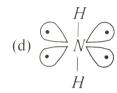

- A. SF_4
- B. XeF_4
- $\mathsf{C}.\,SF_6$
- D. CF_4

Answer: A



Watch Video Solution


51. For $\stackrel{\Theta}{NH_2}$ the best three-dimensional view is .



A.

В.

Answer: A

D.

52. The shape of ClO_3^- according to valence shell electron pair repulsion theory will be

A. Planar triangle

B. Pyramidal

C. Tetrahedral

Answer: B		
Watch Video Solution		

- A. A pair of valence electrons not involved in bonding
- B. A pair of electrons involved in bonding
- C. A pair of electrons

D. Square planar

D. A pair of valence electrons

Answer: A

54. A covalent molecule AB_3 has pyramidal structure. The number of lone pair and bond pair electrons in the molecule are respectively

- A. 0 and 4
- B. 3 and 1
- C. 1 and 3
- D. 2 and 2

Answer: C

Watch Video Solution

55. Amongest the halides

- 1. BCl_3 , 2. $AlCl_3$
- 3. $GaCl_3$, 4. $InCl_3$

The order of decreasing Lewis acid character is

A. $BCl_3 < AlCl_3 < GaCl_3$

 $B. GaCl_3 < AlCl_3 < BCl_3$

 $\mathsf{C.}\,BCl_3 < GaCl_3 < AlCl_3$

D. $AlCl_3 < BCl_3 < GaCl_3$

Answer: C

Watch Video Solution

56. Which of the following number of lone pair at central atom zero.

$XeO_3, XeO_2F_2, XeO_4, XeO_3F_2, Ba_2XeF_4$

- A. NH_3
- B. PH_3
- $\mathsf{C}.\,BF_3$
- D. PCl_3

Answer: C

57. Which one of the following molecules has the smallest bond angle?

A. NH_3

 $B.PH_3$

 $\mathsf{C}.\,H_2O$

D. H_2Se

Answer: D

Watch Video Solution

58. Shape and hybridization of IF_5 , respectively, are

A. Trigonal bipyramidal , sp^3d

B. Sea, Saw sp^3d

C. Square pyramidal sp^3d^2

D. Pentagonal pyramidal sp^3d^2

Answer: C

Watch Video Solution

59. The bond angle and dipole moment of water respectively are:

- A. 109.5° , 1.84D
- B. 107.5° , 1.56D
- C. 104.5° , 1.84D
- D. 102.5° , 1.56D

Answer: C

Watch Video Solution

60. Among N_2O, SO_2, I_3^+ and I_3^- , the linear species areand.....and

A. NO_2^-, I_3^+, H_2O

B. $N_2O,\,I_3^{\,+}\,,\,N_3^{\,-}$

C. $N_2O,\,I_3^{\,-}\,,\,N_3^{\,-}$

D. $N^{3\,-}$, $I^{3\,+}$, SO_2

Answer: C

Watch Video Solution

61. Correct order of Bond angle is

A. $NH_3 > PCl_3 > BCl_3$

 $\mathsf{B.}\,BCl_3>NH_3>PCl_3$

 $C.BCl_3 > PCl_3 > NH_3$

 $D. PCl_3 > BCl_3 > NH_3$

Answer: B

62. Which of the following has a regular geometry

A. $CHCl_3$

 $\mathsf{B.}\,PCl_3$

 $\operatorname{C.}XeF_{6}$

D. SF_4

Answer: A

Watch Video Solution

63. Incorrect matching amongest the following is

(i) Linear - H_2O , SO_2 (ii) V-Shaped $-CH_2$, $SnCl_2$

(iii) See Saw $-SF_4, TeCl_4$ (iv) T-Shaped $-ICl_3, ClF_3$

A. Only (i)

B. Both (i) and (ii)

C. only (iii)

D. Both (iii) and (iv)				
nswer: A				
Watch Video Solution				
4. Which of the following species are planar?				
A. CO_3^{2-}				
B. NH_3				
C. PCl_3				
D. None of these				

Answer: A

65. In which of the following molecules, the central atom has one lone pair and three bond pairs of electrons,

- A. H_2S
- B. $AlCl_3$
- $\mathsf{C}.\,NH_3$
- D. BF_3

Answer: C

- **66.** The shape of $\left(CH_{3}\right)^{+}$ is
 - A. tetrahedral
 - B. Square planar
 - C. Trigonal planar
 - D. Linear

Answer: C

Watch Video Solution

- 67. Maximum bond angle is present in case of
 - A. BCl_3
 - $\mathsf{B.}\,BBF_3$
 - $\mathsf{C.}\,BF_3$
 - D. Same for all

Answer: D

- **68.** Bond angle in PH_3 is
 - A. 90°

- B. 105°
- C. 109°
- D. 120°

Answer: A

Watch Video Solution

69. Assertion : All F - S - F angle in SF_4 are greater than 90° but less than 180° .

Reason :The lone pair -bond pair repulsion is weaker than bond pair -bond pair repulsion

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

Watch Video Solution

70. Assertion :The S-S-S bond in S_8 molecule is 105° .

Reason : S_8 has V-shape.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

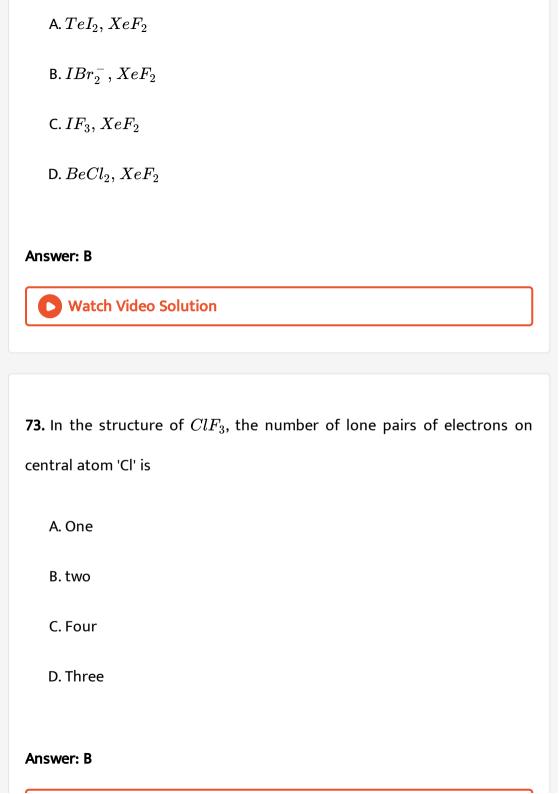
71. Assertion : H-S-H bond angle in H_2S is closer to 90° but H-O-H bond angle in H_2O is 104.5°

Reason: Ip-Ip repulsion is stronger in H_2S than in H_2O

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false


D. if the assertion and reason both are false

Answer: B

Watch Video Solution

72. Which of the following pairs of compound is isoelectronic and isostructure?

Ordinary thinking (Molecular orbital theory)

1. The size of $Na^{\,\oplus}$ ion is same as that of

A. Li^+

B. $Mg^{\,+\,2}$

C. Ca^{+2}

D. Ba^{+2}

Answer: B

Watch Video Solution

2. Which of the following oxides of nitrogen is isoelectronic with CO_2

A. NO_2

B. N_2O

 $\mathsf{C}.\,NO$

D. N_2O_2

Answer: B

Watch Video Solution

following is

3. The correct order in which the O-O bond length increases in the

A. $H_2O_2 < O_2 < O_3$

B. $O_2 < H_2 O_2 < O_3$

 $\mathsf{C.}\,O_2 < O_3 < H_2O_2$

D. $O_3 < H_2 O_2 < O_2$

Answer: C

4. T	he bond	order	in N_2	molec	ule is	 •

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

5. N_2 and O_2 are converted into monoanions N_2^- and O_2^- respectively.

Which of the following statements in wrong?

A. In N_2 , the N-N bond weakens

B. In \mathcal{O}_2 , the O-O bond order increases

C. In O_2 , bond length increases

D. N_2^- becomes diamagnetic

Answer: D

Watch Video Solution

- **6.** In H_2O_2 molecule, the angle between the two O-H planes is
 - A. $90\,^\circ$
 - B. $101\,^\circ$
 - C. 103°
 - D. 105°

Answer: A

7. Which one of the following oxides is expected to exhibit paramagnetic
behaviour?
A. CO_2
B. SO_2
C. ClO_2
D. SiO_2
Answer: C
Watch Video Solution
8. The number of unpaired electrons in a parmamagnetic diatomic molecule of an element with atomic number 16 is :
A. 4
B. 1
C. 2

Answer: C

Watch Video Solution

9. Four diatomic species are listed below in different sequences. Which of these represents the correct order of their increasing bond order?

A.
$$C_2^{2-} < He^{2^+} < NO < O_2^-$$

B.
$$He_2^+ < O_2^- < NO < C_2^{2-}$$

C.
$$O_2^- < NO < C_2^{2-} < He_2^+$$

D.
$$NO < C_2^{2-} < O_2^- < He_2^+$$

Answer: B

10. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?

A.
$$N_2^- < N_2 < N_2^{2-}$$

B.
$$N_2^{2\,-}\,< N_2^{-}\,< N_2$$

C.
$$N_2 < N_2^{2\,-} < N_2^{-}$$

D.
$$N_2^{\,-}\, < N_2^{2\,-}\, < N_2$$

Answer: B

Watch Video Solution

11. Which of the following species does not exist under normal condition

A. Li_2

?

 $B.\,Be_2^+$

 $\mathsf{C}.\,Be_2$

Answer: C

Watch Video Solution

- **12.** The pairs of species of oxygen and their magnetic behaviour are noted below. Which of the following presents the correct description ?
 - A. O_2^+, O_2 -Both paramagnetic
 - B. $O,\,O_2^{2\,-}$ -Both paramagnetic
 - $\mathsf{C}.\,O_2^-,\,O_2^{2-}$, Both diamagnetic
 - D. O^+, O_2^{2-} -Both paramagnetic

Answer: A

13. Which of the following has the minimum bond length? A. O_2 $\mathrm{B.}\,O_2^+$ $\mathsf{C}.\,O_2^-$ D. $O_2^{2\,-}$ **Answer: B** Watch Video Solution

14. During change of O_2 to O_2^{2-} ion, the electrons add on which of the following orbitals ?

- A. π^* orbitals
- B. π orbitals
- C. σ^* orbitals
- D. σ orbitals

Answer: A

Watch Video Solution

15. The pair of species with the same bond order is :

- A. $O_2^{2\,-}$, B_2
- B. $O_2^{\,+}$, $NO^{\,+}$
- C. NO, CO
- D. N_2, O_2

Answer: A

Watch Video Solution

16. Decreasing order of stability of $O_2,\,O_2^-\,,\,O_2^+$ and O_2^{2-} is

A.
$$O_2^+ > O_2 > O_2^- > O_2^{2-}$$

$$\mathrm{B.}\,O_2^{2^-} > O_2^- > O_2^+ > O_2^+$$

$$\mathrm{C.}\,O_2 > O_2^+ \, > O_2^{2-} \, > O_2^-$$

$$\mathrm{D.}\,O_2^- > O_2^{2-} > O_2^+ > O_2$$

Answer: A

Watch Video Solution

17. Bond order is a concept in the molecular orbital theory. It depends on the number of electrons in the bonding and antibonding orbitals. Which of the following statements is true about ? The bond order

- A. Can have a negative quantity
- B. Has always an integral value
- C. can assume any positive or integral or fractional value including

zero

D. Is a non zero quantity

Answer: C

Watch Video Solution

- 18. Bond length is maximum in
 - A. O_2
 - $\mathsf{B.}\,O_2^{-1}$
 - $\operatorname{C.}O_2^{+1}$
 - D. O_2^{-2}

Answer: C

Watch Video Solution

19. Which of the following species have maximum number of unpaired electrons ?

A. O_2 $\operatorname{B.}O_2^{\,+}$ $\mathsf{C.}\,O_2^-$ D. $O_2^{2\,-}$ **Answer: A** Watch Video Solution 20. Which of the following is not paramagnetic? A. $S^{\,-\,2}$ $\mathsf{B.}\,N_2^ \mathsf{C.}\,O_2^-$ D. NO**Answer: A** Watch Video Solution

21. Which of the following molecule has highest bond energy?
A. F-F
B. C-C
C. N-N
D. O-O
Answer: C
Watch Video Solution
22. Molecular orbital theory was developed mainly by
A. pauling
B. pauling and slater
C. mulliken

D. Thomson
Answer: C
Watch Video Solution
23. The paramagnetic nature of oxygen molecules is best explained on
the basis of
A. Valence bond thoery
B. Resonance

C. Molecular orbital theory

Watch Video Solution

D. Hybridization

Answer: C

24. The increassing order of bond order of $O_2,\,O_2^+\,,\,O_2^-$ and O_(2)^(--)` is :

- A. O_2^-, O_2^-, O_2^+, O_2
- $\mathtt{B.}\,O_2^{\,+},O_2,O_2^{\,-},O_2^{\,-\,-}$
- C. $O_2, O_2^+, O_2^-, O_2^{-\,-}$
- D. $O_2^{-\,-}, O_2^{-\,}, O_2, O_2^{+\,}$

Answer: D

Watch Video Solution

25. Which of the following complexes is paramagnetic

- A. Chlorine
- B. Nitrogen
- C. Oxygen
- D. Hydrogen

Answer: C

Watch Video Solution

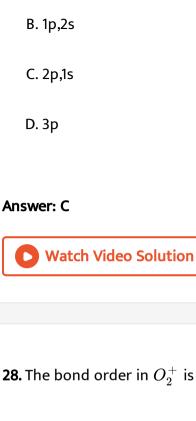
26. Which has the highest bond energy?

