©゙doubtnut

CHEMISTRY

BOOKS - UNIVERSAL BOOK DEPOT 1960 CHEMISTRY
 (HINGLISH)

SOME BASIC CONCEPTS OF CHEMISTRY

Ordinary Thinking (Objective Questions) Matter and Units for measurement

1. In the final answer of the expression $\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}$. The number of significant figures is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

2. Dimensions of pressure are same as that of
A. Energy
B. Force
C. energy per unit volume
D. Force per unit volume

Answer: C

- Watch Video Solution

3. The significant figures in 3400 are
A. 2
B. 5
C. 6
D. 4

Answer: D

- Watch Video Solution

4. A mixture of $Z n C l_{2}$ and PbCl_{2} can be sepqrated by
A. Distillation
B. Crystallization
C. Sublimation
D. Adding aceitic acid
5. One fermi is
A. $10^{-13} \mathrm{~cm}$
B. $10^{-15} \mathrm{~cm}$
C. $10^{-10} \mathrm{~cm}$
D. $10^{-12} \mathrm{~cm}$

Answer: A

- Watch Video Solution

6. The number of significant figure in 60.001 are
A. 5
B. 6
C. 3
D. 2

Answer: B

D Watch Video Solution

7. Given $P=0.0030 m, Q=2.40 m, R=3000 m$, Significant figures in P, Q and R are respectively
A. $2,2,1$
B. 2,3,4
C. $4,2,1$
D. $4,2,3$

Answer: B

8. The prefix 10^{18} is
A. Giga
B. Nano
C. Mega
D. Exa

Answer: D

- Watch Video Solution

9. A mixture of sand and iodine can be separated by
A. Crystallisation
B. Sublimation
C. Distillation
D. Fractional distillation

Answer: B

- Watch Video Solution

10. One part of element A reacts with two parts of another element B. 6 parts of element C reacts with 4 parts of element B. If A and C combine together, the ratio of their weights be governed by
A. Law of definite proportion
B. Law of multiple proportion
C. Law of reciprocal proportion
D. Law of conservation of mass

Answer: C

11. The prefix zepto stands for
A. 10^{9}
B. 10^{-12}
C. 10^{-15}
D. 10^{-21}

Answer: D

(D) Watch Video Solution

12. Which of the following halogen can be purified by sublimation
A. F_{2}
B. $C l_{2}$
C. $B r_{2}$
D. I_{2}

- View Text Solution

13. One atmosphere is equal to
A. 101.325 K pa
B. 1013.25 K pa
C. $10^{5} \mathrm{Nm}$
D. None of these

Answer: A

- Watch Video Solution

14. A sample was weighted using two different balances. The result's were (i) 3.929 g (ii) 4.0 g . how would the weight of the sample be
reported. If it has to be reported in 3 significant no
A. 3.929 g
B. 3 g
C. 3.9 g
D. 3.93 g

Answer: D

- View Text Solution

15. Which one of the following is not an element
A. Diamond
B. Graphite
C. Silica
D. Ozone

Answer: C

- View Text Solution

16. $81.4 g$ sample of enthyl ethyl alcohol contains $0.002 g$ of water. The amount of pure ethyl alcohol to the proper number of significant figures is
A. 81.4
B. 71.40 g
C. 91.4 g
D. 81 g

Answer: A

17. The unit $J P a^{-1}$ is equivalent to
A. m^{3}
B. cm^{3}
C. $d m^{3}$
D. None of these

Answer: A

- Watch Video Solution

18. From the following masses, the one which is expressed nearest to the milligram is
A. 16 g
B. 16.4 g
C. 16.428 g
D. 16.4284 g

Answer: C

- Watch Video Solution

19. Assertion: Atoms can neither be created nor destroyed.

Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms.
A. If both assertion and reason are true and the reason is the
correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.
20. Assertion : 1.231 has three significant figures.

