びdoubtnut

CHEMISTRY

BOOKS - UNIVERSAL BOOK DEPOT 1960 CHEMISTRY (HINGLISH)

GASEOUS STATE

Ordinary Thinking Objective Questions Characteristics And Measurable Properties Of Gases

1. At $S T P$, the order of mean square velocity of molecules of $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$, and HBr is

$$
\text { A. } H_{2}<N_{2}<O_{2}<H B r
$$

B. $\mathrm{HBr}<\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{H}_{2}$
C. $\mathrm{H}_{2}<\mathrm{N}_{2}=\mathrm{O}_{2}<\mathrm{HBr}$
D. $\mathrm{HBr}<\mathrm{O}_{2}<\mathrm{H}_{2}<\mathrm{N}_{2}$

Answer: c

(D) Watch Video Solution

2. Which one of the following statements is wrong for gases?
A. Gases do not have a definite shape and volumne
B. Volume of the gas is equal to the volume of the
C. Confined gas exerts uniform pressure on the walls of its container in all directions
D. Mass of the gas cannot be determined by weighing a container in which it is enclosed

Answer: D

D Watch Video Solution

3. Which of the following exhibits the weakest intermolecular forces?
A. NH_{3}
B. HCl
C. He
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

D Watch Video Solution

4. 2 gm of O_{2} at $27^{\circ} \mathrm{C}$ and 76 mm of Hg pressure has volume
A. 1.5 lit
B. 2.8 lit
C. 11.2 lit
D. 22.4 lit.

Answer: A

- Watch Video Solution

5. Which of the following statements is not correct about the three states of matter, i.e., solid, liquids and gas?
A. Molecules of a solid possess least energy whereas those of a gas possess highest energy
B. The density of solid is highest whereas that of gases is lowest
C. Gases like liquids possess definite volumes
D. Molecules of a solid possess vibratory motion

Answer: C

D Watch Video Solution

6. The temperature and pressure at which ice, liquid water and water vapour can exist together are
A. $0^{\circ} \mathrm{C}$,atm
B. $2^{\circ} C, 4.7$ atm
C. $0^{\circ} \mathrm{C}, 4.7 \mathrm{~mm}$
D. $-2^{\circ} C, 4.7 \mathrm{~mm}$

Answer: C

D Watch Video Solution

7. Which of the following is true about gaseous state?
A. Thermal energy $=$ Molecular attraction
B. Thermal energy \gg Molecular attraction
C. Thermal energy \ll Molecular attraction
D. Molecular forces \gg Those in liquids

Answer: B

D Watch Video Solution

8. Kinetic energy of molecules is highest in
A. Gases
B. Solids
C. Liquids
D. Solutions

Answer: A
(D) Watch Video Solution
9. The volume of 1 litre is equal to
A. $1000 \mathrm{~cm}^{3}$
B. $100 \mathrm{~cm}^{3}$
C. $10 \mathrm{dm}^{3}$
D. $10^{6} \mathrm{~cm}^{3}$

Answer: D

- Watch Video Solution

10. A $1^{\circ} C$ rise in temperature is observed in a conductor by passing a certain current . If the current is doubled , then the rise in temperature is approximately
A. $1^{\circ} F$
B. $9 / 5^{\circ} F$
C. $5 / 9^{\circ} F$
D. $33^{\circ} F$

Answer: B

D Watch Video Solution

11. Which of the following relations for expressing volume of a sample of NOT correct?
A. $1 L=10^{3} \mathrm{ml}$
B. $1 d m^{3}=1 L$
C. $1 L=10^{3} m^{3}$
D. $1 L=10^{3} \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

12. One atmosphere is equal to
A. 10^{6} dynes cm^{-2}
B. 10^{6} dynes cm^{-2}
C. 10^{4} dynes cm^{-2}
D. 10^{8} dynes cm^{-2}

Answer: A

13. Pressure of a gas in a vessel can be measured by
A. Barometer
B. Manometer
C. Stalgometer
D. All the above

Answer: B

(D) Watch Video Solution

14. Assertion: Wet air is heavier than dry air.

Reason: The density of the dry air is more than density
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

Answer: D

- Watch Video Solution

15. Assertion: All molecules in a gas are moving with same speed.

Reason: Speed of molecules in a gas follows Maxwell's distribution law.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: D

Watch Video Solution

16. Assertion: Effusion rate of oxygen is smaller than nitrogen.

Reason: Molecular size of nitrogen is smaller than oxygen.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: C
17. Assertion : 4.58 mm and $0.0098^{\circ} \mathrm{C}$ is known to be triple point of water.

Reason : At this pressure and temperature all the three
states i.e., water , ice and vapour exist simulataneously.
A. If both assertion and reason are true and the
reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

- Watch Video Solution

Ordinary Thinking Objective Questions Ideal Gas Equaion And Related Gas Laws

1. Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by define fraction of its volume at
A. $0^{\circ} \mathrm{C}$
B. Its critical temperature
C. Absolute zero
D. Its Boyle temperature

Answer: A

D Watch Video Solution

2. Correct gas equation is :
A. $\frac{V_{1} T_{2}}{P_{1}}=\frac{V_{2} T_{1}}{P_{2}}$
B. $\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{T_{1}}{T_{2}}$
C. $\frac{P_{1} T_{2}}{V_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
D. $\frac{V_{1} V_{2}}{T_{1} T_{2}}=P_{1} P_{2}$

- Watch Video Solution

3. If P, V, M, T and R are symbols of pressure, volume, molecular weight, temperature and Gas contstant, what is the equation of density of ideal gas
A. $\frac{R T}{P M}$
B. $\frac{P}{R T}$
C. $\frac{M}{V}$
D. $\frac{P M}{R T}$

Answer: D
4. At constant temperature, in a given mass of an ideal gas -
A. The ratio of pressure and volume always remains constant
B. Volume always remains constant
C. Pressure always remains constant
D. The product of pressure and volume always remains constant
5. In a closed vessel of 5 litres capacity, 1 g of O_{2} is heated from 300 to $600 K$. Which statement is not correct ?
A. Pressure of the gas increases
B. The rate of collision increases
C. The number of moles of gas increases
D. The energy of gaseous molecules increases

Answer: C

Watch Video Solution

6. If pressure becomes double at the same absolute temperature on $2 \mathrm{LCO}_{2}$, then the volume of CO_{2} becomes
A. 2 litres
B. 4 litres
C. 5 litres
D. 7 litres

Answer: A
7. A weather balloon filled with hydrogen at 1 atm and
$27^{\circ} \mathrm{C}$ has volume equal to 1200 litres. On ascending, it reaches a place where temperture is $-23^{\circ} C$ and pressure is 0.5 atm . The volume of the balloon is
A. 24000 litres
B. 20000 litres
C. 10000 litres
D. 12000 litres

Answer: B

8. Equal weights of two gases of molecular weight 4 and 40 are mixed. The pressure of the mixture is 1.1 atm. The partial pressure of the light gas in this mixture is
A. 0.55 atm
B. 0.11 atm
C. 1 atm
D. 0.12 atm

Answer: C

D Watch Video Solution

9. A bottle of cold drink has 200 mL liquid in which CO_{2}

 is 0.1 molar. If CO_{2} behaves as ideal gas the volume of CO_{2} at S.T.P. solution of cold drink isA. 0.224 litre
B. 0.448 litre
C. 22.4 litre
D. 2.24 litre

Answer: B

- Watch Video Solution

10. The vapour density of a gas (X) is 11.2. The volume occupied by 11.2 g of this gas at N.T.P. is
A. 1L
B. 11.2 L
C. 22.4 litre
D. 20 L

Answer: B

D Watch Video Solution

11. Select one correct statement. In the gas equation, $P V=n R T$
A. n is the number of molecules of a gas
B. V denotes of one mole of the gas
C. n moles of the gas have a volume V
D. P is the pressure of the gas when only one mole of gas is present

Answer: C

- Watch Video Solution

12. The correct value of the gas contant R is close to
A. 0.082 litre-atmosphere K
B. 0.082 litre-atmosphere $K^{-1} \mathrm{~mol}^{-1}$
C. 0.082 litre-atmosphere ${ }^{\wedge}(-1) \mathrm{Kmol}^{-1}$
D. 0.082 litre ^ (-1) atmosphere ^ $(-1) \mathrm{K} \mathrm{mol}$

Answer: B

D Watch Video Solution

13. One litre of a gas weights 2 g at 300 K and 1 atm pressure. If the pressure is made 0.75 atm at which of the following temperature will one litre of the same gas weight one gram ?
A. 450 K
B. 600 K
C. 800 K
D. 900 K

Answer: A

D Watch Video Solution

14. The density of a gas at $27^{\circ} \mathrm{C}$ and 1 atm is d. Pressure remaining constant, at which of the following temperture will its density become $0.75 d$?
A. $220^{\circ} \mathrm{C}$
B. $30^{\circ} \mathrm{C}$
C. 400 K
D. 300 K

Answer: C

D Watch Video Solution

15. Under what conditions will a pure sample of an ideal gas not only exhibit a pressure of 1 atm but also a concentration of 1 mollitre ${ }^{-1}$ [$R=0.082$ iltre atm $\left.\mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]$
A. At STP
B. When $V=22.4$ litres
C. When $T=12 K$
D. Impossible under any conditions

Answer: C

D Watch Video Solution

16. At what temperature, the rate of effusion of N_{2} would be 1.625 times that of SO_{2} at $50^{\circ} \mathrm{C}$?
A. 110 K
B. 173 K
C. 373 K
D. 273 K

Answer: C

- Watch Video Solution

17. Which of the following gaseous mixture does not follow Dalton's law of partial pressure?
A. O_{2} and CO_{2}
B. N_{2} and O_{2}
C. $C l_{2}$ and O_{2}
D. NH_{3} and HCl

Answer: D
18. The maximum number of molecules is present in :
A. 0.5 g of H_{2} gas
B. 10 g of O_{2} gas
C. $15 L$ of H_{2} gas at STP
D. 5 L of N_{2} gas at STP

Answer: C

D Watch Video Solution

19. The pressure exerted by 6.0 g of methane gas in a $0.03 m^{3}$ vessel at $129^{\circ} \mathrm{C}$ is: (Atomic masses of
$C=12.01, H=1.01$ and $R=8.314 J^{-1} \mathrm{~mol}^{-1}$)
A. 215216 Pa
B. 13409 Pa
C. 41648 Pa
D. 31684 PA

Answer: C

D Watch Video Solution

20. A gaseous mixture was prepared by taking equal moles of $C O$ and N_{2}. If the total pressure of the
mixture was found to be 1 atomosphere, the partical pressure of the nitrogen $\left(N_{2}\right)$ in the mixture is
A. 1 atm
B. 0.5 atm
C. 0.8 atm
D. 0.9 atm

Answer: B

- Watch Video Solution

21. A bubble of air is underwater at temperature $15^{\circ} \mathrm{C}$ and the pressure 1.5 bar. If the bubble rises to the
surface where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 bar, what will happen to the volume of the bubble?
A. Volume will become smaller by a factor of 0.70
B. Volume will become greater by a factor of 2.5
C. Volume will become greater by a factor of 1.6
D. Volume will become greater by a factor of 1.1

Answer: C

D Watch Video Solution

22. A certain gas takes three times as long to effuse out as helium. Its molar mass will be
A. 27 u
B. 36 u
C. 64 u
D. 9 u

Answer: B

D Watch Video Solution

23. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temperature $27^{\circ} \mathrm{C}$
in identical conditions. The ratio of the volume of gases
$H_{2}: O_{2}$: methane would be
A. $16: 1: 2$
B. 8:1:2
C. $8: 16: 1$
D. $16: 8: 1$

Answer: A

- Watch Video Solution

24. A gas such as carbon monoxide would be most likely to obey the ideal gas law at
A. High temperature and low pressures
B. Low temperature and high pressue
C. High temperature and high pressures
D. Low temperature and low pressures

Answer: A

(D) Watch Video Solution

25. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in
the time required for one-half of the hydrogen to escape?
A. $1 / 8$
B. $1 / 4$
C. $3 / 8$
D. $1 / 2$

Answer: A

D Watch Video Solution

26. Dominance of strong repulsive forces among the molecules of the gas ($Z=$ compressibility factor)
A. Depends on Z and indicated by $Z=1$
B. Depdens on Z are indicated by $Z>1$
C. Depends on Z and indicated by $Z<1$
D. Is independent of Z

Answer: C

D Watch Video Solution

27. The volume-temperature graphs of a given mass of an ideal gas at constant pressure are shown below.

What is the correct order of pressure?