A. F_2

B. Cl_2

 $\mathsf{C}.\,Br_2$

D. I_2


Answer: B

Watch Video Solution

27. Which of the following is correct for N_2 triple bond

A. 3s

28. The bond order in ${\cal O}_2^+$ is the same as in :

- $\mathrm{A.}\ N_{2}^{\ +}$
- B. CN^-
- C.CO
- D. NO^+

Answer: A

29. Which of the following does not exist on the basis of molecule orbital theory?

A. $H_2^{\,+}$

B. He_2^+

 $\mathsf{C}.\,He_2$

D. Li_2

Answer: C

- - A. $NO^- > NO > NO^+$

30. Bond energies in NO, NO^+ and NO^- are such as

- B. $NO > NO^- > NO^+$
- $\mathsf{C}.\,NO^+>NO>NO^-$
- D. $NO^+ > NO^- > NO$

Answer: C

Watch Video Solution

31. The bond order in N_2^+ ion is _____.

A. 1

B. 2

C. 2.5

D. 3

Answer: C

Watch Video Solution

32. The paramagnetic property of the oxygen molecule is due to the presence of unpiared electrons present in .

D. $\pi^* 2p_u$

A. $\sigma^* 2s$

Watch Video Solution

Answer: C

A. $(\sigma 2p_x)^1$ and $(\sigma^* 2p_x)^1$

B. $(\sigma 2p_x)^1$ and $\left(\pi 2p_y\right)^1$

C. $\left(\pi^* 2p_y\right)^1$ and $\left(\pi^* 2p_z\right)^1$

D. $\left(\pi^* 2p_y\right)^1$ and $\left(\pi 2p_y\right)^1$

33. The paramagnetism of ${\cal O}_2^+$ is due to the presence of an odd electron in the MO

B. $\pi 2p_u$

 $\mathsf{C}.\,\pi 2p_{\scriptscriptstyle 2}$

Answer: D

34. Arrange the following ions in the order of decreasing X-O bond length where X is the central atom:

A.
$$ClO_4^-, SO_4^{2-}, PO_4^{3-}, SiO_4^{4-}$$

$${\tt B.}\,SiO_4^{4-},PO_4^{3-},SO_4^{2-},ClO_4^{4-}$$

C.
$$SiO_4^{4-}, PO_4^{3-}, ClO_4^-, SO_4^{2-}$$

D.
$$SiO_4^{4-}$$
, SO_4^{2-} , PO_4^{3-} , ClO_4^{-}

Answer: B

Watch Video Solution

35. Which of the following species is/are paramagnetic

$$Fe^{2\,+}\,,Zn^0,Hg^{2\,+}\,,Ti^{4\,+}$$

A. Fe^{2+} only

B. Zn^0 and Ti^{4+}

C. $Fe^{2\,+}$ and $Hg^{2\,+}$

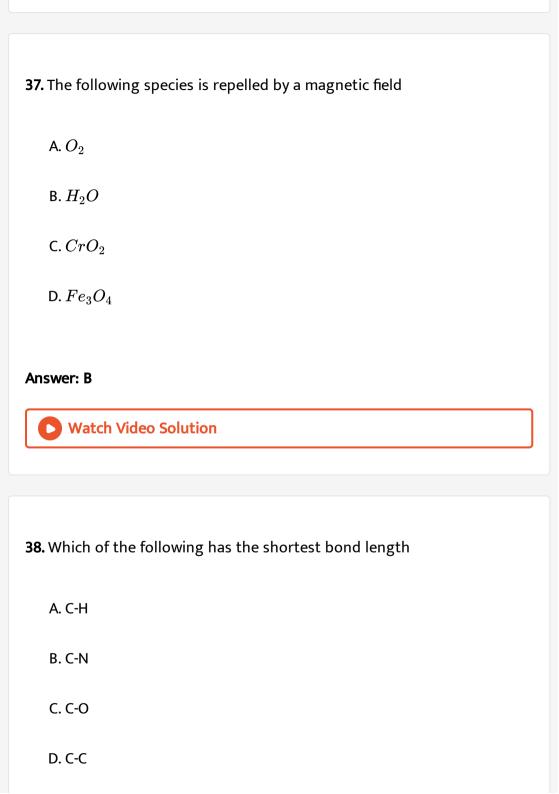
D. Zn^0 and $Hg^{2\,+}$

Answer: A

View Text Solution

36. Which one of the following is not correct with respect to bond length of the species?

A. $C_2 > C_2^{2\,-}$


 $\mathtt{B.}\,B_2^+\,>B_2$

C. $Li^{2^+}>Li_2$

D. $O_2 > O_2^-$

Answer: D

Answer: A

Watch Video Solution

- 39. Which one of the following is the correct statement
 - A. ${\cal O}_2$ molecule has bond order 2 and is diamagnetic
 - B. N_{2} molecule has bond order 3 and is paramagnetic
 - $\operatorname{C.}H_2$ molecule has bond order zero and is diamagnetic
 - D. C_2 molecules has bond order 2 and is diamagnetic

Answer: D

Watch Video Solution

40. Which one of the following is paramagnetic

A. H_2O

B. NO_2

 $\mathsf{C}.\,SO_2$

 $D.CO_2$

Answer: B

Watch Video Solution

41. If N_x is the number of bonding orbitals of an atom and N_y is the number of antibonding orbitals, then the molecule/atom will be stable if

A. $N_x > N_y$

 $B. N_x = N_y$

 $\mathsf{C.}\,N_x < N_y$

D. $N_x \leq N_y$

Answer: A

42. Which one does not exhibit paramagnetism
A. ClO_2
B. ClO_2^-
$C.NO_2$
D. NO
Answer: B Watch Video Solution
43. The bond order of O_2 and O_2^+ are respectively.
43. The bond order of O_2 and O_2^+ are respectively.
A. 2

Answer: A

Watch Video Solution

- 44. Which of the following is paramagnetic
 - A. N_2
 - B. C_2
 - $\operatorname{C.}N_2^{\,+}$
 - D. $O_2^{2\,-}$

Answer: C

- 45. Isoelectronic species are
 - A. K^+ , Cl^-

B. Na^+, C
C. Na,Ar

D. Na^+ , Ar

Answer: A

Watch Video Solution

- **46.** Which of the following is isoelectronic with carbon?
 - A. Na^+ and Ne
 - B. K^+ and O
 - C. Ne and O
 - D. Na^+ and K^+

Answer: A

47. Bond order increases in which of the given transitions?
A. Energy and bond length increases
B. Energy increases, bond length decreases
C. Energy decreases, bond length increases
D. Both decreases
Answer: B
Watch Video Solution
48. Bond order of N-O bonds in nitrate ion is
A. 0.33
B. 1
C. 1.33
D. 1.5

Answer: C Watch Video Solution 49. Cl-O bond order in perchlorate ion is A. 1.33 B. 1.5 C. 1.75 D. 1.9 **Answer: C** Watch Video Solution 50. In which of the following pairs, the two molecules have identical bond orders:

B. $N_2,\,O_2^-$ C. $N_2^-,\,O_2$ D. $O_2^{\,+}$, N_2 **Answer: A** Watch Video Solution 51. The bond order is of three for $\operatorname{A.}N_{2}^{\,+}$ B. $O_2^{2\,+}$ $\mathsf{C}.\,N_2$ D. NO^+ **Answer: A** Watch Video Solution

A. $N_2,\,O_2^{2\,+}$

52. Identify the paramagnetic substance
A. B_2
B. C_2
$C.\ N_2$

Answer: A

 $\mathsf{D}.\,F_2$

Watch Video Solution

53. The bond order in ${\cal O}_2^+$ is

A. 2

B. 2.5

C. 1.5

Answer: B

View Text Solution

- **54.** Paramagnetism is exhibited by molecules which
 - A. Not attracted into a magnetic field
 - B. Containing only paired electrons
 - C. Carrying a positive charge
 - D. Containing unpaired electrons

Answer: D

55. Which of the following pairs of molecules have bond order three and are isoelectronic?

A. CN^- , CO

 $\mathsf{B.}\,NO^+,CO^+$

C. CN^-, O_2^+

D. CO, O_2^+

Answer: A

Watch Video Solution

56. Which of the following is paramagnetic?

A. O_2^+

B. CN^-

C. CO

D. N_2

Answer: A

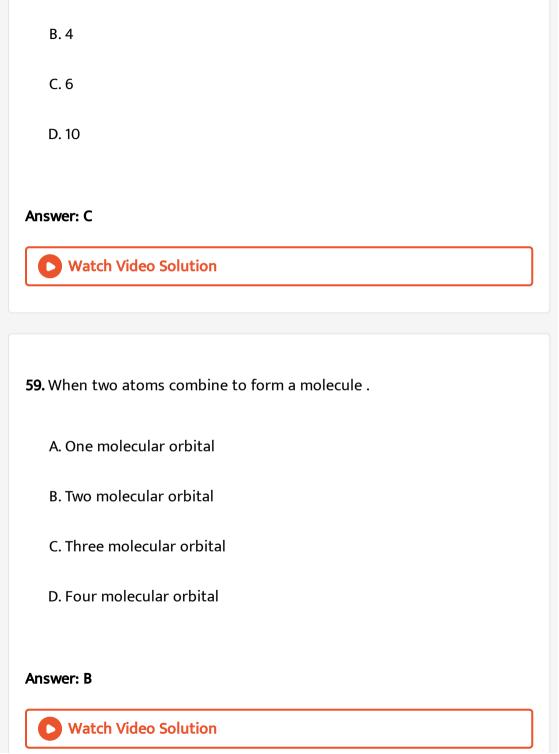
Watch Video Solution

57. How many bonding electron pairs are there in white phosphorus?

A. 6

B. 12

C. 4


D. 8

Answer: A

Watch Video Solution

58. The total number of electrons that take part in forming the bond in N_2 is .

A. 2

60. Identify the least stable ion amongst the following:
A. Be^-
B. Li^-
$C.B^-$
D. C^{-}
Answer: A
/diswell./\
Watch Video Solution
61. Using MO theory predict which of the following sepcies has the
on osing 1/20 theory predict milen or the renorming septies has the
shortest bond length ?
A. O_2^{2+}
$B.O_2^{+}$
$C.O_2^-$

D.
$$O_2^{2-}$$

Answer: A

Watch Video Solution

62. Which one of the following groupings represents a collection of isoelectronic species ?

A.
$$Na^+, Ca^{2+}, Mg^{2+}$$

B.
$$N^{3\,-}$$
 , $F^{\,-}$, $Na^{\,+}$

$$\mathsf{C}.\,Be,\,Al^{3\,+},\,Cl^{-}$$

D.
$$Ca^{2+}$$
 , Cs^+ , Br

Answer: B

63. The bond order in NO is 2.5 while that in NO^+ is 3. Which of the following statements is true for these two species ?

A. Bond length in $NO^{\,+}$ is equal to that in NO

B. Bond length in NO is greater than in $NO^{\,+}$

C. Bond length in $NO^{\,+}$ is greater than in NO

D. Bond legnth is unpredictable

Answer: B

64. Which one of the following sepcies is diamagnetic in nature?

A. He_2^+

B. H_2

 $\mathsf{C}.\,H_2^{\,+}$

 $\operatorname{D\!.} H_2^-$

Answer: B

Watch Video Solution

65. Which of the following molecules/ins does not contain unpaired electrons?

- A. $O_2^{2\,-}$
- $B.\,B_2$
- $\operatorname{C.}N_2^{\,+}$
- D. O_2

Answer: A

Watch Video Solution

66. Which of the following sets of ions represents a collection of isoelectronic species ?

A.
$$K^+, Cl^-, Ca^{2+}, Sc^{3+}$$

B. $Ba^{2+}, Sr^{2+}, K^+, Ca^{2+}$

 $\mathsf{C}.\,N^{3-},\,O^{2-},\,F^{\,-},\,S^{2-}$

D. $Li^+, Na^+, Mg^{2+}, Ca^{2+}$

Answer: A

Watch Video Solution

67. In which of the following ionixation processes, the bond order has increased and the magnetic behaviour has changed?

A.
$$C_2
ightarrow C_2^{\,+}$$

B. $NO o NO^+$

 $\mathsf{C}.O_2 o O_2^+$

D. $N_2
ightarrow N_2^+$

Answer: B

68. Which of the following pairs of species have the same bond order?

A.
$$CN^{\,-}$$
 and $CN^{\,+}$

B.
$$O_2^-$$
 and CN^-

C.
$$NO_{\,+}$$
 and $CN^{\,+}$

D.
$$CN^{\,-}$$
 and $NO_2^{\,+}$

Answer: D

69. Which one of the following constitutes a group of the isoelectronic species

A.
$$NO^+, C_2^{2-}, CN^-, N_2$$

B.
$$CN^-, N_2, O_2^{2-}, C_2^{2-}$$

$$\mathsf{C.}\,N_2,O_2^-,NO^+,CO$$

D.
$$C_2^{2\,-}, O_2^{\,-}, CO, NO$$

Answer: A

Watch Video Solution

70. The number of antibonding electron pairs in ${\cal O}_2^{2-}$ molecular ion on the basic of molecular orbital theory is