Reason : All numbers right to the decimal point are significant.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

- View Text Solution

21. Assertion : Pure water obtained from different sources such as river, well, spring, sea etc. always contains hydrogen and oxygen combined in the ratio $1: 8$ by mass.

Reason : A chemical compound always contains elements combined together in same proportion by mass, it was discovered by French chemist, Joseph Proust (1799).
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- View Text Solution

22. Assertion : A certain element X, forms binary compounds with chlorine containing $59.68 \%, 68.95 \%$ and 74.75% chlorine respctively. These data illustrate the law of multiple proportions.

Reason : According to law of multiple proportions, the relative amount of an element combining with some fixed amount of a second element in a series of compounds are the ratios of small whole numbers.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

23. Assertion : Gases combine in simple ratio of their volume but, not always.

Reason : Gases deviate from ideal behaviour.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- View Text Solution

24. Assertion: Isomorphous substances from crystals of same shape and can grow in saturated solution of each other.

Reason: They have similar constitution and chemical formulae.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

Ordinary Thinking (Objective Questions) Atomic, Molecular and

 Equivalent masses1. The number of moles of oxygen in 1 L of air containing 21% oxygen by volume, in standard conditions, is
A. 0.186 mol
B. 0.21 mol
C. 2.10 mol
D. 0.0093 mol

Answer: D

- Watch Video Solution

2. The number of atoms in 4.25 g of NH_{3} is approximately
A. 1×10^{23}
B. 2×10^{23}
C. 4×10^{23}
D. 6×10^{23}
3. Assuming fully decomposed, the volume of CO_{2} released at STP on heating 9.85 g of BaCO_{3} (Atomic mass of $\mathrm{Ba}=137$) will be
A. 0.84 L
B. 2.24 L
C. 4.06 L
D. 1.12 L

Answer: D

- Watch Video Solution

4. An element X has the following isotopic composition:
. ${ }^{200} X: 90 \% .{ }^{199} X: 8.0 \% .{ }^{202} X: 2.0 \%$
The weight average atomic mass of the naturally occurring element X is closest to
A. 200 amu
B. 201 amu
C. 202 amu
D. 199 amu

Answer: C

- Watch Video Solution

5. The weight of a molecule of the compound $C_{60} H_{122}$ is
A. $1.4 \times 10^{-21} g$
B. $1.09 \times 10^{-21} g$
C. $5.025 \times 10^{23} g$
D. $16.023 \times 10^{23} g$

Answer: A

6. The number of molecules in 8.96 L of a gas at $0^{\circ} \mathrm{C}$ and 1 atmosphere pressure is approximately
A. 6.02×10^{23}
B. 12.04×10^{23}
C. 18.06×10^{23}
D. 24.08×10^{22}

Answer: D

- Watch Video Solution

7. What is the concentration of nitrate ions if equal volumes of $0.1 \mathrm{MAgNO}_{3}$ and 0.1 MNaCl are mixed together?
A. 0.1 M
B. 0.2 M
C. 0.05 M
D. 0.25 M

Answer: C

(D) Watch Video Solution

8. 74.5 g of a metallic chloride contain 35.5 g of chlorine. The equivalent weight of the metal is
A. 19.5
B. 35.5
C. 39.0
D. 78.0

Answer: C

9. When potassium permanganate is titrated against ferrous ammonoum sulphate, the equivalent weight of potassium permanganent is
A. Molecular weight / 10
B. Molecular weight /5
C. Molecular weight /2
D. Molecular weight

Answer: B

- Watch Video Solution

10. 0.75 g platinic chloride, a monoacid base on ignition gave 0.245 g playinum. The molecular weight of the base is
A. 75.0
B. 93.5
C. 100
D. 80.0

Answer: B

- Watch Video Solution

11. In acidic medium, equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ (molecular weight $=M)$ is
A. $M / 3$
B. $M / 4$
C. $M / 6$
D. $M / 2$