A. $P_{1}>P_{3}>P_{2}$
B. $P_{1}>P_{2}>P_{3}$
C. $P_{2}>P_{3}>P_{1}$
D. $P_{2}>P_{1}>P_{3}$

Answer: A
28. Two separate bulbs contain ideal gas A and B. The density of a gas A is twice that of a gas B. The molecular mass of A is half that of gas B. The two gases are at the same temperature. The ratio of the pressure of A to that gas B is
A. 2
B. $1 / 2$
C. 4
D. $1 / 4$

Answer: C
29. Densities of two gases are in the ratio $1: 2$ and their temperatures are in the ratio $2: 1$, then the ratio of their respective pressure is
A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: A

- Watch Video Solution

30. A certain sample of gas has a volume of 0.2 litre measured at 1 atm pressure and $0^{\circ} \mathrm{C}$. At the same pressure but at $273^{\circ} \mathrm{C}$, its volume will be
A. 0.4 litres
B. 0.8 litres
C. 27.8 litres
D. 55.6 litres

Answer: A

- Watch Video Solution

31. A vessel containing 5 litres of a gas at 0.8 m pressure is connected to an evacuated vessel of volume 3 litres.

The resultant pressure inside with be (assuming whole system to be isolated)
A. 10.8 cm of Hg
B. 14.9 cm of Hg
C. 21.8 cm of Hg
D. 38.8 cm of Hg

Answer: A

32. If $4 \mathrm{~g} O_{2}$ effuse through a very narrow hole, How much H_{2} would have effused under identical conditions
A. 16 g
B. 1 g
C. $1 / 4 \mathrm{~g}$
D. 64 g

Answer: B

- Watch Video Solution

33. One gram mole of a gas at NTP occupies 22.4 L. This
fact is derived from
A. Datlton's theory
B. Avagadro['s hypothesis
C. Berzelius hypothesis
D. Law of gaseous volume

Answer: B

D Watch Video Solution

34. The ideal pressur exerted by a number of nonreacting gases is equal to the sum of the partial
pressures of the gases under the same conditions. This statement is according to :
A. Boyle's law
B. Charle' law
C. Avogadro's law
D. Dalton's law

Answer: D

- Watch Video Solution

35. If $20 \mathrm{~cm}^{3}$ gas at $1 a t m$ is expanded to $50 \mathrm{~cm}^{3}$ at constant T, then what is the final pressure
A. $20 \times \frac{1}{50}$
B. $50 \times \frac{1}{20}$
C. $1 \times \frac{1}{20} \times 50$
D. None of these

Answer: A

- Watch Video Solution

36. Pure hydrogen sulphide is stored in a tank of 100
litre capacity at $20^{\circ} \mathrm{C}$ and 2 atm pressure. The mass of the gas will be
A. 34 g
B. 340 g
C. 282.4 g
D. 28.24 g

Answer: C

- Watch Video Solution

37. Which of the following gas will have highest rate of diffusion?
A. NH_{3}
B. N_{2}
C. CO_{2}
D. O_{2}

Answer: A

- Watch Video Solution

38. At N.T.P. the volume of a gas is found to be 273 ml .

What will be the volume of this gas at 600 mm Hg and
$273^{\circ} C$?
A. 391.8 ml
B. 380 ml
C. 691.6 ml
D. 750 ml

Answer: C

D Watch Video Solution

39. A gas diffuse $\frac{1}{5}$ times as fast as hydrogen at same pressure. Its molecular weight is
A. 50
B. 25
C. $25 \sqrt{2}$
D. $50 \sqrt{2}$

Answer: A
40. The densities of two gases are in the ratio of $1: 16$.

The ratio of their rates of diffusion is
A. $16: 1$
B. $4: 1$
C. 1: 4
D. $1: 16$

Answer: B

D Watch Video Solution

41. Containers A and B have same gases. Pressure, volume and temperature of A are all twice that of B, then the ratio of number of molecules of A and B are
A. 1: 2
B. 2
C. $1: 4$
D. 4

Answer: B

- Watch Video Solution

42. A gaseous mixture contains oxygen and nitrogen in the ratio of $1: 4$ by weight therefore the ratio of their number of molecules is
A. 1:8
B. 1: 4
C. 3: 16
D. 7:32

Answer: D

- Watch Video Solution

43. What will be the partial pressures of He and O_{2} respectively if 200 ml of He at 0.66 atm pressure and 400 ml of O_{2} at 0.52 atm pressure are mixed in 400 ml vessel at $20^{\circ} C$?
A. 0.33 and 0.56
B. 0.33 and 0.52
C. 0.38 and 0.52
D. 0.25 and 0.45

Answer: B
44.4.4 g of a gas at STP occupies a volume of 2.24 L . The gas can be :
A. O_{2} and CO_{2}
B. CO
C. NO_{2}
D. CO_{2}

Answer: D

D Watch Video Solution

45. At STP 1 g CaCO 3 on decomposition gives CO_{2}
A. 22.4 litres
B. 2.24 litres
C. 0.224 litre
D. 11.2 litres

Answer: C

D Watch Video Solution

46. If the average velocity of N_{2} molecules is
$0.3 m s^{-1} a t 27^{\circ} C$, then the velocity of $0.6 m s^{-1}$ will take place at
A. 1200 K
B. 600 K
C. 400 K
D. 1800 K

Answer: A

- Watch Video Solution

47. When a jar containing gaseous mixture of equal volumes of CO_{2} and H_{2} is placed in a solution of sodium hydroxide, the solution level will
A. Rise
B. Fall
C. Remain constant
D. Become zero

Answer: A

D Watch Video Solution

48. At 1 atm and 273 K the density of gas, whose molecular weight is 45 , is:
A. $44.8 \mathrm{gm} /$ litre
B. $11.4 \mathrm{gm} /$ litre
C. $2 \mathrm{gm} /$ litre
D. $3 \mathrm{gm} /$ litre

Answer: C

- Watch Video Solution

49. Which of the following gaseous mixture does not follow Dalton's law of partial pressure?
A. $S O_{2}$ and Cl_{2}
B. CO_{2} and N_{2}
C. CO and CO_{2}
D. CO and N_{2}

Answer: A
50. What is the ratio of diffusion rate of oxygen to hydrogen?
A. 1: 4
B. $4: 1$
C. $1: 8$
D. $8: 1$

Answer: A

- Watch Video Solution

51.1 L oxygen gas at STP will weigh
A. $1.43 g$
B. 2.24 g
C. 11.2 g
D. 22.4 g

Answer: A

D Watch Video Solution

52. Use of hot air ballons in sports and meteorological observations in an application of
A. Boyle's law
B. Newtonic law
C. Kelvin's law
D. Charle's law

Answer: D

D Watch Video Solution

53. N_{2} is found in a litre flask under 100 kPa pressure and O_{2} is found in another 3litre flask under 20 KPa pressure. If the two flask are connected, the resultant pressure is
A. 310 kPa
B. 210 kPa
C. 420 kPa
D. 265 kPa

Answer: D

D Watch Video Solution

54. Equal volumes of gases at the same temperature and pressure contain equal number of particles. This statement is a direct consequence of
A. Avogadro's law
B. Charle' law
C. Ideal gas equation
D. Law of partial pressure

Answer: A

D Watch Video Solution

55. A mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a vapor density of 38.3 at 300 K . What is the number of moles of NO_{2} in 100 g of themixture?
A. 0.043
B. 4.4
C. 3.4
D. 0.437

- Watch Video Solution

56. Which of the following pairs will effuse at the same rate through a porous plug.
A. $\mathrm{CO}, \mathrm{NO}_{2}$
B. $\mathrm{NO}_{2}, \mathrm{CO}_{2}$
C. $\mathrm{NH}_{3}, \mathrm{PH}_{3}$
D. $\mathrm{NO}, \mathrm{C}_{2} \mathrm{H}_{6}$

Answer: D
57. Two gases bulbs A and B are connected by a tube having a stopcock. Bulb A has a volume of 100 mL and contains H_{2} gas. After opening the gas from A to the evacuated bulb B, the pressure falls down by 40%.

The volume ($m L$) of $\mathrm{B}^{\text {` must be }}$
A. 75
B. 150
C. 125
D. 200

Answer: B
58. A $4.0 \mathrm{dm}{ }^{3}$ flask containing $N_{2} a t 4$ bar was connected to a $6.0 \mathrm{dm}^{3}$ flask containing helium at 6 bar , and the gases were allowed to mix isothermally. The total pressure of the resulting mixture will be
A. 10.0 bar
B. 5.2 bar
C. 3.6 bar
D. 1.6 bar

Answer: B

59. 56 g of nitrogen and 96 g of oxygen are mixed isothermally and at a total pressure of 10 atm. The partial pressures of oxygen and nitrogen (in atm) are respectively
A. 4,6
B. 5,5
C. 2,8
D. 6,4

Answer: D

60. At what pressure a quantity of gas will occupy a volume of 60 mL , if it occupies a volume of 100 mL at a pressure of 720 mm (while temperature is constant) :
A. 736.8 mm
B. 820.20 mm
C. 784.15 mm
D. 857.14 mm

Answer: D

D Watch Video Solution

61. The molecular weight of a gas which diffuses through a porous plug at $1 / 6^{\text {th }}$ of the speed of hydrogen under identical condition is:
A. 27
B. 72
C. 36
D. 48

Answer: B

- Watch Video Solution

62. Molecular weight of a gas that diffuses twice as rapidly as the gas with molecular weight 64 is
A. 16
B. 8
C. 64
D. 6.4

Answer: A

D Watch Video Solution

63. Steam distillation is based on
A. Boyle's law
B. Charle' law
C. Dalton's law of partial pressure
D. Avogadro's law

Answer: C

(D) Watch Video Solution

64. A closed vessel contains equal number of nitrogen
and oxygen molecules at pressure of $P m m$. If nitrogen
is removed from the system, then the pressure will be:
A. P
B. 2P
C. $P / 2$
D. P^{2}

Answer: C

- Watch Video Solution

65. In the corrections made to the ideal gas equation
for real gases, the reduction in pressure due to attractive forces is directly proportional to :
A. n / V
B. $n b$
C. $n^{2} / V^{2} b$
D. n^{2} / V^{2}

Answer: D

D Watch Video Solution

66. Volume occupied by an ideal gas at one atmospheric pressure and $0^{\circ} C$ is V ml . Its volume at 273 K will be
A. V ml
B. $V / 2 \mathrm{ml}$
C. 2 V
D. None of these

Answer: A

- Watch Video Solution

67. The densities of hydrogen and oxygen are 0.09 and
$1.44 \mathrm{~g} L^{-1}$. If the rate of diffusion of hydrogen is 1 then
that of oxygen in the same units will be
A. 4
B. $1 / 4$
C. 16
D. $1 / 16$

Answer: B

D Watch Video Solution

68. Gaseous mixture of contains 56 g of $\mathrm{N}_{2}, 44 \mathrm{~g}$ of CO_{2}
and 16 g of CH_{4}. The total pressure of mixture is 720 mm of Hg . The partial pressure of CH_{4} is :-
A. 75 atm
B. 160 atm
C. 180 atm
D. 215 atm

Answer: C

69. For an ideal gas, number of moles per litre in terms of its pressure P, gas constant R and temperature T is
A. $P T / R$
B. $P R T$
C. $P / R T$
D. $R T / P$