A. 4

B. 3

C. 2

D. 5

Answer: A

71. The bond order in He_2^+ ions is :

A. 1

B. 2

 $\mathsf{C.}\,\frac{1}{2}$

D. $\frac{1}{4}$

Answer: C

- **72.** The bond order in ${\cal O}_{2^{2-}}$ is-
 - A. 3
 - B. 2
 - C. 1
 - $\mathsf{D.}\; \frac{1}{2}$

Answer: C

Watch Video Solution

73. Which is false statement about LCAO

- A. Addition of atomic orbitals result in molecular orbitals
- B. Atomic orbitals of nearly same energy combine to form molecular orbitals
- C. Bonding molecular orbitals occupy higher energy than atomic orbitals
- D. Each molecular orbital accommodates maximum no. of two electrons

Answer: C

74. The correct order of bond energy is:

A.
$$Cl_2>Br_2>F_2>I_2$$

B.
$$Cl_2>F_2grBr_2>I_2$$

C.
$$I_2>Br_2>Cl_2>F_2$$

D.
$$I_2>Br_2>F_2>Cl_2$$

Answer: A

Watch Video Solution

75. Peroxide ion......

- (i) Has five completely filled antibonding molecular orbitals
- (ii) Is diamagnetic
- (iii) Has bond order one
- (iv) Is isoelectric with neon

Which one of these is correct

A. (iv) and (iii)

A. 7,6,8 B. 1,0,2 C. 6,6,6 D. 8,6,8

View Text Solution

antibonding electrons respectively are

76. In O_2^-, O_2 and O_2^{-2} molecular species, the total number of

Watch Video Solution

B. (i),(ii) and (iv)

C. (i),(ii) and (iii)

D. None of these

Answer: D

Answer: A

77. N_2 accept electron and convert into $N_2^{\,-}$, where this electron goes

A. Antibonding π molecules orbitals

B. Bonding π molecular orbital

C. σ bonding molecular orbitals

D. σ -anti-bonding molecular orbital

Answer: A

Watch Video Solution

78. Which is the correct statement about σ and π molecular orbitals?

Statements are

(i) π bonding orbitals are ungerade

 $\boldsymbol{\pi}$ antibonding orbitals are ungerade

(iii) σ antibonding orbitals are gerade

A. (i) only

B. (ii) and (iii)

C. (iii) only

D. (ii) only

Answer: A

Watch Video Solution

79. In forming $(i)N_2 o N_2^\oplus$ and $O_2 o O_2^\oplus$ the electrons respectively removed from.

A.
$$\left(\pi^* 2p_y \mathrm{or} \ \pi^* 2p_x\right)$$
 and $\left(\pi^* 2p_y \mathrm{or} \pi^* 2p_x\right)$

B.
$$(\pi 2p_y \text{ or } \pi 2p_y)$$
 and $(\pi 2p_y \text{ or } 2p_x)$

C.
$$(\sigma 2p_z)$$
 and $\left(\pi^* 2p_y
ight)$ or $\pi^* 2p_x$

D.
$$\left(\pi^* 2p_y \text{or } \pi^* 2p_x\right)$$
 and $\left(\pi 2p_y \text{ or } \pi 2p_x\right)$

Answer: C

80. Which of the following molecular orbitals has two nodal planes

A.
$$\sigma 2s$$

B.
$$\pi 2p_y$$

C.
$$\pi$$
 * $2p_y$

D.
$$\sigma^* 2p_x$$

Answer: C

81. The bnumber of nodal planes d orbital has

A. zero

B. one

C. two

D. three

Answer: C

Watch Video Solution

- 82. Which of the following has the highest bond energy?
 - A. N_2
 - $B.O_2$
 - $\mathsf{C}.\,He_2$
 - D. H_2

Answer: A

Watch Video Solution

83. The number of nodal planes present in a σ^* antibonding orbital is

A. 0

B. 3

C. 1

D. 2

Answer: C

Watch Video Solution

A. Both $H_2^{\,+}$ and $H_2^{\,-}$ do not exist

84. The correct statement with regard to $H_2^{\,+}$ and $H_2^{\,-}$ is

B. $H_2^{\,-}$ is more stable than $H_2^{\,+}$

C. $H_2^{\,+}$ is more stable than $H_2^{\,-}$

D. Btoh $H_2^{\,+}$ and $H_2^{\,-}$ are equally stable

Answer: B

85. The bond order in O_2^- ion is

A. 2

B. 1

C. 2.5

D. 1.5

Answer: D

Watch Video Solution

86. The paramagnetic behaviour of B_2 is due to the presence of

A. 2 unpaired electrons in $\pi_n MO$

B. $2unpairede \leq ctrons \in \mathsf{pi^{^{^{^{**}}}}})$ MO`

C. 2 unpaired electrons in σ^*MO

D. 2 unpaired electrons in $\sigma_b MO$

Answer: A

Watch Video Solution

- **87.** In the process, $O_2^{\,+}\,
 ightarrow\,O_2^{\,+\,2}$ +e the electron lost is from
 - A. Bonding π orbital
 - B. Antiboonding π -orbital
 - C. $2p_z$ orbital
 - D. $2p_x$ orbital

Answer: B

A. 2.5 and paramagnetic moment

B. 3.5 and diamagnetic moment

C. 3.5 and paramagnetic moment

D. 2.5 and diamagnetic moment

Answer: C

Watch Video Solution

89. During change of $NO^+ o NO$, the electron is added to

A. σ -orbital

B. π -orbital

C. σ^* orbitals

D. π^* orbital

Answer: D

90. Which of the following species is expected to be paramagnetic?

A. Copper crystals

B. Cu^+

C. Cu^{++}

D. H_2

Answer: C

as

Watch Video Solution

91. From elementary molecular orbital theory we can deduce the electronic configuration of the singly positive nitrogen molecular ion $N_2^{\,+}$

A.
$$\sigma(1s)^2\sigma^*\left(1s\right)^2\sigma(2s)^2\sigma^*\left(2s\right)^2\pi\left(2p\right)^4\sigma(2p)^1$$

$$\operatorname{B.}\sigma(1s)^2\sigma^*\left(1s\right)^2\sigma(2s)^2\sigma^*\left(2s\right)^2\sigma(2p)^1\pi(2p)^3$$

C.
$$\sigma(1s)^2\sigma^*\left(1s\right)^2\sigma(2s)^2\sigma^*\left(2p\right)^2\pi(2p)^4$$

D.
$$\sigma(1s)^2\sigma^*(1s)^2\sigma(2s)^2\sigma^*(2s)^2\sigma(2p)^2\pi(2p)^2$$

Answer: A

Watch Video Solution

92. Which of the following pairs of ions are isoelectronic and isostructural?

A.
$$ClO_3^-, SO_3^{2-}$$

B.
$$CO_3^{2\,-}$$
 , NO_3^{-}

$$\mathsf{C.}\,ClO_3^-,CO_3^{2-}$$

D.
$$SO_3^{2-}$$
 , CO_3^{2-}

Answer: B

93. With increasing bond order, strength of a bond
A. Remain unaltered
B. Decreases
C. Increases
D. None of these
Answer: C
View Text Solution
94. Which of the following is diamagnetic
A. Oxygen molecule
A. Oxygen molecule B. Boron molecule
B. Boron molecule

Answer: D Watch Video Solution

95. Which of the following is correctly based on molecular orbital theory for peroxide ion?

- A. Its bond order is two and it is diamagnetic
- B. Its bond order is one and it is paramagnetic
- C. Its bond order is two and it is paramagnetic
- D. Its bond order is one and it is diamagnetic

Answer: D

Watch Video Solution

96. The bond order of a molecule is given by _____.

A. The difference between the number of electrons in bonding and antibonding orbitals

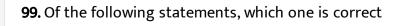
B. Total number of electrons in bonding and antibonding orbitals

C. Twice the difference between the number of electrons in bonding and antibonding electrons

D. Half the difference between the number of electrons in bonding and antibonding electrons

Answer: D

Watch Video Solution


97. The molecular electronic configuration of H_2^- ion is

A.
$$(\sigma 1s)^2$$

B.
$$(\sigma 1s)^2 (\sigma^* 1s)^2$$

C.
$$(\sigma 1s)^2 (\sigma^* 1s)^1$$

D. $(\sigma 1s)^3$
American C
Answer: C
Watch Video Solution
98. Which one is paramagnetic and has the bond order $1/2$
A. O_2
B. N_2
C. F_2
D. H_2^{+}
Answer: D
Watch Video Solution

A. Oxygen and nitric oxide molecules are both paramagnetic because

both contain unpaired electrons

B. Oxygen and nitric oxide molecules are both diamagnetic because both contain no unpaired electrons

C. Oxygen is paramagnetic because it contains unpaired electrons, while nitric oxide is diamagnetic because it contains no unpaired

D. Oxygen is diamagnetic because it contains no unpaired electrons, while nitric oxide is paramagnetic because it contains an unpaired electron

Answer: A

electrons

Watch Video Solution

100. The difference in energy between the molecule orbital formed and the combining atomic orbitals is called

- A. Bond energy
- B. Activation energy
- C. Stabilization energy
- D. Destabilization energy

Answer: C

Watch Video Solution

101. Assertion: Nitrogen molecule is diamagnetic.

Reason: N_2 molecule have unpaired electrons.

- A. If both assertion and reason are true and the reason is the correct
 - explanation of the assertion
- B. if both assertion and reason are true but reason is not the correct
 - explanation of the assertion
- C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: C

Watch Video Solution

102. Assertion: Bond energy has order like $C - C < C = C < C \equiv C$.

Reason: Bond energy increases with increase in bond order.

A. If both assertion and reason are true and the reason is the correct

explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

103. Assertion: The bond order of helium molecule is always zero.

Reason: The number of electrons in bonding molecular orbital and antibonding molecular orbital is equal.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Watch Video Solution

104. Assertion(A) - Fluorine molecule has bond order one.

Reason(R)-The number of electrons in antibonding molecular orbital is

two less than that of bonding molecular orbitals.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Watch Video Solution

105. Assertion B_2 molecule is diamagnetic

Reasoning The highest occupied molecular orbital is of sigma type.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct

explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: D

Watch Video Solution

106. Which of the following pairs of species have the same bond order

A. O_2 , NO^+

B. CN^- , CO

 $\mathsf{C}.\,N_2,\,O_2^-$

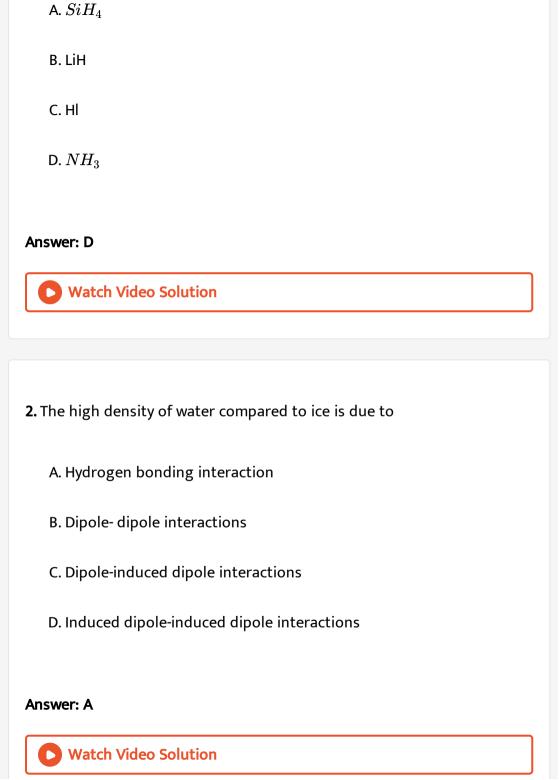
D. CO,NO

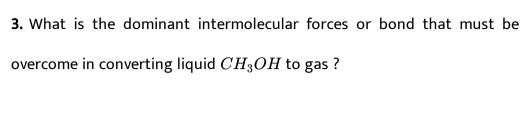
Answer: B

$$CN^-, CN^-, NO$$
 and CN'.

Which one of these will haave the highest bond order?

- A. NO
- B. CN^-
- C. CN^+
- D. CN


Answer: B



Watch Video Solution

Ordinary thinking (Hydrogen bonding)

1. In which of the following compounds does hydrogen bonding occur

- A. Hydrogen bonding
- B. Dipole-dipole interaction
- C. Covalent bonds
- D. London dispersion force

Answer: A

Watch Video Solution

4. The variation of the boiling points of the hydrogen halides is in the order HF>HI>HBr>HCl.

What explains the higher boiling point of hydrogen fluoride?

- A. The electronegativity of fluorine is much higher than for other elements in the group
- B. There is strong hydrogen bonding between HF molecules
- C. The bond energy of HF molecules is greater than in other hydrogen halides
- D. The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule

Answer: B

- **5.** Which of the following explanations accounts for o-nitro-phenol to be more volatile than p-nitrophenol?
 - A. Resonance
 - B. Hyperconjugation

D. Steric hindrence
Answer: C
Watch Video Solution
6. Hydrogen bonding is not present in
A. Glycerine
B. Water
C. Hydrogen sulphide
D. Hydrogen fluoride
Answer: C
Watch Video Solution

C. Hydrogen bonding

7. H-bonding is maximum in

A. C_6H_5OH

 $\mathsf{B.}\, C_6H_5COOH$

 $\mathsf{C.}\,\mathit{CH}_{3}\mathit{CH}_{2}\mathit{OH}$

 $\mathsf{D.}\, CH_3COCH_3$

Answer: B

- 8. Acetic acids exists in dimer state in benzene due to
 - A. Condensation reaction
 - B. Hydrogen bonding
 - C. Presence of carboxyl group
 - D. Presence of hydrogen atom at lpha-carbon

Answer: B

- 9. Ethanol and Methanol are miscible in water due to
 - A. Covalent character
 - B. Hydrogen bonding character
 - C. Oxygen bonding character
 - D. None of these

Answer: B

Watch Video Solution

10. Compounds showing hydrogen bonding among $HF, NH_3, H_2S \ {
m and} \ PH_3$ are

B. Only HF and NH_3 C. only $NH_3,\,H_2S$ and PH_3 D. All the four **Answer: B Watch Video Solution** 11. Water has high heat of vaporisation due to? A. Covalent bonding B. H-bonding C. Ionic bonding D. None of the above Answer: B **Watch Video Solution**

A. Only HF, NH_3 and PH_3

12. Intramolecular hydrogen bond is present in
A. Water
B. o-nitrophenol
C. p-nitrophenol
D. methylamine
Answer: B Watch Video Solution
13. Strength of hydrogen bond is intermediate between
13. Strength of hydrogen bond is intermediate between A. Vander waal and covalent

nswer: A
Watch Video Solution
4. The boiling point of a compound is raised by
A. Intramolecular hydrogen bonding
B. Intermolecular hydrogen bonding
C. covalent bonding
D. Ionic covalent
nswer: B
Watch Video Solution

D. Metallic and covalent

15. Contrary to other hydrogen halides, hydrogen fluoride is liquid because

A. Size of F atom is small

B. HF is a weak acid

C. HF molecules are hydrogen bonded

D. Fluorine is highly reactive

Answer: C

16. HCI is a gas where/ as HF is a low boiling point liquid because:

A. H-F bond is strong

B. H-F bonding is weak

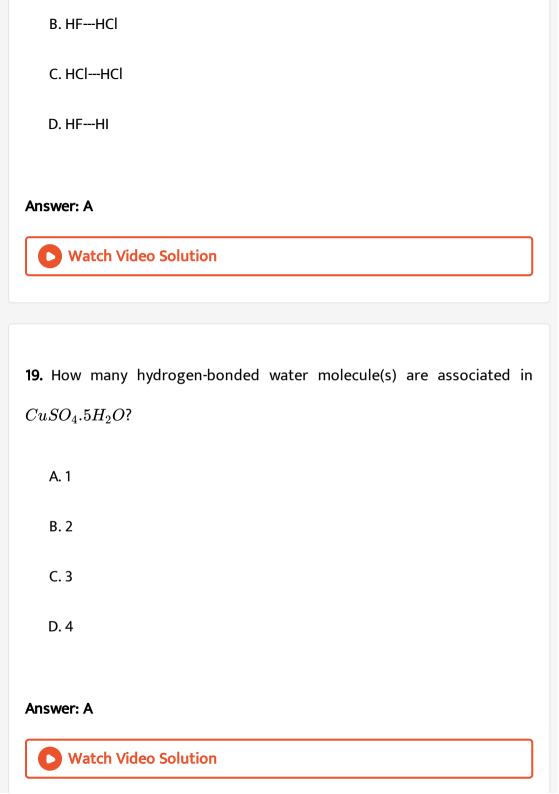
C. Molecules aggregate because of hydrogen bonding

D. HF is weak acid

Answer: C

Watch Video Solution

- 17. The reason for exceptionally high boiling point of water is
 - A. Its high specific heat
 - B. Its high dielectric constant
 - C. Low ionization of water molecules
 - D. Hydrogen bonding in the molecules of water


Answer: D

Watch Video Solution

18. which of the following hydrogen bond is strongest in vapour phase?

A. HF---HF

20. The hydrogen bonds are encountered in HF, H_2O, NH_3 and $HF_2^{\,-}$.

The relative order of energies of hydrogen bonds is

A.
$$HF>H_2O>H_3N>HF_2^-$$

B.
$$H_2O > HF_2^- > HF > NH_3$$

$$\mathsf{C}.\,HF>HF_2^-\,>H_2O>NH_3$$

D.
$$HF_2^{\,-}>HF>H_2O>NH_3$$

Answer: D

Watch Video Solution

21. Which of the following is sparingly soluble in water?

A. 2,6 dihydrobenzoic acid

B. p-nitrophenol

C. o-nitrophenol

D.	Ethanoi	ic acid

Answer: C

Watch Video Solution

- **22.** Which among the following compounds does not show hydrogen bonding?
 - A. Chlorofom
 - B. Ethyl alcohol
 - C. Acetic acid
 - D. Ethyl ether

Answer: D

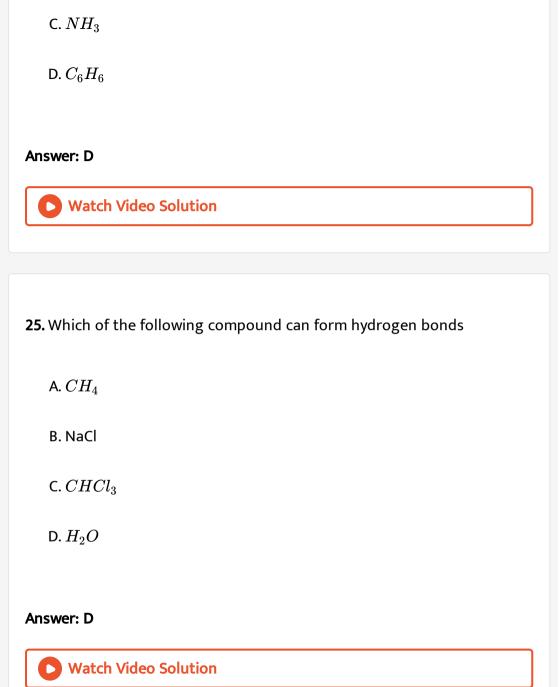
23. The boiling point of ethanol is higher as compared to the boiling of diethyl ether though both have the same molecular formula. This is due to ,

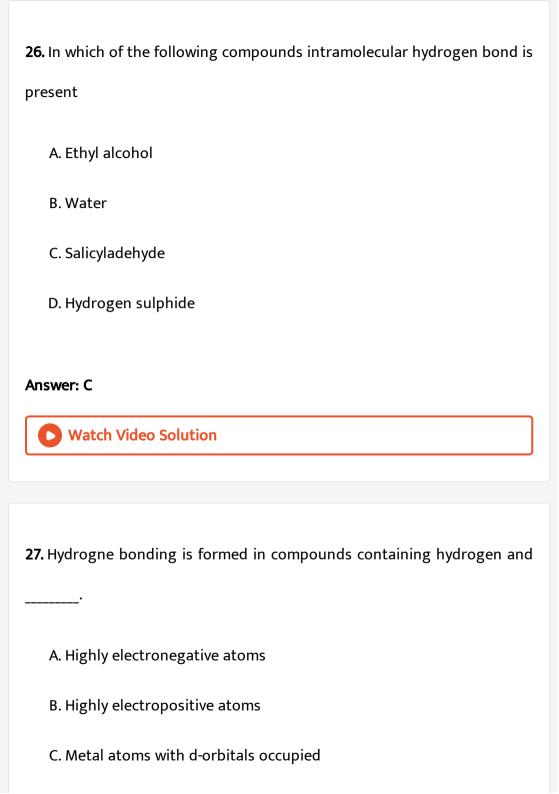
A. Hydrogen bonding

B. Ionic bonding

C. Coordinating covalent bonding

D. Resonance


Answer: A



24. Which of the following compounds in liquid state does not have hydrogen bonding

A. H_2O

 $\mathsf{B.}\,HF$

D. Metalloids
Answer: A
Watch Video Solution
28. which one has the highest bp
A. Acetone
B. Ethyle alcohol
C. Diethyl ether
D. Chloroform
Answer: B
Allswer: b
Watch Video Solution
29. H_2O is a liquid while H_2S is a gas.

A. Covalent bonding

B. Molecular attraction

C. H-bonding

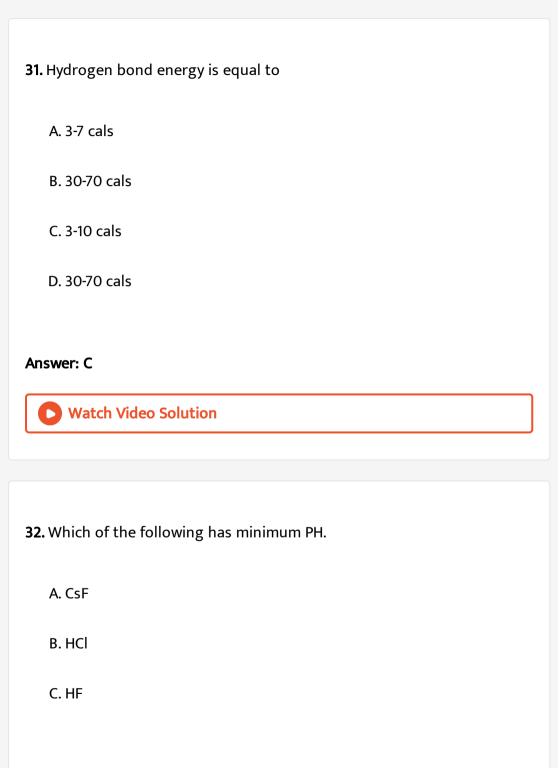
D. H-bonding and molecular attraction

Answer: C

Watch Video Solution

30. NH_3 has a much higher bp than PH_3 because

A. NH_3 has a larger molecular weight


B. NH_3 undergoes umbrella inversion

C. NH_3 forms hydrogen bond

D. NH_3 contains ionic bonds wheras PH_3 contains covalent bonds

Answer: C

D. LiF
nswer: B
Watch Video Solution
3. Which of the following compound has the highest boiling point
A. HCl
B. HBr
C. H_2SO_4
D. HNO_3

Answer: C

34. Which one of the following compounds shows the presence of intramolecular hydrogen bond?

A. Concentrated acetic acid

 $\operatorname{B.}H_2O_2$

C. HCN

D. Cellulose

Answer: D

35. When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together?

A. Vander waal,s forces

B. Hydrogen bond formation

- C. Covalent attraction
- D. Dipole-dipole attraction

Answer: B

Watch Video Solution

36. B.P of $H_2O(100^{\circ}\,C)$ and $H_2S(\,\equiv 42^{\circ}\,C)$ is explained by

- A. Vander waal's forces
- B. covalent bond is weaker than ionic bond
- C. Hydrogen bond
- D. Ionic bond

Answer: C

37. Assertion: Boiling point of p-nitrophenol is greater than that of o-

nitrophenol.

Reason: There is intramolecular hydrogen bonding in p-nitrophenol and intermolecular hydrogen bonding in o-nitrophenol.

A. If both assertion and reason are true and the reason is the correct

B. if both assertion and reason are true but reason is not the correct

C. if assertion is true but reason is false

explanation of the assertion

explanation of the assertion

D. if assertion is false but reason in true.

Answer: c

38. Assertion: Ice is less dense than liquid water.

Reason: There are vacant spaces between hydrogen bonded water molecules in ice.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Watch Video Solution

39. Assertion: o- and p-nitrophenol can be separated by steam distillation.

Reason: o- nitrophenols have intramolecular hydorgen bonding while p- nitrophenols exists as associated molecules.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

40. Assertion: The nearly tetrahedral arrangement of the orbitals about the oxygen atom allows each water molecules to form hydrogen bonds with as many as four neighbouring water molecules.