Answer: C

D Watch Video Solution

70. An ideal gas is allowed to expand both reversible and irreversibly in an isolated system. If T_{i} is the initial
temperature and T_{f} is the final temperature, which of the following statements is correct:
A. $\left(T_{f}\right)_{\text {irrev }}>\left(T_{f}\right)_{\text {rev }}$
B. $T_{f}>T_{i}$ for reversible process but $T_{f}=T_{i}$ for irreversible process
C. $\left(T_{f}\right)_{\text {rev }}=\left(T_{f}\right)_{\text {irrev }}$
D. $T_{f}=T_{i}$ for both reversible and irreversible processes

Answer: A

- Watch Video Solution

71. If $10^{-4} \mathrm{dm}^{3}$ of water is introduced into a $1.0 d \mathrm{~m}^{3}$ flask to 300 K how many moles of water are in the vapour phase when equilibrium is established? (Given vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at 300 K is $\left.3170 \mathrm{PaR}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.
A. $1.27 \times 10^{-3} \mathrm{~mol}$
B. $5.56 \times 10^{-3} \mathrm{~mol}$
C. $1.53 \times 10^{-2} \mathrm{~mol}$
D. $4.46 \times 10^{-2} \mathrm{~mol}$

Answer: A

- Watch Video Solution

72. Equal masses of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is:

> A. $\frac{2}{3}$
> B. $\frac{1}{3} \times \frac{273}{298}$
> C. $\frac{1}{3}$
> D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

73. For the gaseous reaction: $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$
A. Remains constant
B. Decreases
C. Increases
D. Becomes zero

Answer: C

- Watch Video Solution

74. Five grams each of the following gases at $87^{\circ} \mathrm{C}$ and 750 mm pressure are taken. Which of them will have the least volume?
A. HF
B. HCl
C. HBr
D. HI

Answer: D

- Watch Video Solution

75. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is
A. 64.0
B. 32.0
C. 40.0
D. 80.0

Answer: A

D Watch Video Solution

76. There are 6.02×10^{22} molecules each of N_{2}, O_{2} and H_{2} which are mixed together at 760 mm and 273 K . The mass of the mixture in grams is :
A. 6.2
B. 4.12
C. 3.09
D. 7

Answer: A

D Watch Video Solution

77. A gas occupies a volume of $300 \mathrm{~cm}^{3}$ at $27^{\circ} \mathrm{C}$ and 620 mmHg pressure. The volume of gas at $47^{\circ} \mathrm{C}$ and 640 mmHg pressure is
A. 400 c.c.
B. 510 c.c.
C. 310 c.c.
D. 350 c.c.

D Watch Video Solution

78. A, B and C are ideal gases. Their molecular weights are 2,4 and 28 respectively. The rate of diffusion of these gases follow the order
A. $C>A>B$
B. $C>B>A$
C. $A=B=C$
D. $A>B>C$

Answer: D

D Watch Video Solution

79. The dimensions of universal gas constant is
A. $\left[V P T^{-1} n^{-1}\right]$
B. $\left[V P^{-1} T n^{-1}\right]$
C. $\left[V P T n^{-1}\right]$
D. $\left[V P T^{-1} n\right]$

Answer: A

- Watch Video Solution

80. At $0^{\circ} C$ and one atm pressure, a gas occupies 100 cc.

If the pressure is increased to one and a half-time and temprature is increased by one-third of absolute temperature, then final volume of the gas will be:
A. 80 cc
B. 88.9 cc
C. 66.7 cc
D. 100 cc

Answer: B

81. 500 mL of NH_{3} contains 6.02×10^{23} molecules at STP. How many molecules are present in 100 mL of CO_{2} at STP?
A. 6×10^{23}
B. 1.5×10^{23}
C. 1.2×10^{23}
D. None of these

Answer: C

- Watch Video Solution

82. The density of O_{2} is 16 at STP. At what temperature
(in.${ }^{\circ} C$) its density will be 14 ? Consider that the pressure remais constant.
A. $50^{\circ} \mathrm{C}$
B. $39^{\circ} \mathrm{C}$
C. $57^{\circ} \mathrm{C}$
D. $43^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

83. The pressure and temperature of $4 d m^{3}$ of carbon dioxide gas are doubled. Then the volume of carbon dioxide gas would be
A. $2 d m^{3}$
B. $3 d m^{3}$
C. $4 d m^{3}$
D. $8 d m^{3}$

Answer: C

- Watch Video Solution

84. Hydrogen diffuses six times faster than gas A. The molar mass of gas A is
A. 72
B. 6
C. 24
D. 36

Answer: A

- Watch Video Solution

85. In the equation of state of an ideal gas ${ }^{`} \mathrm{PV}=\mathrm{nRT}$, the value of universal gas constant would depend only on :
A. The nature of the gas
B. The pressure of the gas
C. The units of the measurement
D. None of these

Answer: C

- Watch Video Solution

86. The density of a gas is $1.964 g 1 d m^{-3} a t 273 \mathrm{~K}$ and

76 cmHg . The gas is
A. CH_{4}
B. $C_{2} H_{6}$
C. CO_{2}
D. Xe

Answer: C

D Watch Video Solution

87. In order to increase the volume of a gas by 10%, the pressure of the gas should be
A. Decreased by 10%
B. Decreased by 1%
C. Increased by 10%
D. Increased by 1%

Answer: A

D Watch Video Solution

88. 0.5 mol of $\mathrm{H}_{2}, \mathrm{SO}_{2}$, and CH_{4} is kept in a container. A
hole was made in the container. After 3hours, the order of partial pressure in the container will be
A. $p \mathrm{SO}_{2}>p \mathrm{CH}_{4}>\mathrm{pH} \mathrm{H}_{2}$
B. $p H_{2}>p \mathrm{SO}_{2}>p \mathrm{CH}_{4}$
C. $p \mathrm{H}_{2}>\mathrm{pCH} \mathrm{H}_{4}>\mathrm{pSO}_{2}$
D. $\mathrm{pSO}_{2}>p \mathrm{H}_{2}>p \mathrm{CH}_{4}$

Answer: A

D Watch Video Solution

89. In which one of the following, does the given amount of chlorine exert the least pressure in a vessel of capacity $1 \mathrm{~d} m^{3}$ at 273 K ?
A. $0.0355 g$
B. $0.071 g$
C. 6.023×10^{21} molecules
D. 0.02 mole

Answer: A

90. For an ideal gas:

$$
\begin{aligned}
& \text { A. }\left(\frac{\partial E}{\partial V}\right)_{T}>0 \\
& \text { B. }\left(\frac{\partial P}{\partial V}\right)_{T}=0 \\
& \text { C. }\left(\frac{\partial E}{\partial V}\right)_{T}=0 \\
& \text { D. }\left(\frac{\partial(P V)}{\partial V}\right)_{T}>0
\end{aligned}
$$

Answer: C

- Watch Video Solution

91. समीकरण $C_{P}-C_{V}=R$, में R का अर्थ होता है :
A. Work done per mole per Kelvin
B. Heat absorbed per mole per Kelvin
C. Heat released per mole per Kelvin
D. Work done per mole per degree celcius

Answer: A

- Watch Video Solution

92. The following graph illustrates

A. Dalton's law
B. Charle' law
C. Boyle's law
D. Gau-Lussac's law

Answer: B

D Watch Video Solution

93. If a mixture of $C O$ and N_{2} in equal amount have total 1 atm pressure, then partial pressure of N_{2} in the mixture is
A. 1 atm
B. 0.50 atm
C. 2 atm
D. 3 atm

Answer: B

- Watch Video Solution

94. If two molecules of A and B having mass 100 amu and 64 amu respectively and rate of diffusion of A is 12×10^{-3}, then what will be the rate of diffusion of B ?
A. 15×10^{-3}
B. 64×10^{-3}
C. 5×10^{-3}
D. 46×10^{-3}

Answer: A

- Watch Video Solution

95. Rate of diffusion of NH_{3} is twice that of X . What is
the molecular mass of X
A. 68
B. 48
C. 12
D. 8

Answer: A

D Watch Video Solution

96. If two mole of an ideal gas at 546 K occupies a volume of 44.8 litres, the pressure must be :
A. 2 atm
B. 3 atm
C. 4 atm
D. 1 atm

Answer: A
97. What is the density of N_{2} gas at
$227^{\circ} \mathrm{C}$ and 5.00atm pressure?
$\left(R=0.0821 a t m K^{-1} \mathrm{~mol}^{-1}\right)$
A. $1.40 \mathrm{~g} / \mathrm{mL}$
B. $2.81 g / m L$
C. $3.41 \mathrm{~g} / \mathrm{mL}$
D. $0.29 g / m L$

Answer: C

D Watch Video Solution
98. If P, V, and T represent pressure, volume and temperature of the gas, the correct representation of Boyle's law is
A. $V \propto \frac{1}{T}($ at constant P$)$
B. $P V=R T$
C. $V \propto 1 / P($ at constant $T)$
D. $P V=n R T$

Answer: C

- Watch Video Solution

99. Air at sea level is dense. This is a practical application of
A. Boyle's law
B. Charle' law
C. Avagadro's law
D. Dalton's law

Answer: A

- Watch Video Solution

100. Which of the following graphs represents Boyle's

Answer: BC

- Watch Video Solution

101. Which one fo the following statements is false
A. Avagadro number $=6.02 \times 10^{21}$
B. The relationship between average velocity (\bar{v}) and root mean square velocity (u) is $\bar{v}=0.9213 u$
C. The mean kinetic energy of an ideal gas is independent of the pressure of the gas
D. The root mean square velocity of the gas can be calculated by the formula $(3 R T / M)^{1 / 2}$

Answer: A

- Watch Video Solution

102.32 g of oxygen and 3.0 g of hydrogen are mixed and kept in a vessel at 760 mm pressure and $0^{\circ} C$. The total volume occupied by the mixture will be nearly
A. 22.4 litres
B. 33.6 litres
C. 448 litres
D. 44800 ml

D Watch Video Solution

103. A sample of gas occupies 100 mL at $27^{\circ} \mathrm{C}$ and 740 mm pressure. When its volume is changed to 80 mL at 740 mm pressure, the temperature of the gas will be
A. $21.6^{\circ} \mathrm{C}$
B. $240^{\circ} \mathrm{C}$
C. $-33^{\circ} \mathrm{C}$
D. $89.5^{\circ} \mathrm{C}$

Answer: C

104. Atmolysis is a process of
A. Atomising gas molecules
B. The breaking of atoms to sub-atomic particles
C. Separation of gases from their gaseous mixture
D. Changing of liquids to their vapour state

Answer: C

- Watch Video Solution

105. If the absolute temperature of an ideal gas become double and pressure become half, the volume of gas would be
A. Remain unchange
B. Will be double
C. Will be four times
D. Will be half

Answer: B

D Watch Video Solution

106. Initial temperature of an ideal gas is $75^{\circ} \mathrm{C}$. At what temperature, the sample of neon gas would be heated to double its pressure, if the initial volume of gas is reduced by 15% ?
A. $319^{\circ} \mathrm{C}$
B. $592^{\circ} \mathrm{C}$
C. $128^{\circ} \mathrm{C}$
D. $60^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

107. A and B are ideal gases. The molecular weights of A and B are in the ratio of $1: 4$. The pressure of a gas mixture containing equal weights of A and B is P atm.

What is the partial pressure (in atm.) of B in the mixture
A. $\frac{P}{5}$
B. $\frac{P}{2}$
C. $\frac{P}{2.5}$
D. $\frac{3 P}{4}$

Answer: A

- Watch Video Solution

108. Figure shows graphs of pressure vs density for an ideal gas at two temperature T_{1} and T_{2}. Which of the
following is correct ?

A. $T_{1}>T_{2}$
B. $T_{1}<T_{2}$
C. $T_{1}=T_{2}$
D. Cannot be said
109. A pre weighed vessel was filled with oxygen at N.T.P.
and weighted.It was then evacuated, filled with SO_{2} at
the same temperature and pressure, and again weighed. The weight of oxygen will be
A. The same as that of $S O_{20}$
B. $\frac{1}{2}$ that of SO_{2}
C. Twice that of SO_{2}
D. One fourth that of SO_{2}

Answer: B
110. Assertion:Pressure is exerted by gas in a container with increasing temperature of the gas.