Reason: In ice each molecule forms four hydrogen bonds as each molecule is fixed in the space.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

Ordinary thinking (Types of bonding and force in solid)

1. Which of the following does not apply to metallic bond?

B. Mobile valency electrons C. Delocalized electrons D. Highly directed bonds Answer: D **Watch Video Solution** 2. Which of the following exhibits the weakest intermolecular forces? A. He B. HCl $\mathsf{C}.\,NH_3$ D. H_2O Answer: A **Watch Video Solution**

A. Overlaping valency orbitals

3.	Which	of the	following	is	the	correct	electronic	formula	of	chlorine
m	olecule									

- $A.: \stackrel{\cdot \cdot \cdot}{\operatorname{Cl}}: \stackrel{\cdot \cdot \cdot}{\operatorname{Cl}}:$
- $\mathsf{B}.:\stackrel{\cdots}{Cl^-}::\stackrel{\cdots}{Cl^+}:$
- $\textbf{C.} : \stackrel{\cdot \cdot \cdot}{\text{Cl}} : \stackrel{\cdot \cdot}{\text{Cl}} :$
- $D.:\stackrel{\cdots}{\operatorname{Cl}}::\stackrel{\cdots}{\operatorname{Cl}}:$

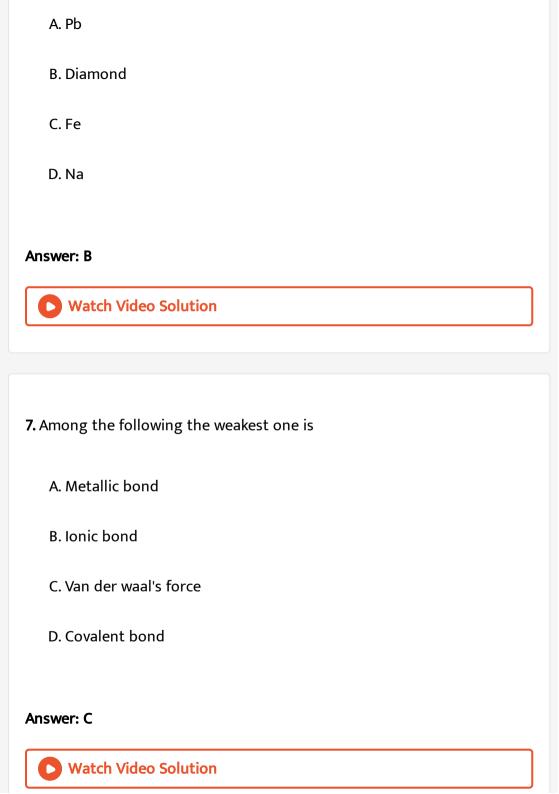
Answer: A

- **4.** In melting lattice, structure of solid
 - A. Remain unchanged
 - B. Change
 - C. becomes compact

D. None of the above

Answer: B

Watch Video Solution


- **5.** Which of the following statement is true about $\left[Cu(NH_3)_4\right]SO_4$
 - A. It has coordinate and covalent bonds
 - B. It has only coordinate bonds
 - C. It has only electrovalent bonds
 - D. IT has electrovalent, covalent and coordinate bonds

Answer: D

Watch Video Solution

6. Which of the following has the highest mp

- **8.** In the formation of a molecule by an atom?
 - A. Attractive forces operate
 - B. Repulsive forces operates
 - C. Both attractive and repulsive forces operate
 - D. None of these

Answer: C

- 9. Lattice energy of alkali metal chlorides follows the order
 - A. LiCl > NaCl > KCl > RbCl > CsCl
 - $\operatorname{B.}\mathit{CsCl} > \mathit{NaCl} > \mathit{KCl} > \mathit{RbCl} > \mathit{LiCl}$
 - C. LiCl > CsCl > NaCl > KCl > RbCl

D. $NaCl$	>	LiCl	>	KCl	>	RbCl	>	CsCl

Answer: A

Watch Video Solution

- **10.** In the following metals which one has lowest probable inter-atomic forces ?
 - A. Copper
 - B. Silver
 - C. Zinc
 - D. Mercury

Answer: D

11. The number of ionic, convalent and coordinate bonds in NH_4CI are respectively

A. 1,3 and 1

B. 1,3 and 2

C. 1,2 and 3

D. 1,1 and 3

Answer: A

Watch Video Solution

12. In dry ice, there are:

A. only covalent bond

B. only ionic bond

C. only vander waal's force of attraction

D. covalent and vander waal's force of attraction

Watch Video Solution 13. In solid argon, the atoms are held together by A. Ionic bonds B. Hydrogen bonds C. Vander waal's forces D. Hydrophobic forces **Answer: C Watch Video Solution** 14. Pure covalent molecules are ususlly held in a crystal structure by A. Dipole-dipole attraction

Answer: D

C. Hydrogen bonds D. Vander waal's attraction **Answer: D Watch Video Solution** 15. Which has the weakest bond A. Diamond B. Neon(solid) C. KCl D. Ice **Answer: B Watch Video Solution**

B. Electrostatic attraction

16. Glycerol has strong intermolecular bonding therefore it is
A. Sweet
B. Reactive
C. Explosive
D. Viscous
Answer: B::D
Watch Video Solution
17. Which of the following statements is true
A. HF is less polar than HBr
B. Absolutely pure water does not contain any ions
C. Chemical bond formation take place when fores of attraction
overcome the force of repulsion

D. in covalency transference of electron takes place
Answer: C
Watch Video Solution
18. Both ionic and covalent bond is present in the following
A. CH_4
B. KCl
$C.SO_2$
D. NaOH
Answer: D
Watch Video Solution

19. Which type of bond is present in Xe molecule?

- A. Covalent
- B. Ion-dipole
- C. Van der waal's force
- D. Dipole-dipole

Answer: C

Watch Video Solution

Critical thinking (Objective question)

- 1. Which combination is best explained byh the co-ordinate covalent bond
- A. $H^{\,+}\,+H_2O$
 - B. Cl + Cl
 - $\mathsf{C.}\, Mg + \frac{1}{2}O_2$
 - D. H_2+I_2

Answer: A

Watch Video Solution

2. N_2 and O_2 are converted into monocations, N_2^+ and O_2^+ respectively. Which of the following is wrong?

A. In N_2 the N-N bond weakens

B. In \mathcal{O}_2 , the O-O bond order increases

C. In O_2 paramagnetism decreases

D. N_2^+ becomes diamagnetic

Answer: D

Watch Video Solution

3. Which of the following species contains three bond pairs and one lone pair around the central atom

A.
$$H_2O$$

B. BF_3

 $\mathsf{C}.\,NH_2^-$

D. PCl_3

Answer: D

Watch Video Solution

4. Which of the following has the highest dipole moment?

(a)
$$H = O$$

$$egin{array}{cccc} H & CH_3 \ ert & ert \ H & CH_3 \ C & = C \ ert \ CH_3 & H \ CH_3 & H \end{array}$$

C.
$$\overset{|}{C} = \overset{|}{C}$$
 $\overset{|}{CH_3} \overset{H}{H}$
 $Cl \overset{CH_3}{CH_3}$

$$\stackrel{=}{=} C$$
 $CH_3 Cl$

Answer: A

Watch Video Solution

5. Which of the following arrangment of molecules is correct on the basis of their dipole moments

A.
$$BF_3 > NF_3 > NH_3$$

B.
$$NF_3 > BF_5 > NH_3$$

C.
$$NH_3 > BF_3 > NF_3$$

D.
$$NH_3 > NF_3 > BF_3$$

Answer: D

Watch Video Solution

6. Sulphur reacts with chlorine in 1:2 ration and forms X . Hydrolysis of X gives a sulphur compound Y. what is the structure and hybridisation of

anion of Y A. Tetrahedral, sp^3 B. Linear, sp C. Pyramidal , sp^3 D. Trigonal planar, sp^2 **Answer: C Watch Video Solution**

7. Bond length of ethane (I), ethene (II), acetylene (III) and benzene (IV) follows the order A. Igtligtili gtlV

B. IgtlIgtlVgtIII

- C. IgtIVgtIIgtIII
- D. IIIgtIVgtIIgtI

Answer: B

Watch Video Solution

8. Match the list I and list II and write the correct matching

Species

- A. H_3O^+
- B. $H_2C = NH$

List I

- C. *CIO*₂⁻
- D. NH_4^+
- E. PCI₅

List II

Geometry

- 1. Planar
- 2. Angular
- 3. Tetrahedral
- 4. Trigonal bipyramidal
- 5. Pyramidal

- A. A-2,B-1,C-3,D-5,E-4
- B. A-1,B-5,C-2,D-3,E-4
- C. A-5,B-1,C-2,D-3,E-4
- D. A-1,B-5,C-2,D-3,E-2

Answer: C

Watch Video Solution

- **9.** O_2^{2-} is the symbol of Ion
 - A. Oxide
 - B. Superoxidw
 - C. Peroxide
 - D. Monoxide

Answer: C

Watch Video Solution

10. The values of electronegativity of atom A and B are 1.20 and 4.0 respectively. The percentage of ionic character of A-B bond is nearly

A. 0.5 B. 0.43 C. 0.533 D. 0.7224 **Answer: D** Watch Video Solution 11. Fluorine reacts with dilute NaOH and forms a gaseous product A. The bond angle in the molecule of A is A. $104^{\circ}40$ B. 103° C. 107° D. $109^{\circ}28'$

Answer: B

12. Hybridisation state of chlorine in ${\it Cl}{\it F}_{3}$ is

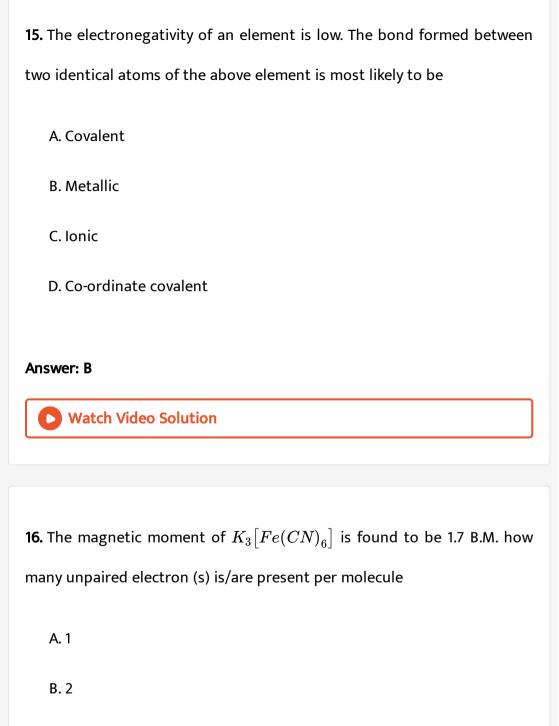
A. sp^3

 ${\rm B.}\, sp^3d$

C. sp^3d^2

D. sp^3d^3

Answer: B



13. Among the following , the compound that contains ionic, covalent and coordinate linkage is

A. NH_4Cl

 $\mathsf{B.}\,NaCl$

C. CaOC
D. NH_3
Answer: A
Watch Video Solution
14. Which one of the following contains ionic, covalent and co-ordinate and coordinate linkage is
and coordinate illikage is
A. NaOH
B. NaCl
C. NaCN
D. NaNC
Answer: D
Watch Video Solution

C. 3

Answer: A

Watch Video Solution

17. It is believed that atoms combine with each other such that the outermost shell acquires a stable configuration of 8 electrons. If stability were attained with 6 electrons rather than 8. What would be the formula of the stable fluoride ion.

A. F -

B. $F^{\,+}$

C. F^{2+}

D. F^{3+}

Answer: B

18. Which of the following contains a coordinate and covalent bond

A. $N_2H_5^{\ +}$

 $\mathsf{B.}\,BaCl_2$

 $\mathsf{C}.\,HCl$

 $\operatorname{D.} H_2O$

Answer: A

Watch Video Solution

19. Structure of $IF_4^{\ +}$ and hybridization of iodine in this structure are

A. sp^3d , linear

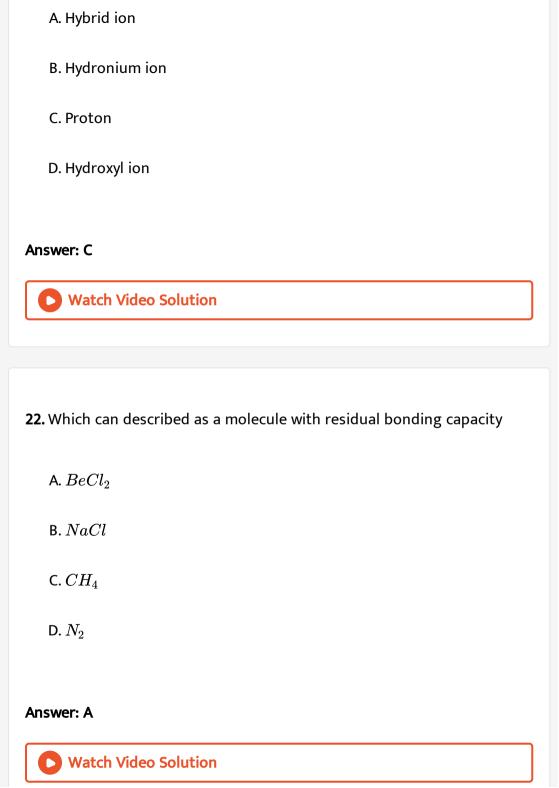
B. sp^2d^2 , T-shaped

C. Sp^3d , see saw

D. sp^3d^2 , Octahedral

Watch Video Solution

20. In which of the following the central atoms does not use sp^3 hybrid orbitals in its bonding


- A. $BeF_3^{\,-}$
- B. OH_3^+
- $\mathsf{C.}\,NH_2^{\,-}$
- D. NF_3

Answer: A

Watch Video Solution

21. The ionisation of hydrogen atom would give rise to

JEE Section (Only one choice correct answer)

1. Which one in	n the f	ollowing	contains	ionic as	well as	covalent	bond
-----------------	---------	----------	----------	----------	---------	----------	------

A. CH_4

B. H_2

 $\mathsf{C}.\,KCN$

D. KCl

Answer: C

Watch Video Solution

2. The number of electrons involved in the bond formation of N_2

A. 2

molecule are _____.