Reason: With the rise in temperature, the average speed of gas molecules increases.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

- Watch Video Solution

111. Assertion: Compressibility factor for hydrogen varies
with pressure with positive slope at all pressures.

Reason: Even at low pressures, repulsive forces dominate hydrogen gas.
A. If both assertion and reason are true and the
reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

- Watch Video Solution

112. A : At high pressure, the compressibility factor Z is
$\left(1+\frac{p b}{R T}\right)$.
R : At high pressure van der Wall's equation is modified as $p(V-b)=R T^{\prime}$.
A. If both assertion and reason are true and the
reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

113. STATEMENT-1 : $1 / 4^{\text {th }}$ of the initial mole of the air is
expelled, if air present in an open vessel is heated from
$27^{\circ} C$ to $127^{\circ} C$.
STATEMENT-2 : Rate of diffusion of a gas is inversely proportional to the square root of its molecular mass.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: B

D Watch Video Solution

114. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(g)$ at pressure $0.4 a t m$ and an excess of SrO (neglect the
volume of solid SrO). The volume of the container, when pressure of CO_{2} attains its maximum value, will be:
(Given that:
$\left.\mathrm{SrCO}_{3}(s) \Leftrightarrow \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \mathrm{K}_{p}=1.6 \mathrm{~atm}\right)$
A. 10 litre
B. 4 litres
C. 2 litre
D. 5 litre

Answer: D

Ordinary Thinking Objective Questions Kinetic Theory Of

 Gases And Molecular Collisions1. The density of a gas A is three times that of a gas B. It the molecular mass of A is M, the molecular mass of B is
A. 3 M
B. $\sqrt{3} M$
C. $M / 3$
D. $M / \sqrt{3}$

Answer: C
2. Ratio of C_{p} and C_{v} of a gas ' X 'is1.4. The number of atoms of the gas ' X ' presents in 11.2litres of it a $N T P$ is
A. 6.02×10^{23}
B. 1.2×10^{24}
C. 3.01×10^{23}
D. 2.01×10^{23}

Answer: A

- Watch Video Solution

3. The density of neon will be highest at
A. S.T.P.
B. $0^{\circ} C, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1 \mathrm{~atm}$
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$

Answer: B

D Watch Video Solution

4. Absolute zero is defined as the temperture
A. At which all molecular motion ceases
B. At which liquid helium boils
C. At which ether boils
D. All of the above

Answer: A

D Watch Video Solution

5. Internal energy and pressure of a gas per unit vloume are related as :
A. $P=\frac{2}{3} E$
B. $P=\frac{3}{2} E$
C. $P=\frac{1}{2} E$
D. $P=2 E$

Answer: A

- Watch Video Solution

6. At STP, 0.50 mole H_{2} gas and 1.0 mole He gas
A. Have equal average kinetic energies
B. Have equal molecular speeds
C. Occupy equal volumes
D. Have equal effusion rates

Answer: A

7. Equal volume of two gases which do not react together are enclosed in separate vessels. Their pressures are 10 mm and 400 mm respectively. If the two vessels are joined together, then what will be the pressure of the resulting mixture (temperature remaining constant)?
A. 125 mm
B. 500 mm
C. 1000 mm
D. 250 mm

Answer: D
8. If a gas expands at constant temperature, it indicates that
A. Kinetic energy of molecules remains the same
B. Number of the molecules of gas increases
C. Kinetic energy of molecules decreases
D. Pressure of the gas increase

Answer: A

9. Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molar mass of A is $49 u$. Molar mass of B will be
A. 25.00 u
B. 50.00 u
C. $12.25 u$
D. 6.50 u

Answer: C

10. Which of the following expressions correctly represents the relationship between the average molar kinetic energies $(K E)$ of $C O$ and N_{2} molecules at the same temperature?
A. $\overline{K E}_{C O}=\overline{K E}_{N_{2}}$
B. $\overline{K E}_{C O}>\overline{K E}_{N_{2}}$
c. $\overline{K E}_{C O}<\overline{K E}_{N_{2}}$
D. Cannot be predicted unless the volumes of the gases are given

Answer: A
11. The density of air is $0.00130 \mathrm{~g} / \mathrm{ml}$. The vapour density of air will be
A. 0.00065
B. 0.65
C. 14.4816
D. 14.56

Answer: D

- Watch Video Solution

12. An ideal gas will have maximum density when
A. $P=0.5 a t m, T=600 \mathrm{~K}$
B. $P=2$ at, $T=150 K$
C. $P=1 \mathrm{~atm}, T=300 K$
D. $P=1.0 \mathrm{~atm}, T=500 \mathrm{~K}$

Answer: B

- Watch Video Solution

13. The ratio $\gamma\left(\frac{C_{P}}{C_{V}}\right)$ for iner gases is
A. 1.33
B. 1.66
C. 2.13
D. 1.99

Answer: B

(D) Watch Video Solution

14. Vibrational energy is
A. Partially potential and partially kinetic
B. Only potenital
C. Only kinetic
D. None of the above

Answer: A
15. Three different gases X, Y and Z of molecular masses

2, 16 and 64 were enclosed in a vessel at constant
temperature till equilbrium is reaches. Which of the following statement is correct?
A. Gas Z will be at the top of the vessel
B. Gas Y will be at the top of the vessel
C. Gas Z will be at the bottom and X will be at the top
D. Gases will form homogenous mixture

- Watch Video Solution

16. Which of the following represents total kinetic energy of one mole of gas?
A. $1 / 2 R T$
B. $3 / 2 R T$
C. $\left(C_{P}-C_{V}\right) R T$
D. $2 / 3 R T$

Answer: B
(D) Watch Video Solution
17. The average K.E. of an ideal gas is calories per mole is approximately equal to
A. Three times the absolute temperature
B. Absolute temperature
C. Two times the absolute temperature
D. 1.5 times the absolute temperature

Answer: A

D Watch Video Solution

18. The average kinetic energy of one molecule of an ideal gas at $27^{\circ} \mathrm{C}$ and 1 atm pressure is [Avogadro
number $N_{A}=6.023 \times 10^{23} \mathrm{]}$
A. $900 \mathrm{calK}^{-1}$ molecule ^ (-1)
B. $6.21 \times 10^{-21} \mathrm{JK}^{-1}$ molecule ^ (-1)
C. 336.7JK ${ }^{-1}$ molecule ^(-1)
D. $3741.3 j k^{-1}$ molecule $^{-1}$

Answer: B

- Watch Video Solution

19. According to kinetic theory of gases, for a diatomic molecule
A. The pressure exerted by the gas is proportional to the mean velocity of the molecules
B. The pressure exerted by the gas is proportional to the root mean square velocity of the molecules
C. The root mean square velocity is inversely proportional to the temperature
D. The mean translational kinetic energy of the molecules is proportional to the absolute temperature.

Answer: D

20. At the same temperature and pressure, which of the following will have highest $K E$ per mole
A. Hydrogen
B. Oxygen
C. Methane
D. All the same

Answer: D

D Watch Video Solution

21. What is kinetic energy of 1 gm of O_{2} at $47^{\circ} \mathrm{C}$?
A. $1.24 \times 10^{2} J$
B. $2.24 \times 10^{2} J$
C. $1.24 \times 10^{3} J$
D. $3.24 \times 10^{2} J$

Answer: A

D Watch Video Solution

22. Different gases at the same temperature must have
A. Same volume
B. Same pressure
C. Same average KE
D. Same vander Wall's constant

Answer: C

D Watch Video Solution

23. Internal energy of an ideal gas depends upon
A. Pressure
B. Force
C. Temperature
D. Molar mass

Answer: C
24. Indicate the correct statement for equal volumes of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 1 atm .
A. The average translational KE per molecule is the
same in N_{2} and CO_{2}
B. The rms speed remains constant for both N_{2} and CO_{2}
C. The density of N_{2} is less than that of CO_{2}
D. The total translational KE of both N_{2} and CO_{2} is the same

D Watch Video Solution

25. If the inversion temperature of a gas is $-80^{\circ} \mathrm{C}$, then
it will produce cooling under Joule-Thomson effect at
A. 298 K
B. 273 K
C. 193K
D. 173 K

Answer: D

- Watch Video Solution

26. 2 mol He is mixed with 2 gm of H_{2}. The molar heat capacity at constant pressure for the mixture is
A. $\frac{17}{6} R$
B. $\frac{11}{6} r$
C. $4 R$
D. $\frac{3 R}{2}$

Answer: A

D Watch Video Solution

27. Assertion: Gases do not settle at the bottom of container.

Reason: Gases have high kinetic energy.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: A

D Watch Video Solution

28. Assertion: A mixture of He and O_{2} is used for respiration for deep sea divers.

Reason: $H e$ is soluble in blood.
A. If both assertion and reason are true and the reason is correct explanation of the assertion.
B. If both assertion and reason are true but reason
is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false

Answer: C

Ordinary Thinking Objective Questions Molecular Speeds

1. Root mean square velocity of a gas molecule is proprotional to
A. $m^{1 / 2}$
B. m^{0}
C. $m^{-1 / 2}$
D. m

Answer: C

2. The ratio among most probable velocity, mean velocity and root mean velocity is given by
A. 1:2:3
B. $1 \sqrt{2}: \sqrt{3}$
C. $\sqrt{2}: \sqrt{3}: \sqrt{8 / \pi}$
D. $\sqrt{2}: \sqrt{8 / \pi}: \sqrt{3}$

Answer: D

- Watch Video Solution

3. The temperature of the gas is raised from $27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$, the root mean square velocity is
A. $\sqrt{927 / 27}$ times the earlier value
B. Same as before
C. Halved
D. Doubled

Answer: D

- Watch Video Solution

4. The average kinetic energy of an ideal gas per molecule in SI units at $25^{\circ} C$ will be
A. $6.17 \times 10^{-21} K j$
B. $6.17 \times 10^{-21} J$
C. $6.17 \times 10^{-20} J$
D. $6.17 \times 10^{-20} J$

Answer: B

D Watch Video Solution

5. At what temperature is the average velocity of O_{2}
molecule equal to the root mean square velocity at
$27^{\circ} C ?$
A. $80.57^{\circ} \mathrm{C}$
B. $80^{\circ} \mathrm{C}$
C. $83^{\circ} \mathrm{C}$
D. $86.5^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

6. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled?
A. 1.4
B. 2.0
C. 2.8
D. 4.0

Answer: A

- Watch Video Solution

7. The root mean square velocity of an ideal gas in a closed container of fixed volume is increased from $5 \times 10^{4} \mathrm{cms}^{-1}$ to $10 \times 10^{4} \mathrm{cms}^{-1}$. Which of the following statements correctly explains how the change is accomplished?
A. By heating the gas, the temperature is doubled
B. By heating the gas, the pressure is quadrupled (i.e., made four times)
C. By heating the gas, the temperature is quadrupled
D. By heating the gas, the pressure is doubled.

Answer: C

- Watch Video Solution

8. Root mean square velocity of a particle is v at pressure P. If pressure is increased two times, then the r.m.s. velocity becomes
A. 1200 K
B. 900 K
C. 600 K
D. 150 K

Answer: A

- Watch Video Solution

9. If the $v_{r m s}$ is $30 R^{1 / 2}$ at $27^{\circ} C$ then calculate the molar mass of gas in kilogram.
A. 1
B. 2
C. 4
D. 0.001

D Watch Video Solution

10. The rms speed at NTP of a gas can be calculated from the expression:
A. $\sqrt{\frac{3 P}{d}}$
B. $\sqrt{\frac{3 P V}{M}}$
c. $\sqrt{\frac{3 R T}{M}}$
D. All the above

Answer: D
11. At $27^{\circ} \mathrm{C}$, the ratio of rms speed of ozone to that of oxygen is :
A. $\sqrt{3 / 5}$
B. $\sqrt{4 / 3}$
C. $\sqrt{2 / 3}$
D. 0.25

Answer: C

D Watch Video Solution

12. Which one of the following statement is not true about the effect of an increase in temperature on the distribution of molecular speed of gas?.
A. The most probable speed increases
B. The fraction of the molecules with the most probable speed increases
C. The distribution becomes broader
D. The area under the distribution curve remaiins the same as under the lower temperature

Answer: B

13. In two vessels of 1 litre each at athe same temperature 1 g of H_{2} and 1 g of CH_{4} are taken. For these gases:
A. $V_{r m s}$ values will be same
B. Kinetic energy per mol will be same
C. Total kinetic energy will same
D. Pressure will be same

Answer: B
14. At what temperature will the $r m s$ velocity of SO_{2} be the same as that of $O_{2} a t 303 \mathrm{~K}$?
A. 273 K
B. 606 K
C. 303 K
D. 403 K

Answer: B

D Watch Video Solution

15. The rms velocity molecules of a gas of density $4 \mathrm{kgm}^{-3}$ and pressure $1.2 \times 10^{5} \mathrm{Nm}^{-2}$ is
A. $900 m s^{-1}$
B. $120 \mathrm{~ms}^{-1}$
C. $600 \mathrm{~ms}^{-1}$
D. $1300 m s^{-1}$

Answer: D

(D) Watch Video Solution

16. For one mole of an ideal gas, increasing the temperature from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
A. Increases the average kinetic energy by two times
B. Increases the rms velocity by $\sqrt{2}$ times
C. Increase the rms velocity by two times
D. Increase both the average kinetic energy and rms
velocity, but not significantly.

Answer: D

- Watch Video Solution

17. The ratio of most probable velocity to that of average velocity is
A. $\pi / 2$
B. $2 / \pi$
C. $\sqrt{\pi} / 2$
D. $2 / \sqrt{\pi}$

Answer: C

D Watch Video Solution

18. The ratio of most probable velocity to that of average velocity is
A. 1.128
B. 1.224
C. 1.0
D. 1.112

Answer: A

- Watch Video Solution

19. At what temperature, the r.m.s. velocity of a gas measured at $50^{\circ} \mathrm{C}$ will become double ?
A. 626 K
B. 1019 K
C. $200^{\circ} \mathrm{C}$
D. $1019^{\circ} \mathrm{C}$

Answer: D
20. The root mean square velocity of hydrogen molecules at 300 K is $1930 \mathrm{~ms}^{-1}$. The rms velocity of oxygen molecules at 1200 K will be
A. $7.6 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
B. $3.8 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
C. $0.95 \times 10^{3} \mathrm{~m} / \mathrm{sec}$
D. $0.475 \times 10^{30 \mathrm{~m} / \mathrm{sec}}$

Answer: C

- Watch Video Solution

21. In the temperature changes from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$, the relative percentage change in RMS velocity is
A. 1.56
B. 2.56
C. 15.6
D. 82.4

Answer: C

D Watch Video Solution

22. Which of the following has maximum root mean square velocity at the same temperature?
A. $S O_{2}$
B. CO_{2}
C. O_{2}
D. H_{2}

Answer: D

D Watch Video Solution

23. A temperature at which $r m s$ speed of SO_{2} molecule is half of that of helium molecules at $300 K$
A. 150 K
B. 600 K
C. 900 K
D. 1200 K

Answer: D

- Watch Video Solution

24. The $r m s$ speed of N_{2} molecules in a gas in u. If the temperature is doubled and the nitrogen molecules dissociate into nitrogen atom, the $r m s$ speed becomes
A. $u / 2$
B. $2 u$
C. 4 u
D. 14 u

Answer: B

(D) Watch Video Solution

Ordinary Thinking Objective Questions Real Gases And Vander Waals Equation

1. When is deviation more in the behaviour of a gas
from the ideal gas equation $P V=n R T$?
A. At high temperature and low pressure
B. At low temperature and high pressure
C. At high temperature and high pressure
D. At low temperature and low pressure

Answer: B

D Watch Video Solution

2. van der Waal's equation reduces itself to the ideal gas
equation at
A. High pressure and low temperature
B. Low pressure and low temperature
C. Low pressure and high temperature
D. High pressure and high temperature

Answer: C

D Watch Video Solution

3. For real gases, van der Waals' equation is written as
$\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$
where a and b are van der Waals' constants.
Two sets of gases are:
(I) $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}$ and $\mathrm{He}(\mathrm{II}) \mathrm{CH}_{4}, \mathrm{O}_{2}$ and O_{2} and H_{2}

The gases given in set I in increasing order of b and gases given in set $I I$ in decreasing order of a are arranged below. Select the correct order from the following:
A.

$$
\text { (I) } \mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{O}_{2} \quad(\mathrm{II}) \mathrm{CH}_{4}>\mathrm{H}_{2}>\mathrm{O}_{2}
$$

B.

$$
(I) O_{2}<H e<H_{2}<\mathrm{CO}_{2} \quad \text { (II) } \mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{CH}_{4}
$$

C.

$$
\text { (I) } H_{2}<H e<O_{2}<\mathrm{CO}_{2} \quad(I I) C H_{54}>O_{2}>H_{2}
$$

D.

$$
(\mathrm{I}) \mathrm{H}_{2}<\mathrm{O}_{2}<\mathrm{He}<\mathrm{CO}_{2} \quad(\mathrm{II}) \mathrm{O}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}
$$

Answer: C
4. Maximum deviation from ideal gas is expected from
A. $\mathrm{NH}_{3}(\mathrm{~g})$
B. $H_{2}(g)$
C. $N_{2}(g)$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

Answer: A

- Watch Video Solution

5. If helium is allowed to expand in vacuum, it liberates heat because
A. Helium Is an ideal gas
B. Helium is an inert gas
C. The inversino temperature of helium is very low
D. The boiling point of helium is the lowest among the elements

Answer: C

D Watch Video Solution

6. Under what conditions to gases show maximum deviations from ideal gas behaviour ?
A. $0^{\circ} \mathrm{C}$ and 1 atmospheric pressure
B. $100^{\circ} \mathrm{C}$ and 2 atmospheric pressure
C. $-100^{\circ} \mathrm{C}$ and 5 atmospheric pressure
D. $500^{\circ} \mathrm{C}$ and 1 atmospheric pressure

Answer: C

- Watch Video Solution

7. A gas deviated from ideal behaviour at a high pressure because its molecules
A. Have kinetic energy
B. Are bound by covalent bond
C. Attract one another
D. Show the Tyndall effect

Answer: C

D Watch Video Solution

8. The temperature at which the second virial coefficient of a real gas is zero is called.
A. Critical temperature
B. Entetic point
C. Boiling point
D. Boyle's temperature

D Watch Video Solution

9. In which of the following molecules the van der Waals
forces are likely to be the most important in determining the mpt. and b.pt.?
A. $H_{20 S}$
B. $B r_{2}$
C. HCl
D. $C O$

Answer: B

D Watch Video Solution

10. The units of constants a in van der Waal's equation is
A. $d m^{6}$ atm mol^{-2}
B. $d m^{3} \mathrm{~atm} \mathrm{~mol}^{-1}$
C. $\mathrm{dm} \mathrm{atm} \mathrm{mol}^{-1}$
D. $\operatorname{atm} \mathrm{mol}^{-1}$

Answer: A

- Watch Video Solution

11. In van der Waals' equation of state of the gas law the constnat ' b ' is a measure of .
A. Volume occupied by the molecues
B. Intermolecular attraction
C. Intermolecular repulsions
D. Intermolecular collisions per unit volume

Answer: A

- Watch Video Solution

12. The compressibility factor for a real gas at high pressure is .
A. $1+R T / p b$
B. 1
C. $1+p b / R T$
D. $1-p b / R T$

Answer: C

- Watch Video Solution

13. The vander waal's constant "a" for gases P, Q, R and S
are $4.17,359.6 .71 \& 3.8 \mathrm{~atm} L^{2} \mathrm{~mol}^{-2}$. Therefore, the ascending order of their ease of liquefaction is :-
A. $R<P<S<Q$
B. $Q<S<R<P$
C. $Q<S<P<R$
D. $R<P<Q<S$

Answer: C

(D) Watch Video Solution

14. Pressure exerted by 1 mole of methane, in a 0.25 litre
container at 300 K using van der Waals' equation (given
$\left.a=2.253 \mathrm{atmL}^{2} \mathrm{~mol}^{-2}, b=0.0428 \mathrm{Lmol}^{-}\right)$is
A. 82.82 atm
B. 152.1 atm
C. 190.52 atm
D. 70.52 atm

Answer: A

D Watch Video Solution

15. What is the pressure of 2 mole of NH_{3} at $27^{\circ} \mathrm{C}$ when its volume is 5 lit. in Van der Waal's equation ?

$$
(a=4.17, b=0.03711)
$$

A. 10.33 atm
B. 9.33 atm
C. 9.74 atm
D. 9.2 atm

Answer: B

D Watch Video Solution

16. At low pressure, the van der Waals equation is reduced to
A. $Z=\frac{p V_{m}}{R T}=1-\frac{a p}{R T}$
B. $Z=\frac{p V_{m}}{R T}=1+\frac{b}{R T} p$
C. $p V_{m}=R T$
D. $Z=\frac{p V_{m}}{R T}=1-\frac{a}{R T}$

Answer: A

- Watch Video Solution

17. At high temperature and low pressure the van der Waals equation is reduced to .

$$
\text { A. }\left(p+\frac{a}{V_{m}^{2}}\right)\left(V_{m}\right)=R T
$$

B. $p V_{m}=R T$
C. $p\left(V_{m}-b\right)=R T$
D. $\left(p+\frac{a}{V_{m}^{2}}\right)\left(V_{m}-b\right)=R T$

Answer: B
18. Given van der Waals constant for
$\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively
$4.17,0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
A. NH_{3}
B. H_{2}
C. O_{2}
D. CO_{2}

Answer: A
19. The correction factor 'a' to the ideal gas equation corresponds to
A. Density of the gas molecules
B. Volume of the gas molecules
C. Electric field present between the gas molecules
D. Forces of attraction between the gas molecules

Answer: D

- Watch Video Solution

Ordinary Thinking Objective Questions Critical State And Liquefaction Of Gases

1. An ideal gas cannot be liquified because
A. Its critical temperature is always above $0^{\circ} \mathrm{C}$
B. Its molecules are relatively smaller in size
C. It solidifies before becoming a liquid
D. Forces operative between its molecules are negligibel

Answer: D

- Watch Video Solution

2. An ideal gas obeying the kinetic theory of gases can be liquefied if
A. Its temperature is more than critical temperature

$$
T_{c}
$$

B. Its pressure is more than critical pressure P_{c}
C. Its pressure is more than P_{c} at a tempeature less than T_{c}
D. It cannot be liquefied at any value of P and T

Answer: D

D Watch Video Solution

3. Adiabatic demagnetisation is atechnique used for
A. Adiabatic expansion of a gas
B. Production of low temperature
C. Production of high temperature
D. None

Answer: B

(D) Watch Video Solution

4. A gas is liquefied
A. Above critical temperature and below cricical pressure
B. Below critical temperature and above critical

pressure

C. Below critical temperature and pressure
D. Above critical temperature and pressure

Answer: C

- View Text Solution

5. $4.48 L$ of an ideal gas at $S T P$ requires 12 cal to raise its temperature by $15^{\circ} \mathrm{C}$ at constant volume. The C_{P} of
the gas is
A. 3 cal
B. 4 cal
C. 7 cal
D. 6 cal

Answer: D

- Watch Video Solution

6. The gas with the highest critical temperature is
A. H_{2}
B. He
C. N_{2}
D. CO_{2}

Answer: d

D Watch Video Solution

7. Weight of 112 ml of oxygen at $N T P$ on liquefaction would be
A. $0.32 g$
B. $0.64 g$
C. $0.16 g$
D. 0.96 g

Answer: C

- Watch Video Solution

8. Critical temperature of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$ and O_{2} are $647 \mathrm{~K}, 405.6 \mathrm{~K}, 304.10 \mathrm{~K}$ and 1542 K respectively. If the cooling starts from 500 K to their critical temperature, the gas that lilquiefies first is
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. CO_{2}
D. O_{2}

D Watch Video Solution

9. The critical temperatures of $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2}$ and CO_{2} are $154.3 K, 126 K, 33.2 K$, and $304 K$ respectively. The extent of adsorption on tungsten is highest in case of
A. H_{2}
B. N_{2}
C. O_{2}
D. CO_{2}

Answer: D
10. a ' and 'b' are van der Waals' constants for gases Chlorine is more easily liquefied than ethane because .
A. a and b for $\mathrm{Cl}_{2}>\mathrm{a}$ and b for $\mathrm{C}_{2} \mathrm{H}_{6}$
B. a and b for Cl_{2} a and b for $\mathrm{C}_{2} \mathrm{H}_{6}$
C. a and $\mathrm{Cl}_{2}<$ a for $C_{2} H_{6}$ but b for $C l_{2}>b$ for $\mathrm{C}_{2} \mathrm{H}_{6}$
D. a for $C l_{2}>a$ for $C_{2} H_{6}$ but b for $C l_{2}<b$ for $\mathrm{C}_{2} \mathrm{H}_{6}$
11. Which of the following is correct for critical temperature
A. It is the highest temperature at which liquid and
vapour can coexist
B. Beyond the critical temperature, there is no
distinction between the two phases and a gas
cannot be liquefied by compression
C. At critical temperature $\left(T_{c}\right)$ the surface tension of the system is zero
D. At critical temperature the gas and the liquid phases have different critical densities.