- B. 4
- C. 6
- D. 10

Watch Video Solution

- 3. Select the compound from the following which dissolves in water
 - A. CCl_4
 - B. CS_2
 - C. $CHCl_3$
 - D. C_2H_5OH

Answer: D

4. Molten sodium chloride conducts electricity due to the presence of A. Free electrons B. Free ions C. Free molecules D. Atoms of sodium and chlorine **Answer: B Watch Video Solution 5.** If molecule MX_3 has zero dipole moment, the sigma bonding orbitals used by M (atomic number $\,<\,21$) are A. pure p B. sp hybrid $C. sp^2$ hybrid D. sp^3 hybrid

Watch Video Solution

6. In which of the following is the angle between the two covalent bonds greatest

- A. CO_2
- B. CH_4
- $\mathsf{C}.\,NH_3$
- D. H_2O

Answer: A

Watch Video Solution

7. Strongest intermolecular hydrogen bond is present in the following molecules pairs

A. SiH_4 and SiF_4

B.
$$CH_3 - \overset{|}{C} - CH_3$$
 and $CHCl_3$

C.
$$H-\overset{O}{C}-OH$$
 and $CH_3-\overset{O}{C}-OH$

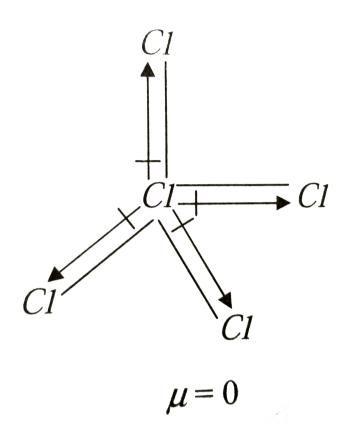
D. H_2O and H_2

Answer: C

Watch Video Solution

8. The ion that is isoelectronic with CO is

A.
$$CN^-$$

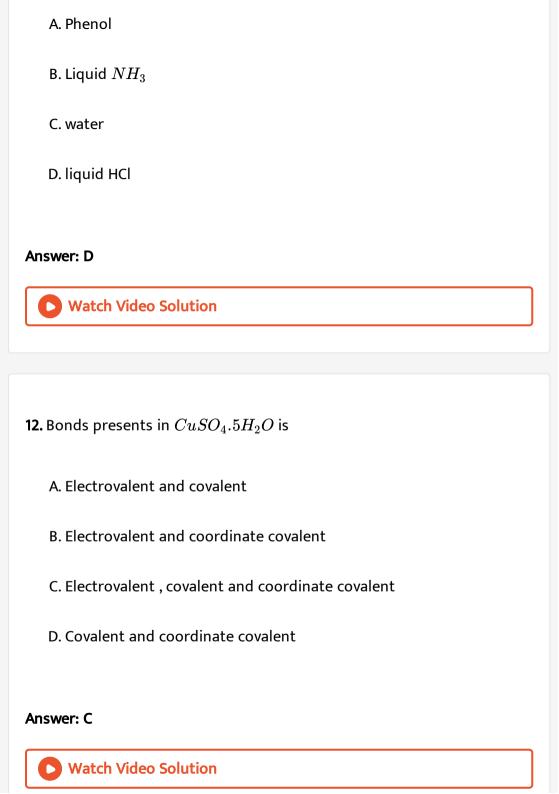

$$\mathsf{B.}\,O_2^{\,+}$$

$$\mathsf{C}.\,O_2^-$$

D.
$$N_2^{\,+}$$

Answer: A

9. Carbon tetrachloride has no net dipole moment because of


A. its planar structure

B. its regular tetrahedral structure

C. Similar sizes of carbon and chlorine atoms

D. Similar electron affinities of carbon and chlorine
Answer: D
Watch Video Solution
10. Which molecules is linear
A. NO_2
B. ClO_2
$C.CO_2$
D. H_2S
Answer: C
Watch Video Solution

11. Which one among the following does not have the hydrogen bond?

- **13.** The compound 1, 2 butadiene has:
 - A. only Sp hybridized carbon atoms
 - B. only sp^2 hybridized carbon atoms
 - C. both sp and sp^2 hybridized carbon atoms
 - D. sp, sp^2 and sp^3 hybridized carbon atoms

Answer: D

- **14.** One hybridization of one s and one p orbital we get
 - A. Two mutually perpendicular orbitals
 - B. Two orbitals at 180°
 - C. Four orbitals directed tetrahedrally

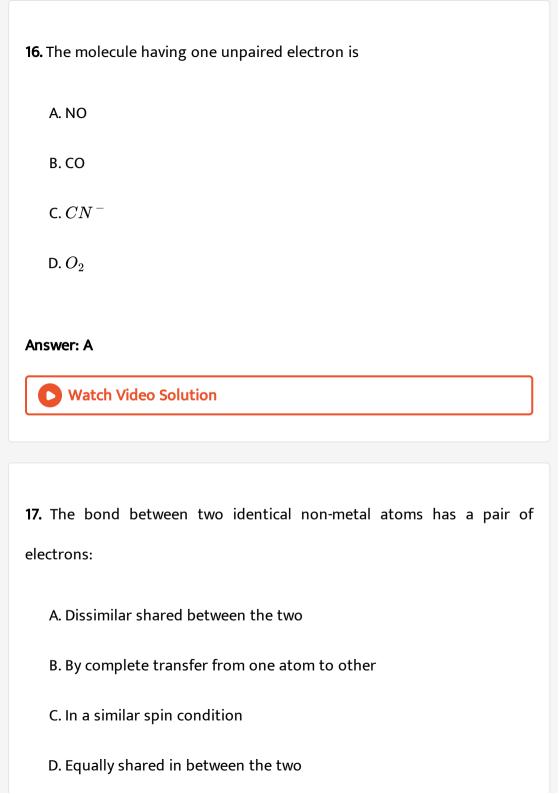
D. Three orbitals in a plane

Answer: B

Watch Video Solution

15. According to molecular orbital theory, the paramagnetism of ${\cal O}_2$ molecule is due to the presence of

A. Unpaired electrons in the bonding σ molecular orbital


B. Unpaired electrons in the antibonding $\boldsymbol{\sigma}$ molecular orbital

C. unpaired electron in the bonding π molecular orbital

D. Unpaired electrons in the antibonding π molecular orbital

Answer: D

Answer: D

Watch Video Solution

18. Which of the following contains a coordinate covalent bond?

- A. N_2O_5
- $\mathsf{B.}\,BaCl_2$
- C. HCl
- $\mathsf{D}.\,H_2O$

Answer: A

Watch Video Solution

19. The H-bond is strongest in

A. O-H...S

C. F-H....F

D. S-H....O

Answer: C

Watch Video Solution

20. The hybridization of sulphur in SO_2 is

A. sp

 $\mathsf{B.}\,sp^3$

 $\mathsf{C.}\,sp^2$

D. dsp^2

Answer: C

21. Zero dipole moment is present in A. NH_3 B. H_2O C. Cis, 1,2-dichloroethene D. trans 1,2-dichloroethane **Answer: D Watch Video Solution 22.** The species in which the cantral atom uses sp^2 hybrid orbital in its bonding is: A. PH_3 B. NH_3 $\mathsf{C.}\,CH_3^{\,+}$ D. SbH_3

Watch Video Solution

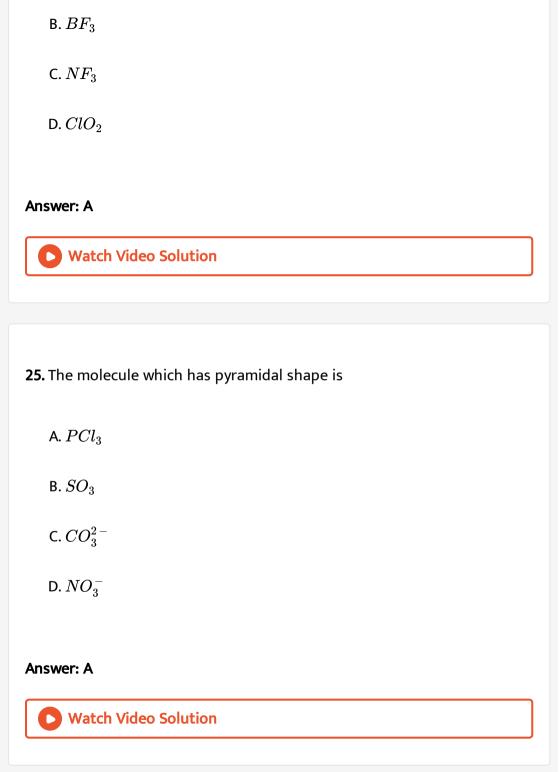
23. Polarization of electrons in acrolein may be written as:

A.
$$\overset{\delta^-}{C}H_2=CH-\overset{\det al^+}{C}H=O$$

B.
$$\overset{\delta^-}{C}H_2=CH-CH=\overset{\delta^+}{O}$$

C.
$$\overset{\delta^-}{C}H_2=\overset{\delta^+}{C}H-CH=O$$

D.
$$\overset{\delta^+}{C}H_2=CH-CH=\overset{\delta^-}{O}$$


Answer: D

Watch Video Solution

24. The molecule which has zero dipole moment is

A.
$$CH_2Cl_2$$

26. The compound in which C uses its sp^3 -hybrid orbitals for bond formation is

A.
$$\overset{*}{HCOOH}$$

B.
$$(H_2N)_2\overset{*}{C}O$$

$$\mathsf{C.}\left(CH_{3}
ight)_{3}\overset{*}{C}OH$$

D.
$$CH_3\overset{*}{C}HO$$

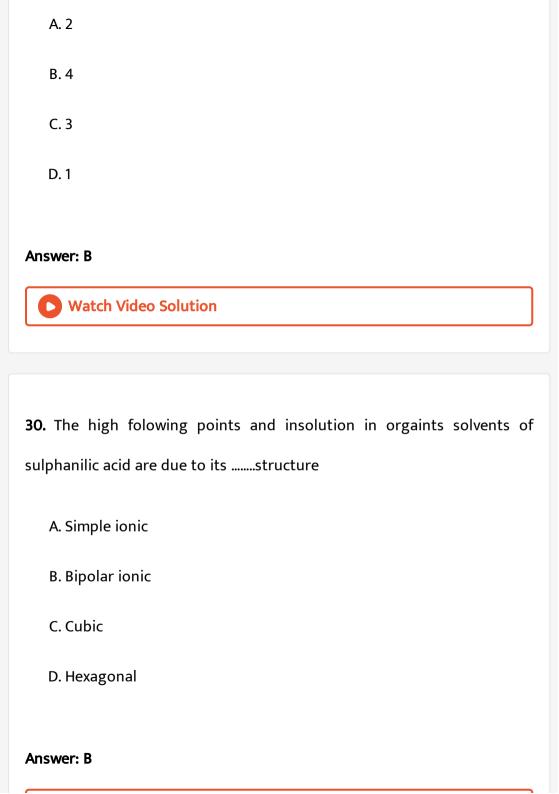
Answer: C

Watch Video Solution

27. Which one is paramagnetic from the following

- A. O_2^-
 - B. NO
 - C. Both (a) and (b)
 - D. CN^-

Watch Video Solution


- **28.** The type of hybrid orbitals used by chlorine atom in $ClO_2^-\,$ is :
 - A. sp^3
 - B. sp^2
 - C. sp
 - D. None of these

Answer: A

Watch Video Solution

29. The maximum possible number of hydrogen bonds a water molecule can form is

31. The two types of bonds present in B_2H_6 are covalent and ____.

A. Three centre bond

B. Hydrogen bond

C. Two centre bond

D. None of the above

Answer: A

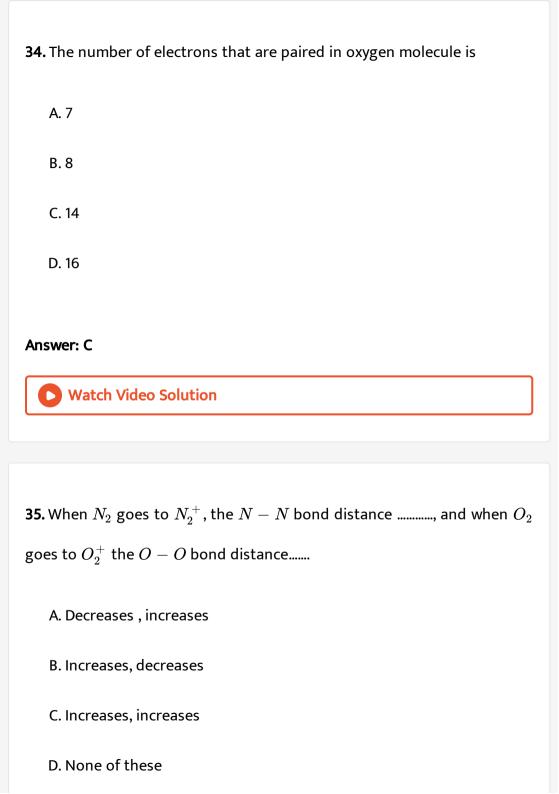
32. Which one is most ionic?

A. P_2O_5

B. CrO_3

C. MnO

D. Mn_2O_7



Watch Video Solution

- **33.** In $P_4 O_{10}$ the number of oxygen atoms bonded to each phosphorus atom is.....
 - A. 2
 - B. 3
 - C. 4
 - D. 2.5

Answer: C

Answer: B

Watch Video Solution

36. Among the following species, identify the isostuctural pairs

 NF_3 . NO_3^- , BF_3 , H_3O , HN_3

- A. $\left[NF_3,NO_3^ight]$ and $\left[BF_3,H_3O^+
 ight]$
- B. $[NF_3HN_3]$ and $\left[NO_3^-,BF_3
 ight]$
- C. $\left[NF_3,H_3O^+
 ight]$ and $\left[NO_3^-,BF_3
 ight]$
- D. $\left\lceil NF_3, H_3O^+
 ight
 ceil$ and $\left[HN_3, BF_3
 ight]$

Answer: C

Watch Video Solution

37. The number and type of bonds between carbon atoms in calcium carbide are

A. one sigma, one pi B. one sigma, two pi C. Two sigma, one pi D. two sigma, two pi **Answer: B** Watch Video Solution 38. Arrange the following compounds in order of increasing dipole moment: (i) toluene (ii) m-dichloro benzene (iii) o-dichloro benzene (iv) p-dichloro benzene A. IltiVltiiltii B. IVItIItIIItIII C. IVItIItIIIItII D. IVİtIIİtIİtIII

Answer: B

Watch Video Solution

39. Among KO_2, ALO_2^Θ , BaO_2 and NO_2^+ ,unpaired electrons is present in .

- A. NO_2^+ and BaO_2
- B. KO_2 and AlO_2^-
- $\mathsf{C}.\,KO_2$ only
- D. BaO_2 only

Answer: C

Watch Video Solution

40. Which contains both polar and non-polar bonds?.

A. NH_4Cl B. HCN $\mathsf{C}.\,H_2O_2$ D. CH_4 Answer: A **Watch Video Solution 41.** The critical temperature of water is higher than that of O_2 because the H_2O molecule has A. Fewer electrons than O_2 B. Two covalent bonds C. V-shaped D. Dipole moment Answer: D

42. Which of the following compounds has sp^2 -hybridisation?

A. CO_2

B. SO_2

C. N_2O

D. CO

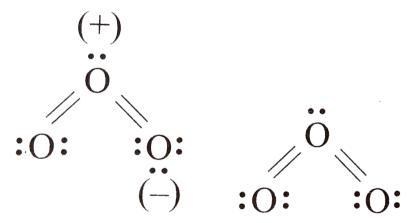
Answer: B

43. Among the following the compounds , the one that is polar and has central atom with sp^2 hydridisation is

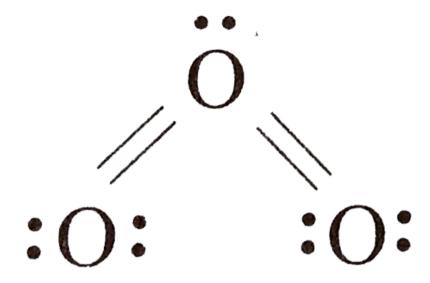
A. H_2CO_3

B. BF_3

C. N_2O


D. $HClO_2$

Answer: A


Watch Video Solution

44. Asseration: The electronic structure of O_3 is:

Reason: structure is not allowed because octet around ${\cal O}$ cannot be

expanded

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false

D. if the assertion and reason both are false

Answer: A

45. Statement I LiCl is predomionantly a covalent compound.

Statement II Electronegativty difference between Li and Cl is too small

A. If both assertion and reason are true and the reason is the correct explanation of the assertion

B. if both assertion and reason are true but reason is not the correct explanation of the assertion

C. if assertion is true but reason is false


D. if the assertion and reason both are false

Answer: C

Watch Video Solution

46. The geometry and the type of hybrid orbitals present about the central atom in BF_3 is :

48. Which of the following resonating structure of N_2O is the most contributing ?

A.
$$N\equiv\stackrel{-}{N}-\stackrel{+}{O}$$

B.
$$N-\stackrel{+}{N}\equiv\stackrel{-}{O}$$

C.
$$\overset{+}{N}=N-\overset{-}{O}$$

$$\mathsf{D}.\,N-N=O$$

Answer: A

49. The correct order of dipole moment is :

A.
$$CH_4 < NF_3 < NH_3 < H_2O$$

B.
$$NF_3 < CH_4 < NH_3 < H_2O$$

C.
$$NH_3 < NF_3 < CH_4 < H_2O$$

D. $H_2O < NH_3 < NF_3 < CH_4$

Answer: A

Watch Video Solution

- **50.** The correct order of increasig C-O bond length of CO, CO_3^{2-}, CO_2 is
 - A. $CO_3^{2-} < CO_2 < CO$
 - B. $CO_2 < CO_3^{2-} < CO$
 - $\mathsf{C.}\,CO < CO_3^{2\,-} < CO_2$
 - D. $CO < CO_2 < CO_3^{2-}$

Answer: D

51. The geometry of H_2S and its dipole moment are :

A. Angular and non-zero

B. Angular and zero

C. Linear and non-zero

D. Linear and zero

Answer: A

52. In the compound

$$CH_2=CH-CH_2-CH_2-C\equiv CH$$
 the C_2-C_3 bond is of

A.
$$sp-sp^2$$

$$\mathsf{B.}\, sp^3 - sp^3$$

C.
$$sp-sp^3$$

D.
$$sp^2-sp^3$$

Answer: D

Watch Video Solution

- **53.** The molecular shapes of SF_4 , CF_4 and XeF_4 are :
 - A. The same, with 2, 0 and 1 lone pair of electrons respectively
 - B. The same, with 1,1 and 1 lone pairs of electrons respectively
 - C. Different, with 0,1 and 2 lone pairs of electrons respectively
 - D. Different with 1,0 and 2 lone pairs of electrons respectively.

Answer: D

Watch Video Solution

54. The hybridization of atomic orbitals of nitrogen is NO_2^+, NO_3^- , and NH_4^+ respectively are

A. sp, sp^3 and sp^2 respectively

B. sp, sp^2 and sp^3 respectively

C. sp^2 , sp and sp^3 respectively

D. sp^2 , sp^3 and sp respectively

Answer: B

Watch Video Solution

55. The order of dipole moment of the following molecules is

A.
$$CHCl_3 > CH_2Cl_2 > CH_3Cl > CCl_4$$

$$\mathsf{B.}\ CH_2Cl_2 > CH_3Cl > CHCl_3 > CCl_4$$

$$\mathsf{C.}\ CH_3Cl > CH_2Cl_2 > CHCl_3 > CCl_4$$

D.
$$CH_2Cl_2 > CHCl_3 > CH_3Cl > CCl_4$$

Answer: D

56. The common features among the species CN^- , CO and NO^+

A. bond order three and isoelectronic

B. Bond order three and weak field ligands

C. Bond order two and π -acceptors

D. Isoelectronic and weak field ligands

Answer: A

Watch Video Solution

57. The correct order of hybridization of the central atom in the following species $NH_3, \left[PtCl_4\right]^{2-}, PCl_5, \text{ and } BCl_3$ is

A. $dsp^2,\,dsp^3,\,sp^2$ and sp^3

 $\mathsf{B.}\, sp^3, dsp^2, dsp^3, sp^2$

C. $dsp^2,\,sp^2,\,sp^3,\,dsp^3$

 $\mathsf{D}.\,dsp^2,sp^3,sp^2,dsp^3$

Answer: B

Watch Video Solution

58. Specify the coordination geometry around and the hybridisation of N and B atoms in $1\colon 1$ complex of BF_3 and NH_3 .

A. N: Tetrahedral , sp^3 ,: B tetrahedral sp^3

B. N: Pyramidal , $sp^3,$ B: Pyramidal , sp^3

C. N : Pyramidal , sp^3 ,: B: Planar sp^2

D. N: Pyramidal , sp^3 , B: tetrahedral , sp^3

Answer: A

59. Identify the least stable ion amongst the following:
A. Li^-
B. Be^-
$C.B^-$
D. C^{-}
Answer: B
Watch Video Solution
60. Which of the following molecular species has unpaired electrons(s)?.
A. N_2
B. F_2
-
$C.O_2^-$

Answer: C

Watch Video Solution

61. Which of the following are isoelectronic and isostructural?

 $NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$

- A. NO_3^-, CO_3^{2-}
- B. SO_3, NO_3^-
- C. ClO_3, CO_3^{2-}
- D. CO_3^{2-} , SO_3

Answer: A

Watch Video Solution

62. According to MOT whch of the following statement about magnetic character and bond order is corrent regarding O_2^\oplus .

B. Paramagnetic and Bond order $> O_2$

A. Paramagnetic and bond order $< O_2$

D. Diamagnetic and Bond order $> O_2$

C. Diamagnetic and Bond order $< O_2$

Answer: B

Watch Video Solution

63. The acid having O - O bond is

B. $H_2S_2O_6$

A. $H_2S_2O_3$

 $\mathsf{C}.\,H_2S_2O_8$

D. $H_2S_4O_6$

Answer: C

64. Which species has the maximum number of lone pair of electrons on the central atom ? .

- A. $\left[ClO_{3}\right]^{-}$
- $\operatorname{B.}XeF_{4}$
- $\mathsf{C.}\,SF_4$
- D. $\left[I_3
 ight]^-$

Answer: D

Watch Video Solution

65. If the bond length of CO bond in carbon monoxide is 1.128\AA , then what is the value of CO bond length in $Fe(CO)_5$?

- A. 1.15Å
- B. 1.128Å

C. 1.72Å
D. 1.118Å
Answer: A
Watch Video Solution
66. The species having bond order differnet from that in ${\it CO}$ is .
A. NO^-
B. NO^{+}
C. CN^{-}
D. N_2
Answer: A
Watch Video Solution

67. Among the following , the paramagnetic compound is

A.
$$Na_2O_2$$

B. O_3

C. N_2O

 $D. KO_2$

Answer: D

68. Arrange the following resonating structures in order of increasing

stability

$$CH_2 = \overset{+}{N} = \overset{-}{N} \qquad H_2\overset{+}{C} = \overset{-}{N} = \overset{-}{N} \qquad H_2\overset{-}{C} - \overset{+}{N} \equiv N \qquad H_2\overset{-}{C} - N = \overset{+}{N} \qquad H_2\overset{-}{C} = \overset{+}{N} = \overset{-}{N} \qquad H_2\overset{-}{C} = \overset{+}{N} = \overset{+}{N} \qquad H_2\overset{-}{C} = \overset{+}{N} \qquad H_2$$

B. (I)gt(III)gt(II)gt(IV)

C. (II)gt(I)gt(III)gt(IV)

D. (III)gt(I)gt(IV)gt(II)

Answer: B

Watch Video Solution

- **69.** The species having pyramidal shape is
 - A. SO_3
 - B. BrF_3
 - C. $SiO_3^{2\,-}$
 - D. OSF_2

Answer: D

70. Assuming that Hund's rule is violated the bond order and magnetic nature of the diatomic molecle B_2 is

- A. 1 and diamagnetic
- B. O and diamagnetic
- C. 1 and paramagnetic
- D. 0 and paramagnetic

Answer: A

Watch Video Solution

71. Which one of the following molecules is expected to exhibit diamagnetic behaviour?

- (i) N_2 (ii) O_2
- (iii) S_2 (iv) C_2

A. C_2

B. N_2

 $\mathsf{C}.\,O_2$

D. S_2

Answer: A::B

Watch Video Solution

72. Stability of the species Li_2, Li_2^- and Li_2^+ increases in the order of

A.
$$Li_2 < Li_2^+ < Li_2^-$$

$${\rm B.}\,Li_2^- < Li_2^+ < Li_2^-$$

C.
$$Li_2 < Li_2^- < Li_2^+$$

D.
$$Li_2^- < Li_2 < Li_2^+$$

Answer: B

73. Which of the following properties is not shown by NO?

A. It is a diamagnetic in gaseous state

B. It is a netural oxide

C. It combines with oxygen to form nitrogen dioxide

D. It's bond order is 2.5

Answer: A

Watch Video Solution

74. Assuming 2s-2p mixing is NOT operative, the paramagnetic species among the following is .

A. Be_2

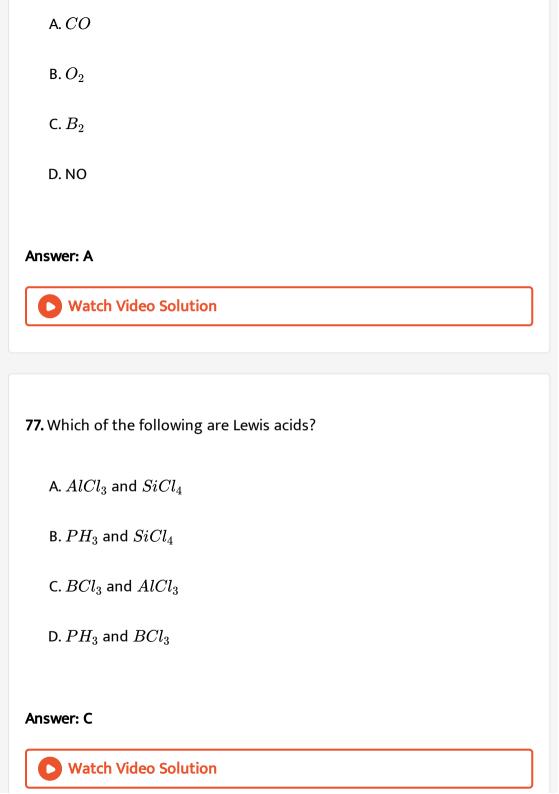
 $B.\,B_2$

 $\mathsf{C}.\,C_2$

 $\mathsf{D.}\,N_2$

Answer: C

75. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is


- A. Ion-ion interaction
- B. Ion-dipole interaction
- C. London force
- D. Hydrogen bond

Answer: B

Watch Video Solution

76. Which of the following species is not paramagnetic?

78. Total number of lone pair of electrons in 3 $I_3^-\,$ ion is A. 6 B. 9 C. 12 D. 3 **Answer: B Watch Video Solution** 79. According to molecular orbital theory, which of the following will not be a viable molecule? A. He_2^+ $\mathrm{B.}\,H_2^{\,-}$ C. h_2^{2-}

D. $He_2^{2\,+}$

Answer: C

Watch Video Solution

80. Which of the following compounds contain(s) no covalent bond(s)?

 $KCl, PH_3, O_2, B_2H_6, H_2SO_4$

A. KCl, H_2SO_4

B. KCl

 $\mathsf{C}.\,KCl,\,B_2H_6$

D. KCl, B_2H_6 , PH_3

Answer: B

Watch Video Solution

JEE Section (More than one correct answer)

1. CO_2 is isostructral with
A. $HgCl_2$
B. C_2H_2
$C.SnCl_2$
D. NO_2
Answer: A::B
Watch Video Solution
2. The linear struture is assumed by :
2. The linear struture is assumed by : $ \text{A. } SnCl_2 $
A. $SnCl_2$
A. $SnCl_2$ B. NCO^-

Watch Video Solution 3. Which of the following have identical bond order? A. $CN^ B.O_2^ C.NO^+$ D. CN^+ Answer: A::C Watch Video Solution 4. The molecule that will have dipole moment is: A. 2,2-Dimethylpropane

Answer: B::C::D

B. Trans-2-pentene

C. Cis-3-Hexene

D. 2,2,3,3,-tetramethylbutane

Answer: B::C

Watch Video Solution

5. Pick out the isoelectronic structure from the following

 $I. CH_3^+ II. H_3O^+$

 $III.\ NH_3 \qquad \qquad IVCH_3^-$

A. I and II

B. III and IV

C. I and III

D. II,III and IV

Answer: B::D

6. Which of the following hydrides are ionic

A. CaH_2

B. BaH_2

C. SrH_2

D. BeH_2

Answer: A::B::C

Watch Video Solution

7. CO_3^{2-} anion has which of the following characterstics

A. Bonds of unequal length

B. sp^2 hybridization of C atom

C. Resonance stabilization

D. Same bond angles	
nswer: B::C::D	
Watch Video Solution	
Which of the following conducts electricity in the fused state	
A. $BeCl_2$	
B. $MgCl_2$	
C. $SrCl_2$	
D. $BaCl_2$	

Answer: B::C::D

9. Hydrogen bonding plays a central role in which of the following phenomena?

A. Ice floats in water

B. Higher Lewis basicity of primary amines that tertiary amines in aqueous solution

C. Formic acid is more acidic than acetic acid

D.