Answer: A::B::C

- View Text Solution

12. The van der Waals parameters for gases $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are

Gas $a\left(\operatorname{atm} L^{2} \mathrm{~mol}^{-2}\right) \quad b\left(L \mathrm{~mol}^{-1}\right)$

W	4.0	0.027
X	8.0	0.030
Y	6.0	0.032
Z	12.0	0.027

Which one of these gases has the highest critical temperature?
A. W
B. X
C. Y
D. Z

Answer: D

D Watch Video Solution

13. A gas has a density of $2.68 \mathrm{~g} L^{-1}$ at 1 atm and 273 K .

Identify it:
A. NO_{2}
B. $K r$
C. $C O S$
D. $S O_{2} \backslash$

Answer: C

- Watch Video Solution

Critical Thinking Objective Questions

1. At what temperature will the average speed of CH_{4} molecules have the same value as O_{2} has at 300 K
A. 1200 K
B. 150 K

C. 600 K

D. 300 K

Answer: B

- View Text Solution

2. If molecular mass of O_{2} and SO_{2} are 32 and 64 respectively. If one litre of O_{2} at $15^{\circ} \mathrm{C}$ and 759 mm pressure contains N molecules, the number of molecuels in two litre of SO_{2} under the same conditions of temperature and pressure will be:
A. $N / 2$
B. Number of the molecules of gas increases
C. 2 N
D. 4 N

Answer: C

- Watch Video Solution

3. A sample of O_{2} gas is collected over water at $23^{\circ} C$ at
a barometric pressure of 751 mm Hg (vapour pressure of water at $23^{\circ} \mathrm{C}$ is 21 mm Hg). The partical pressure of
O_{2} gas in the sample collected is
A. 21 mm Hg
B. 751 mm Hg
C. 0.96 atm
D. 1.02 atm

Answer: C

- Watch Video Solution

4. 50 mL of hydrogen diffuse through a small hole from
a vessel in 20 mintues time. Time taken for 40 ml of oxygen to diffuse out under similar conditions will be :
A. 12 min
B. 64 min
C. 8 min
D. 32 min

Answer: B

D Watch Video Solution

5. If pressure becomes double at the same absolute temperature on $2 \mathrm{LCO}_{2}$, then the volume of CO_{2} becomes
A. 2 L
B. 4 L
C. 25 L
D. 1 L

Answer: D

D Watch Video Solution

6. Pressure of a mixture of 4 g of O_{2} and $2 g \mathrm{H}_{2}$ confined in a bulb of 1 litre at $0^{\circ} C$ is
A. 25.215 atm
B. 31.205 atm
C. 45.215 atm
D. 15.210 atm

Answer: A

- Watch Video Solution

7. The ratio of rates of diffusion of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and CH_{4} is
A. $1: \sqrt{2}: 2$
B. 1:2:4
C. $2: \sqrt{2}: 1$
D. $1: 2: \sqrt{2}$

Answer: A

8. Some moles of O_{2} diffuse through a small opening in

18 second. Same number of moles of an unnown gas
diffuse through the same opening in 45 second.
Molecular mass of the unknown gas is
A. $\frac{45^{2}}{18^{2}} \times 32$
B. $\frac{18^{2}}{45^{2}} \times 32$
C. $\frac{18^{2}}{45^{2} \times 32}$
D. $\frac{45^{2}}{18^{2} \times 32}$

Answer: A

- Watch Video Solution

9. What is the relationship between the average velocity (v), root mean square velocity (u) and most probable velocity
A. $\alpha: v: u:: 1: 1.128: 1.224$
B. $\alpha: v: u:: 1.128: 1: 1.224$
C. $\alpha: v: u:: 1.128: 1.224: 1$
D. $\alpha: v: u:: 1.124: 1.228: 1$

Answer: A

- Watch Video Solution

10. A bubble of gas released at the bottom of a lake increases to four times its original volume when it reaches the surface. Assuming that atmospheric pressure is equivalent to the pressure exerted by a column of water 10 m high, what is the depth of the lake?
A. 80 m
B. 90 m
C. 40 m
D. 70 m

Answer: D

11. 300 ml of a gas at $27^{\circ} \mathrm{C}$ is cooled to $-3^{\circ} \mathrm{C}$ at constant pressure, the final volume is
A. 540 ml
B. 135 ml
C. 270 ml
D. 350 ml

Answer: C

- Watch Video Solution

12. As the temperature is raised from $20^{\circ} C$ to $40^{\circ} C$ the averge kinetic energy of neon atoms changes by a factor .
A. $313 / 293$
B. $\sqrt{(313 / 293)}$
C. $1 / 2$
D. 2

Answer: A

- Watch Video Solution

13. In an experiment during the analysis of a carbon compound, 145 L of H_{2} was collected at 760 mm of Hg pressure and $27^{\circ} \mathrm{C}$ temperature. The mass of H_{2} is near.
A. 10 g
B. 12 g
C. 24 g
D. 6 g

Answer: B

D Watch Video Solution
14. For an ideal system at thermal equilibrium, the velocity distribution of the constituting particles will be governed by
A. Gaussian distribution
B. Maxwell-Boltzmann distribution
C. Lorentzian distribution
D. Log-normal distribution

Answer: B

D Watch Video Solution

15. A gas is found to have a formula $[C O]_{x}$. If its vapour density is 70 , then value of x is
A. 2.5
B. 3.0
C. 5.0
D. 6.0

Answer: C

- Watch Video Solution

16. At what temperature in the Celsius scale, V (volume)
keeping the pressure constant ?
A. $54^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $427^{\circ} \mathrm{C}$
D. $527^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

17. From the given graph at constant temperature, which gas has the least solubility

A. Gas -D
B. Gas-B
C. Gas-A
D. Gas -C

Answer: C

- Watch Video Solution

18. Consider the following statements for diatomic gases, the ratio C_{p} / C_{v} is equal to
(1) 1.40 (lower temperature)
(2) 1.66 (moderate temperatre)
(3) 1.29 (higher temperature)
which of the above statements are correct
A. 1,2 and 3
B. 1 and 2
C. 2 and 3
D. 1 and 3

Answer: D
19. Volume of the air that will be expelled from a vessel of $300 \mathrm{~cm}^{3}$ when it is heated from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$ at the same pressure will be
A. $310 \mathrm{~cm}^{3}$
B. $290 \mathrm{~cm}^{3}$
C. $10 \mathrm{~cm}^{3}$
D. $37 \mathrm{~cm}^{3}$

Answer: C

D Watch Video Solution

1. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3} \times \frac{273}{298}$

Answer: A

- Watch Video Solution

2. The ratio of root mean square velocity of average velocity of a gas molecule at a particular temperture is
A. 1.086: 1
B. 1:1.086
C. 2:1.086
D. 1.086: 2

Answer: A

- Watch Video Solution

3. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

Answer: B

D Watch Video Solution

4. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. Two times that of a hydrogen molecule
B. Same as that of a hydrogen molecule
C. Four times that of a hydrogen molecule
D. Half that of a hydrogen molecule

Answer: B

- Watch Video Solution

5. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules
A. Are above the inversion temperature
B. Exert no attractive force on each other
C. Do work equal to loss in kinetic energy
D. Collide without loss of energy

Answer: B

- Watch Video Solution

6. The rate of diffusion of a gas is
A. Directly proportional to its density
B. Directly proportional to its molecular weight
C. Directly proportional to the square root of its molecular weight
D. Inversely proportional to the square root of its molecular weight

- Watch Video Solution

7. The average veloctiy of an ideal gas molecule at $27^{\circ} \mathrm{C}$ is $0.3 \mathrm{~ms}^{-1}$. The average velocity at $927^{\circ} \mathrm{C}$ will be
A. $0.6 \mathrm{~m} / \mathrm{sec}$
B. $0.3 \mathrm{~m} / \mathrm{sec}$
C. $0.9 \mathrm{~m} / \mathrm{sec}$
D. $3.0 \mathrm{~m} / \mathrm{sec}$

Answer: A
8. A bottle of dry ammonia and a bottle of dry hydrogen chloride connected through a long tube are opened simultaneously at both ends. The white ammonium chloride ring first formed will be
A. At the centre of the tube
B. Near the hydrogen chloride bottle
C. Near the ammonia bottle
D. Throughout the length of the tube

Answer: B

9. The Vander Waal's constant 'a' for the gases
$\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$ and CH_{4} are 1.3, 1.390, 4.170 and $2.253 L^{2}$
atm mol^{-2} respectively. The gas which can be most easily liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C

10. Same mass of CH_{4} and H_{2} is taken in container. The partial pressure caused by H_{2} is
A. $8 / 9$
B. $1 / 9$
C. $1 / 2$
D. 1

Answer: A

- Watch Video Solution

11. The density of neon will be highest at
A. S.T.P.
B. $0^{\circ} C, 2 \mathrm{~atm}$
C. $273^{\circ} \mathrm{C}, 1$ atm
D. $273^{\circ} \mathrm{C}, 2 \mathrm{~atm}$

Answer: B

- Watch Video Solution

12. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is
A. 64.0
B. 32.0
C. 4.0
D. 8.0

Answer: A

- Watch Video Solution

13. According to kinetic theory of gases, for a datomic molecule.
A. The pressure exerted by the gas is proportional to mean velocity of the molecule
B. The pressure exerted by the gas is proportional to the root mean velocity of the molecule
C. The root mean square velocity of the molecule is inversely proportional to the temperature
D. The mean translational kinetic energy of the molecule is proportioanl to the absolute temperature

Answer: D

D Watch Video Solution

14. At constant volume, for a fixed number of moles of a gas, the pressure of the gas increases with the rise in temperature due to
A. Increase in average molecular speed
B. Increased rate of collisions amongst molecules
C. Increase in molecular attraction
D. Decrease in mean free path

Answer: A

- Watch Video Solution

15. Van der Waal's equation of state is obeyed by real gases. For n moles of a real gas the expression will be
A. $\left(\frac{P}{n}+\frac{n a}{V^{2}}\right)\left(\frac{V}{n-b}\right)=R T$
B. $\left(P+\frac{a}{V^{2}}\right)(V-b)=n R T$
C. $\left(P+\frac{n a}{V^{2}}\right)(n V-b)=n R T$
D. $\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T$

Answer: D

(D) Watch Video Solution

16. A constant volume and temperature conditions, the rate of diffusion D_{A} and D_{B} of gases A and B having
densities ρ_{A} and ρ_{B} are related by the expression

$$
\begin{aligned}
& \text { A. } D_{A}=\left[D_{B} \cdot \frac{\rho_{A}}{\rho_{B}}\right]^{1 / 2} \\
& \text { B. } D_{A}=\left[D_{B} \cdot \frac{\rho_{A}}{\rho_{B}}\right]^{1 / 2} \\
& \text { C. } D_{A}=D_{B}\left(\frac{\rho_{A}}{\rho_{B}}\right)^{1 / 2} \\
& \text { D. } D_{A}=D_{B}\left(\frac{\rho_{B}}{\rho_{A}}\right)^{1 / 2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

17. If $C_{1}, C_{2}, C_{3} \ldots$ represent the speeds on $n_{1}, n_{2}, n_{3} \ldots$ molecules, then the root mean square speed is
A. $\left(\frac{n_{1} C_{1}^{2}+n_{2} C_{2}^{2}+n_{3} C_{3}^{2}+\ldots \ldots \ldots .}{n_{1}+n_{2}+n_{3}+\ldots \ldots .}\right)^{1 / 2}$
B. $\frac{\left(n_{1} C_{1}^{2}+n_{2} C_{2}^{2}+n_{3} C_{3}^{2}+\ldots \ldots \ldots .\right)^{1 / 2}}{n_{1}+n_{2}+n_{3}+\ldots . .}$ $n_{1}+n_{2}+n_{3}+\ldots \ldots$.
C. $\frac{\left(n_{1} C_{1}^{2}\right)^{1 / 2}}{n_{1}}+\frac{\left(n_{2} C_{2}^{2}\right)^{1 / 2}}{n_{2}}+\frac{\left(n_{3} C_{3}^{2}\right)^{1 / 2}}{n_{3}}+\ldots \ldots$
D. $\left[\frac{\left(n_{1} C_{1}+n_{2} C_{2}+n_{3} C_{3}+\ldots\right)^{2}}{\left(n_{1}+n_{2}+n_{3}+\ldots\right)}\right]^{1 / 2}$

Answer: A

D Watch Video Solution

18. Longest mean free path stands for
A. H_{2}
B. N_{2}
C. O_{2}
D. $C l_{2}$

Answer: A

D Watch Video Solution

19. दी गयी गैसों के लिए वान्डर वाल्स गैस स्थिरांक a का सही क्रम होगा
(I) $C_{6} H_{5}(g)$
A 0.217
(II) $\quad C_{6} H_{5} \cdot \mathrm{CH}_{3}(\mathrm{~g}) \quad$ B 5.464
(III) $\mathrm{Ne}(\mathrm{g})$
C 18.000
(IV) $\mathrm{H}_{2} \mathrm{O}(g)$
C 24.060
A. $I-A, I I-D, I I I-C, I V-B$
B. $I-D, I I-A, I I I-B, I V-C$
C. $I-C, I I-D, I I I-A, I V-B$
D. $I-B, I I-C, I I I-A, I V-D$

Answer: C

D Watch Video Solution

20. The ratio between the root mean square speed of
H_{2} at 50 K and that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $1 / 4$

Answer: C

- Watch Video Solution

21. One mole of $N_{2} O(g)$ at 300 K is kept in a closed container under one atmosphere. It is heated to 600 K when 20% by mass of $N_{2} O_{4}(g)$ decomposes of $\mathrm{NO}_{2}(\mathrm{~g})$. The resultant pressure

A. $1.2 a t m$

B. 2.4 atm
C. 2.0 atm
D. 1.0 atm

D Watch Video Solution

22. $X m L$ of H_{2} gas effuses through a hole in a container is 5 second. The time taken for the effusion of
the same volume of the gas specified below under identical conditions is .
A. 10 seconds : He
B. 20 seconds: O_{2}
C. 25 seconds : CO
D. 55 seconds : CO_{2}

Answer: B

- Watch Video Solution

23. Compressibility factor $Z=\frac{P V}{R T}$. Considering ideal gas, real gas, and gases at critical state, answer the following questions:

The cpmpressibility factor of an ideal gas is
A. 0
B. Infinity
C. 1
D. -1

Answer: C

D Watch Video Solution

24. According to Graham's law, at a given temperature, the ratio of the rates of diffusion r_{A} / r_{B} of gases A and B is given by

> A. $\left(P_{A} / P_{B}\right)\left(M_{A} / M_{B}\right)^{1 / 2}$
> B. $\left(M_{A} / M_{B}\right)\left(P_{A} / P_{B}\right)^{1 / 2}$
> C. $\left(P_{A} / P_{B}\right)\left(M_{B} / M_{A}\right)^{1 / 2}$
> D. $\left(M_{A} / M_{B}\right)\left(P_{B} / P_{A}\right)^{1 / 2}$
25. A gas is said to behave like an ideal gas when the relation $\frac{p V}{T}=$ constant. When do you expect a real gas to behave like an ideal gas ?
A. When the temperature is low
B. When both the temperature and pressure are low
C. When both the temperature and pressure are
high
D. When the temperature is high and pressure is low

Answer: D

26. The rms velocity of hydrogen is $\sqrt{7}$ times the rms velocity of nitrogen. If T is the temperature of the gas, then
A. $T\left(H_{2}\right)=T\left(N_{2}\right)$
B. $T\left(H_{2}\right)>T\left(N_{2}\right)$
C. $T\left(H_{2}\right)<T\left(N_{2}\right)$
D. $T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)$

Answer: C

27. The compressibility of a gas is less than unity at $S T P$.
A. $V_{m}>22.4$ litres
B. $V_{m}<22.4$ litres
C. $V_{m}=22.4$ litres
D. $V_{m}=44.8$ litres

Answer: B

D Watch Video Solution

28. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is
$0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ of steam at this temperature is
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{30}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

29. The root mean square velocity of an ideal gas to constant pressure varies with density (d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

Answer: D

(D) Watch Video Solution

30. The compression factor (compressibility factor) for 1 mol of a van der Waals gas at $0^{\circ} \mathrm{C}$ and 100 atm pressure is found to be 0.5 . Assuming that the volume of a gas molecule is neligible, calculate the van der Waals constant a.
A. $0.253 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
B. $0.53 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$
C. $1.83 L^{2} \mathrm{~mol}^{-2}$ atm
D. $1.253 L^{2} \mathrm{~mol}^{-2} \mathrm{~atm}$

Answer: D

- Watch Video Solution

31. Which of the following volume-temperature $(V-I)$
plots represents the behaviour of 1 mole of an ideal gas
at the atmospheric pressure?

Answer: C

(D) Watch Video Solution

32. When the temperature is increased, surface tension of water:
A. Increase
B. Decreases
C. Remains constant
D. Show irregular behaviour

Answer: B

D Watch Video Solution

33. Positive deviation from ideal behaviour takes place because of
A. Molecular interactioin between atoms and

$$
P V / n R T>1
$$

B. Molecular interaction between atoms and

$$
P V / n R T<1
$$

C. Finite size of atoms and $P V / n R T>1$
D. Finite size of atoms and $P V / n R T<1$

Answer: C

- Watch Video Solution

34. The root mean square speed of one mole of a monoatomic gas having molecular mass M is $u_{r m s}$ The
relation between the average kinetic energy (E) of the gas and $\left.u_{9} r m s\right)$ is.

$$
\begin{aligned}
& \text { A. } u_{\text {r.m.s. }}=\sqrt{\frac{3 E}{2 M}} \\
& \text { B. } u_{r . m . s .}=\sqrt{\frac{2 E}{3 M}} \\
& \text { C. } u_{r . m . s .}=\sqrt{\frac{2 E}{M}} \\
& \text { D. } u_{r . m . s .}=\sqrt{\frac{E}{3 M}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

35. When 1 mol of a monoatomic ideal gas at $T K$ undergoes adiabatic change under a constant external
pressure of 1 atm , changes volume from $1 L \rightarrow 2 L$. The final temperature (in K) would be
A. $\frac{T}{2^{(2 / 3)}}$
B. $T+\frac{2}{3} \times 0.0821$
C. T
D. $T-\frac{2}{3} \times 0.0821$

Answer: A

- Watch Video Solution

36. The ratio of the rate of diffusion of helium and methane under indentical conditions of pressure and
temperature will be
A. 4
B. 2
C. 1
D. 0.5

Answer: B

- Watch Video Solution

37. A monotomic ideal gas undergoes a process in which
the ratio of p to V at any instant is constant and equals
to 1 . what is the molar heat capacity of the gas?
A. $\frac{4 R}{2}$
B. $\frac{3 R}{2}$
C. $\frac{5 R}{2}$
D. 0

Answer: C

(D) Watch Video Solution

38. The given graph represents the variations of compressibility factor $Z=P V / n R T$ vs P for three real gases A, B, and C.

Identify the incorrect statements.
A. For the gas A, $a=0$ and its dependence on P is
linear at all pressure
B. For the gas $B, b=0$ and its dependence on P is
linear at all pressure
C. For the gas C, which is typical real gas for which neither a nor $b=0$. By knowing the minima and
the point of intersection, with $z=1$, a and b can be calculated
D. At high pressure, the slope is positive for all real gases

Answer: B

D Watch Video Solution

39. The term that corrects for the attractive forces present in a real gas in the van der Waal's equation is
A. nb
B. $\frac{a n^{2}}{V^{2}}$
C. $-\frac{a n^{2}}{V^{2}}$
D. $-n b$

Answer: B

D Watch Video Solution

40. For one mole of a van der Waals' gas when $b=0$ and $T=300 K$, the $p V v s 1 / V$ plot is shown below. The
value of the vander Waals' constant $a\left(\mathrm{~atm} \mathrm{Lmol}^{-2}\right)$

A. 1.0
B. 4.5
C. 1.5
D. 3.0
41. For gaseous state, if most probable speed is denoted by C^{*} average speed by \bar{C} and root square speed by C, then for a large number of molecules, the ratios of these speeds are
A. $C^{*}: \bar{C}: C=1.225: 1.128: 1$
B. $C^{*}: \bar{C}: C=1.128: 1.225: 1$
C. $C^{*}: \bar{C}: C=1: 1.128: 1.225$
D. $C^{*}: \bar{C}: C=1: 1.225: 1.128$

Answer: C
42. If Z is a compressibility factor, van der Waals' equation at low pressure can be written as
A. $Z=1+\frac{R T}{P b}$
B. $Z=1-\frac{a}{V R T}$
C. $Z=1-\frac{P b}{R T}$
D. $Z=1+\frac{P b}{R T}$

Answer: B

- Watch Video Solution

43. One mole of a monoatomic real gas satisfies the equation $p(V-b)=R T$ where b is a constant. The relationship of interatomic potential $V(r)$ and interatomic distance r for gas is given by

A.

Answer: C

D Watch Video Solution

44. Two closed bulbs of equal volume (V) containing an
ideal gas initially at pressure p_{i} and temperature T_{1} are connected through a narrow tube of negligible volume as shown in the figure below. The temperature of one of
the bulbs is then raised to T_{2}. The final pressure p_{f} is:

A. $2 P_{i}\left(\frac{T_{1}}{T_{1}+T_{2}}\right)$
B. $2 P_{i}\left(\frac{T_{2}}{T_{1}+T_{2}}\right)$
C. $2 P_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
D. $P_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$

Answer: B

- Watch Video Solution

1. If a gas expended at constant temperature
A. The pressure decreases
B. The kinetic energy of the molecules remains the same
C. The kinetic energy of the molecules decreases
D. The number of molecules of the gas increases

Answer: AB

- Watch Video Solution

2. Energy of sublimation of solid helium is much lower than that of ice because
A. A large part of sublimation energy of ice is used to overcome hydrogen bonding
B. Ice melts at much higher temperature
C. In solid helium, there is Vander Waal's force of attraction between helium atoms
D. None is true

Answer: A::B::D

- Watch Video Solution

3. A gas described by van der Waal's equation:
A. Behaves similar to an ideal gas in the limit of large molar volumes
B. Behaves similar to an ideal gas in the limit of leart pressures
C. Is characterised by vander Waal's coefficients that
are dependent on the identity of the gas but are independent of the temperature
D. Has the pressure that is lower than the pressure exerted by the same gas behaving ideally
4. According to kinetic theory of gases,
A. Collisions are always elasic
B. Heavier molecules transfer more momentum to the wall of the container
C. Ony a small number of molecules have very high
velocity
D. Between collisions, the molecules move in straight
lines with constant velocities

Answer: A::B::C::D

5. Which of the following statements are incorrect?
A. Molar volume of every gas at STP is 22.4 L
B. Under critical states compressiblity factor is 1
C. All gases will have equal value of average KE at a
given temperature
D. At absolute zero, KE is $\frac{3}{2} R$

Answer: B::D

- Watch Video Solution

6. Following represents the Maxwell distribution curve for an ideal gas at two temperature T_{1} and T_{2}. Which of the following option(s) is/are true?