Answer: A::B::D

- 10. According to Molecular Orbital Theory,
- A. $C_2^{2\,-}$ is expected to be diamagnetic
 - B. $O_2^{2\,+}$ expected to have a longer bond length than O_2
 - C. $N_2^{\,+}$ and $N_2^{\,-}$ have the same bond order

D. He_2^+ has the same energy as two isolated He atoms

Answer: A::C

Watch Video Solution

11. Which of the following process is/are assciated with change of hybridisation of the underlined compounds?

- A. $\underline{Al(OH)_3}$ ppt. dissolved in NaOH
- B. $\underline{B_2H_6}$ is dissolved in THF
- C. $\underline{SiF_4}$ vapour is passed thorugh liq. HF
- D. Solidification of $\underline{PCl_5}$ vapour

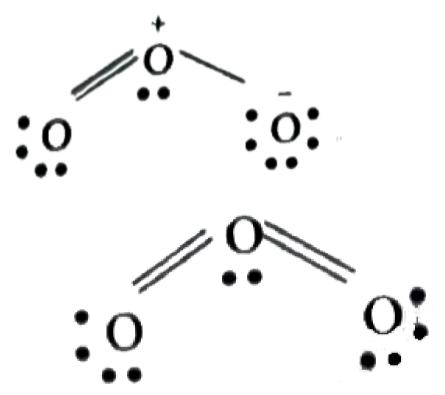
Answer: A::C::D

12. Which of the following statements are not correct

A. All C-O bonds in $CO_3^{2\,-}$ are equal but not in H_2CO_3

B. All C-O bonds in HCO_2^- are equal but not in HCO_2H

C. C-O bond length in HCO_2^- is longer than C-O bond length in $CO_3^{2\,-}$


D.C-O bond length in HCO_2^- and C-O bond length in CO_3^{2-} are equal

Answer: C::D

JEE Section (Reasoning type question)

1. Statement I The electronic structure of O_3 is

Statement II

structure is not allowed because octet around ${\cal O}$ cannot be expanded.

A. Statement 1: is true, statement 2 is true : statement 2 is a correct explanation for statement 1

B. Statement 1 is true, statement 2 is true , statement 2 is not a correct explanation for statement 1

- C. Statement 1 is true, statement 2 is false
- D. Statement 1 is false, statement 2 is true

Answer: B

Watch Video Solution

2. Statement 1: $N_2F_3^+$ is planar at each nitrogen atom

Statement 2: In N_2H , the bond angle H-N-H is 120° and bond the N-N bond length are not equal

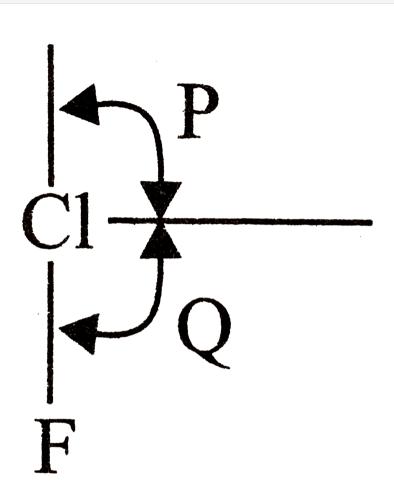
A. Statement 1: is true, statement 2 is true : statement 2 is a correct

explanation for statement 2

B. Statement 1 is true, statement 2 is true , statement 2 is not a

correct explanation for statement 2

C. Statement 1 is true, statement 2 is false


D. Statement 1 is false, statement 2 is true

Answer: C

- 3. Assertion: Carbon has unique ability to form $p\pi-p\pi$ multiple bonds with itself and with other atomic of small size and high electronegativety. Reason: Heaviur elements of group 14th do not form $p\pi-p\pi$ bonds because their atomic orbital are too large and diffuse to have effective sideways overapping.
 - A. Statement 1: is true, statement 2 is true : statement 2 is a correct explanation for statement 3
 - B. Statement 1 is true, statement 2 is true , statement 2 is not a correct explanation for statement 3
 - C. Statement 1 is true, statement 2 is false
 - D. Statement 1 is false, statement 2 is true

Answer: B

4. Assertion:

F bond angle p is equal to the bond angle Q but not precisely equal to 90° .

Reason :The molecule is T- shapes and there is repulsion between lone pairs of electrons.

A. Statement 1: is true, statement 2 is true : statement 2 is a correct

explanation for statement 4

B. Statement 1 is true, statement 2 is true , statement 2 is not a correct explanation for statement 4

C. Statement 1 is true, statement 2 is false

D. Statement 1 is false, statement 2 is true

Answer: A

Watch Video Solution

JEE Section (Comprehension type question)

1. According to MOT, two atomic orbitals overlap resulting in the formation of molecular orbital formed. Number of atomic orbitals overlapping together is equal to the molecule orbital formed. The two atomic orbital thus formed by LCAO (linear combination of atomic

orbital) in the phase or in the different phase are known as bonding and antibonding molecular orbitals respectively. The energy of bonding molecular orbital is lower than that of the pure atomic orbitals by an amount Δ . This known as the stabilization energy. The enerby of antibonding molecular orbital in increased by Δ' (destabilisation energy).

Q. How many nodal plane is present in $\sigma_{s \ {
m and} \ p}$ bonding molecular orbital ?

A. Zero

B. 1

C. 2

D. 3

Answer: A

2. According to MOT, two atomic orbitals overlap relsulting in the formation of molecular orbital. Number of atomic orbitals overlapping together is equal to the molecular orbital formed. The two atomic orbital formed by LCAO (linear combination of atomic orbital) in the same phase or in the different phase are known as bonding and antibonding molecular orbitals respectively. theenergy of bonding molecular orbital is less than that of the pure atomic orbital by an amount Δ . this is known as the stabilization energy, the energy of antibonding molecular orbital is increased by ' Δ ' (destabilisation energy)

A. O_2

B. O_2^{2-}

 $\mathsf{C.}\,O_2^{\,+}$

D. None

Answer: C

Watch Video Solution

The bond order of N_2^- is equal to that of

3. According to MOT, two atomic orbitals overlap relsulting in the formation of molecular orbital. Number of atomic orbitals overlapping together is equal to the molecular orbital formed. The two atomic orbital formed by LCAO (linear combination of atomic orbital) in the same phase or in the different phase are known as bonding and antibonding molecular orbitals respectively. theenergy of bonding molecular orbital is less than that of the pure atomic orbital by an amount Δ . this is known as the stabilization energy, the energy of antibonding molecular orbital is increased by ' Δ ' (destabilisation energy)

Which among the following pairs contain both paramagnetic species

A.
$$O_2^{2-}$$
 and N_2^{-}

B.
$$O_2^-$$
 and N_2

C.
$$O_2$$
 and N_2

D.
$$O_2$$
 and $N_2^{\,-}$

Answer: D

Mariah Vida a Calanta

- 4. Which of the following statement (s) is true
 - A. Higher the bond order lesser the bond length
 - B. Higher the bond order greater the bond length
 - C. Higher the bond order lesser the bond energy
 - D. Higher the bond order lesser the number of bonds

Answer: A

- 5. Which of the following combination of orbitals is correct

 - B. (b) (+) (-) + (-) (-)

(d) \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2}

Answer: C

View Text Solution

- **6.** Which of the following statements is not regarding bonding molecular orbitals
 - A. Bonding molecular orbitals possess less energy than the atomic orbitals from which they are formed
 - B. Bonding molecular orbitals have low electron density between the two nuclei
 - C. Electron in bonding molecular orbital contributes to the attraction between atoms
 - D. They are formed when the lobes of the combining atomic orbitals have the same sign

Answer: B

Watch Video Solution

7. If x-axis is the molecular axis, the π -molecular orbitals are formed by the overlap of

A.
$$s+p_z$$

B.
$$P_x + P_y$$

$$\mathsf{C}.\,P_z+P_z$$

D.
$$P_x + P_x$$

Answer: C

Watch Video Solution

JEE Section (Integer type question)

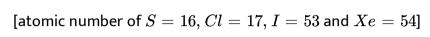
1. Based on VSEPR theory, the number of $90^{\circ}F - Br - F$ angles in BrF_5

is

Watch Video Solution

2. A list of species having the formula of XZ_4 is given below $XeF_{4},SF_{4},SiF_{4},BF_{4}^{\;-},BrF_{4}^{\;-},[Cu(NH_{3})4]^{2\,+},[FeCl_{4}]^{2\,-},[CoCl_{4}]^{2\,-}$ and $[PtCl_4]^{2-}$

Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is



Watch Video Solution

3. The total number of lone pair of electrons in N_2O_3 is

4. Among the triatomic molecules/ions $BeCl_2, N_3^-, N_2O, NO_2^+, O_3, SCl_2, lCl_2^-, l_3^-$ and XeF_2 , the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d- orbitals (s) is

diamagnetic species is

(Atomic numbers:

5. Among $H_2, He_2^+, Li_2, Be_2, B_2, C_2, N_2, O_2^-$ and F_2 , the number of

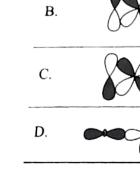
$$H=1, He=2, Li=3, Be=4, B=5, C=6, N=7, O=8, F=9$$
)

6. This section contains some integer type question

The ratio of σ to π bonds in mesitylene is

Watch video Solution

7. Diatomic molecule has a dipole moment of 1.2D If its bond 1.0Å what fraction of an electronic charge exists on each atom ? .


8. This section contains some integer type question

Estimate the percent ionic character of the HBr molecule, given that the dipole moment (μ) is 0.63 D and HBr bond length 187.5 pm

JEE Section (Matrix match type question)

1. Match each of the diatomic molecules in Column I with its property/properties in Column II.

- $p-d\pi$ bonding 3.

4.

Column II Column I $p-d\pi$ antibonding 1. d-d σ bonding 2.

2. Match the orbital overlap figures shown in Column I with the description given in Column II and select the correct answer using the

d-d σ antibonding

Column II

Undergoes oxidation

Undergoes reduction

Mixing of 's' and 'p' orbitals

Paramagnetic

Bond order ≥ 2

(p)

(a)

(r)

(s)

(t)

Column I

В.,

 N_2

Ο.,

 O_{σ}

(A)

(B)

(C)

(D)

Watch Video Solution

codes given below the Columns.

Water Video Solution

3. Match the compounds listed in Column I with their relevant characterstics listed in Column II

	Column I		Column II
(A)	B_2H_6	(p)	Tetrahedral hybridisation
(B)	Al_2Cl_6	(q)	Trigonal planar hybridisation
(C)	$BeCl_2(s)$	(r)	Empty orbital(s) of central atom participate in hybridisation
(D)	$(SiH_3)_3 N$	(s) (t)	Two types of bond angles

4. Match the compounds listed in column I with their relevant characaterstics listed in Column II

(A)	Chloral hydrate	(p)	Forms a zig-zag chain
			in both solid and also
			in the liquid
(B)	Hydrogen fluoride	(q)	Forms two dimensional
			sheet with almost
			hexagonal symmetry
(C)	Crystalline boric acid	(r)	London dispersion
			force
(D)	Sulphuric acid	(s)	Intramolecular H-bond
, ,		(t)	Intermolecular H-bond

Column II

Column I

JEE Section (Jee (advanced) 2018)

1. Match each set of hybrid orbitals from List -I with complex (es) given in List-II

List – I

P. dsp^2 1. $[FeF_6]^{4-}$ Q. sp^3 2. $[Ti(H_2O)_3CI_3]$ R. sp^3d^2 3. $[Cr(NH_3)_6]^{3+}$ S. d^2sp^3 4. $[FeCI_4]^{2-}$ 5. $Ni(CO)_4$ 6. $[Ni(CN)_4]^{2-}$