A. Total area under the two curves is independent of moles of gas
B. If $d U_{1}=f U_{m p s_{1}} \quad$ and $\quad d U_{2}=f U_{m p s_{2}} \quad$ then

$$
A_{1}=A_{2}
$$

C. $T_{1}>T_{2}$ and hence higher the temperature,

sharper the curve

D. The fraction of molecules having speed $=U_{m p s}$ decreases as temperature increases

Answer: ABD

D Watch Video Solution

7. A open ended mercury manometer is used to measure the pressure exerted by a trapped gas as shown in the figure. Initially manometer shows no difference in mercury level in both columns as shown in diagram.
$P=76 \mathrm{~cm}$

After sparking ' A ' dissociates according to following reaction

$$
A(g) \rightarrow B(g)+3 C(g)
$$

If pressure of Gas " A " dissociates to 0.9 atm, then (Assume temperature to be constant and is 300 K)
A. Total pressure increased by 1.3 atm
B. Total pressure increased by 0.3 atm
C. Total pressure increased by 22.3 cm of Hg
D. Difference in mercury level is 228 mm

Answer: ABD

- Watch Video Solution

Jee Section Reasoning Type Questions

1. Assertion : The value of van der Waal's constant a is
larger for ammonia than for nitrogen
Reason : Hydrogen bonding is present in ammonia
A. Statement 1 is true, statement 2 is true statement 2 is a correct explanation for statement 1
B. Statement 1 is true, statement 2 is true, statement

2 is Not a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true.

Answer: A

2. Statement-1: $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ has value of Z (compressibility factor) less than one, generally.

Statement-2: $Z<1$ is due to repulsive forces among the molecules.
A. Statement 1 is true, statement 2 is true ,
statement 2 is a correct explanation for statement

1
B. Statement 1 is true, statement 2 is true, statement

2 is Not a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true.

Answer: C

D Watch Video Solution

3. Statement 1 : Critical temperature is the temperature at which a real gas exhibits ideal behaviour for considerable range of pressure.

Statement 2 : At critical point the densities of a substance in gaseous and liquid states are same.
A. Statement 1 is true, statement 2 is true statement 2 is a correct explanation for statement
B. Statement 1 is true, statement 2 is true, statement

2 is Not a correct explanation for statement 1.
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true.

Answer: D

D Watch Video Solution

Jee Section Comprehension Type Question Passage I

1. X and Y are two volatile liquids with molar weights
of $10 \mathrm{gmol}^{-1}$ and $40 \mathrm{gmol}^{-1}$ respectively. Two cotton
plugs, one soaked in X and the other soaked in Y, are
simultaneously placed at the ends of a tube of length
$L=24 \mathrm{~cm}$, as shown in the figure.
The tube is filled with an inert gas at 1 atm pressure and
a temperature of 300 K . Vapours of X and Y react to
form a product whichh is first observed at a distance d
cm from the plug soaked in X.
Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and two
vapours.

The value of d in cm (shown in figure), as estimated from Graham's law, is
A. 8
B. 12
C. 16
D. 20

Answer: C

D Watch Video Solution

2. X and Y are two volatile liquids with molar weights of $10 \mathrm{gmol}^{-1}$ and $40 \mathrm{gmol}^{-1}$ respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length
$L=24 \mathrm{~cm}$, as shown in the figure.

The tube is filled with an inert gas at 1 atm pressure and a temperature of 300 K . Vapours of X and Y react to form a product whichh is first observed at a distance d cm from the plug soaked in X.

Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and two
vapours.

The value of d in cm (shown in figure), as estimated from Graham's law, is
A. Larger mean free path for X as compared to that
B. Larger mean free path for Y as compared to that of X
C. Increased collision frequency of Y with the inert gas as compared to that of X with the inert gas
D. Increased collision frequency of X with the inert gas as compared to that of Y with the inert gas

Answer: D

- Watch Video Solution

Jee Section Comprehension Type Question Passage li

1. One of the approach to the study of real gases
involves the analysis of a parameter Z called the compressibility factor $Z=\frac{P V_{m}}{R T}$ where P is pressure,
V_{m} is molar volume, T is absolute temperature and R is
the universal gas constant. Such a relation can also be
expressed as $Z=\left(\frac{V_{\mathrm{m} \text { real }}}{V_{\mathrm{m} \text { ideal }}}\right)$ (where $V_{\mathrm{m} \text { ideal }}$ and
$V_{\mathrm{m} \text { real }}$ are the molar volume for ideal and real gas
respectively). Gas corresponding $Z>1$ have repluive tendenciesamong constituent particles due to their size
factor, among constitutent particles. As the pressure is lowered or temperature is increased the value of Z approaches 1. (reaching the ideal behaviour)

For a real gas ' G ' $Z>1$ at STP then for ' G ' which of the following is true
A. 1 mole of the gas occupies 22.4 L at NTP
B. 1 mole of the gas occupies 22.4 L at pressure higher than that at STP (keeping temperature constant)
C. 1 mole of the gas occupies 22.4 L at pressure lower than that at STP (keeping temperature constant)
D. None of the above

Answer: B
2. One of the approach to the study of real gases involves the analysis of a parameter Z called the compressibility factor $Z=\frac{P V_{m}}{R T}$ where P is pressure,
V_{m} is molar volume, T is absolute temperature and R is
the universal gas constant. Such a relation can also be
expressed as $Z=\left(\frac{V_{\mathrm{m} \text { real }}}{V_{\mathrm{m} \text { ideal }}}\right)$ (where $V_{\mathrm{m} \text { ideal }}$ and
$V_{\mathrm{m} \text { real }}$ are the molar volume for ideal and real gas
respectively). Gas corresponding $Z>1$ have repluive tendenciesamong constituent particles due to their size
factor, among constitutent particles. As the pressure is
lowered or temperature is increased the value of Z
approaches 1. (reaching the ideal behaviour)
Following graph represents a pressure (P) volume (V)
relationship at a fixed temperature (T) for n moles of a
real gas. The graph has two regions marked (I) and (II). Which of th following options is true.

A. $Z<1$ in the reion (II)
B. $Z=$ in the region (II)
C. $Z=1$ for the curve
D. Z approaches 1 as we move from region (II) to

Answer: D

- View Text Solution

3. One of the approach to the study of real gases involves the analysis of a parameter Z called the compressibility factor $Z=\frac{P V_{m}}{R T}$ where P is pressure, V_{m} is molar volume, T is absolute temperature and R is
the universal gas constant. Such a relation can also be expressed as $Z=\left(\frac{V_{\mathrm{m} \text { real }}}{V_{\mathrm{m} \text { ideal }}}\right)$ (where $V_{\mathrm{m} \text { ideal }}$ and $V_{\mathrm{m} \text { real }}$ are the molar volume for ideal and real gas respectively). Gas corresponding $Z>1$ have repluive tendenciesamong constituent particles due to their size factor, among constitutent particles. As the pressure is
lowered or temperature is increased the value of Z approaches 1. (reaching the ideal behaviour)

Choose the conclusions whcih are appropriate for the observation stated

	Observation		Conclusion
I.	$Z=1$	I.	The gas need not be showing the ideal behaviour
II.	$Z>1$	II.	On applying pressure the gas will respond by increasing its volume
III.	$Z<1$	III.	The gas has the ability to be liquefied
IV.	$Z \rightarrow$ for low P	IV.	The gas is approaching the ideal behaviour

A. All conclusions are true
B. Conclusions I,II and IV are true
C. Conclusions I,III and IV are true
D. Conclusions III and IV are true

Answer: D

- View Text Solution

Jee Section Integer Type Questions

1. At $400 K$, the root mean square (rms) speed of a gas X
(molecular weight $=40$) is equal to the most probable speed of gas Y at 60 K . The molecular weight of the gas
Y is.

- Watch Video Solution

2. To an evacuated vessel with movable piston under external pressure of 1 atm 0.1 mole of He and 1.0 mole of an unknown compound vapour pressure 0.68 atm at $0^{\circ} C$ are introduced Considering the ideal gas behaviour the total volume (in litre) of the gases at $0^{\circ} C$ is close to .

(D) Watch Video Solution

3. If the value of Avogadro numberis $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the vaueof Boltzmann constant is
$1.380 \times 10^{-23} \mathrm{JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is

- Watch Video Solution

4. The diffusion coefficient of an ideal gas is proportional to its mean free path and mean speed. The absolute temperature of an ideal gas is increased 4 times and its pressure is increased 2 times.As a result, the diffusion coefficient of this gas increases x times.

The value of x is.

- Watch Video Solution

5. At identical temperature and pressure, the rate of diffusion of hydrogen gas is $3 \sqrt{3}$ times that of a
hydrocarbon having molecular formula $C_{n} H_{2 n-n}$. What is the value of n ?

D Watch Video Solution

6. The volume occupied by 8.8 g of CO_{2} at $31.1^{\circ} \mathrm{C}$ and 1 bar pressure (in L) is

- Watch Video Solution

7. 2 g of a gas X are introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$. The pressure is found to be 1 atm . If 3 g of another gas Y are added to the same flask, the total
pressure becomes 1.5 atm. Assuming that ideal behaviour, the molecular mass ratio of M_{x} and M_{y} is

- Watch Video Solution

Jee Section Matrix Match Type Questions

1. Match gases under specified condition listed in

Column I with their proerties/laws in Column II.

Column I

Column II
(A) Hydrogen gas ($P=200 \mathrm{~atm}, T=273 \mathrm{~K}$)
(P) Compressibility factor $\neq 1$
(B) Hydrogen gas ($P \sim 0, T=273 \mathrm{~K}$)
(Q) Attractive forces are dominant
(C) $\mathrm{CO}_{2}(P=1 \mathrm{~atm}, T=273 \mathrm{~K})$
(R) $P V=n R T$
(D) Real gas with very large molar volume
(S) $P(V-n b)=n R T$

Column I

(Temperature)
(A) $>T_{i}$
Γ_{i}

Column II
 (Gas Characteristics)
 (p) Attractive intermolecular forces become dominant over repulsive forces when

(B) $<T_{i}$
(q) Repulsive forces become dominant
(C) Any value of temperature (r) Gas becomes more or less ideal gas when
(D) $=T_{b}$
(s) $\mu_{\text {J.T. }}$ for ideal gas is zero at
2.
T_{b} and T_{i} are the Boyle's and inversion temperatures respectively for a real gas. Match the following characteritics with appropriate temperatures.

- View Text Solution

Column I

(A)
 at constant T and n
(B)
V vs $\cdot \frac{1}{T}$ for ideal gas at constant P and n
(C) $P T$ vs $\cdot T^{2}$ for ideal gas at constant T and n
(D) V vs $\cdot \frac{1}{P^{2}}$ for ideal gas at constant T and n
3.
(s)

(q)

(r)

Match the entries listed in Column I with appropriate entries listed in Column II.

Jee Section Jee Advanced 2018 Numeric Answer Type

 Question1. A closed tank has two compartments A and B, both
filled with oxygen (assumed to be ideal gas). The partition separating the two compartments is fixed and is a perfect heat insulator (Figure 1). If the old partition is replaced by a new partition which can slide and conduct heat but does NOT allow the gas to leak across
(Figure 2), the volume (in m^{3}) of the compartment A
after the system attains equilibrium is \qquad .

Figure 1

- Watch Video Solution