Answer: C

- Watch Video Solution

12. The numbe of moles of oxygen obtained by the electrolytic decomposition of 108 g water is
A. 2.5
B. 3
C. 5
D. 7.5

Answer: B

13. The number of equivalents of $N_{2} S_{2} O_{3}$ required for the volumetric estimation of one equivalent of Cu^{2+} is
A. 1
B. 2
C. $3 / 2$
D. 3

Answer: B

- Watch Video Solution

14. The percentage of element M is 53 in its oxide of molecular formula $\mathrm{M}_{2} \mathrm{O}_{3}$. Its atomic mass is about
A. 45
B. 9
C. 18
D. 27

Answer: D

- Watch Video Solution

15. A metal M of equivalent mass E forms an oxide of molecular formula
$M_{x} O_{y}$. The atomic mass of the metal is given by the correct equation.
A. $2 E(y / x)$
B. $x y E$
C. E / y
D. y / E

Answer: A

16. Arrange the following in the order of increasing mass (at. Mass of $\mathrm{O}=16, \mathrm{Cu}=63, \mathrm{~N}=14)$
(I) one atom of oxygen (II) one atom of nitrogen
(III) 1×10^{-10} mole of oxygen (IV) 1×10^{-10} mole of copper
A. $I I<I<I I I<I V$
B. $I<I I<I I I<I V$
C. $I I I<I I<I V<I$
D. $I V<I I<I I I<I$

Answer: A

(D) Watch Video Solution

17. What is the volutme of CO_{2} liberted in litres at 1 atmosphere and $0^{\circ} C$ when 10% of 100 pure calcium carbonate is treated with excess dilute sulphuric acid? (at mass of $\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16$)
A. 0.224
B. 2.24
C. 22.4
D. 224

Answer: B

- Watch Video Solution

18. When $100 \mathrm{ml} 1 \mathrm{~N}-\mathrm{NaOH}$ solution and 10 ml of 10 N sulphuric acid solution are mixed together, the resulting solution will be
A. Alkaline
B. Acidic
C. Atrongly acidic
D. Neutral

- Watch Video Solution

19. $1.520 g$ of the hydroxide of a metal on ignition gave $0.995 g$ of oxide. The equivalent weight of metal is
A. 1.520
B. 0.995
C. 19.00
D. 9.00

Answer: D

- Watch Video Solution

20. The equivalent weight of a metal is 9 and vapour density of its chloride is 59.25 . The atomic weight of metal is :
A. 23.9
B. 27.3
C. 36.3
D. 48.3

Answer: A

- Watch Video Solution

21. On reduction with hydrogen, 3.6 g of an oxide of matel left $3.2 g$ of metal. If the vapour density of metal is 32 , the simplest formula of the oxide would be
A. $M O$
B. $\mathrm{M}_{2} \mathrm{O}_{3}$
C. $M_{2} O$
D. $M_{2} O_{5}$

Answer: C

(D) Watch Video Solution

22. Sulphur forms the chlorides $S_{2} C l_{2}$ and $S C l_{2}$. The equivalent mass of sulphur in SCl_{2} is
A. $8 \mathrm{~g} / \mathrm{mol}$
B. $16 \mathrm{~g} / \mathrm{mol}$
C. $64.8 \mathrm{~g} / \mathrm{mol}$
D. $32 \mathrm{~g} / \mathrm{mol}$

Answer: B

23. $1.5 \mathrm{~g} \mathrm{CdCl} l_{2}$ was formed to contain 0.9 g Cd . Calculate the atmic weight of Cd.
A. 118
B. 112
C. 106.5
D. 53.25

Answer: B

- Watch Video Solution

24. One litre of a gas at STP weight 1.16 g it can possible be
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. $C O$
C. O_{2}
D. CH_{4}

Answer: A

- Watch Video Solution

25. 0.32 g of metal gave on treatment with an acid 112 mL of hydrogen at NTP. Calculate the equivalent weight of the metal
A. 58
B. 32
C. 11.2
D. 24

Answer: B

26. Equivalent weight of crystalline oxalic acid is
A. 30
B. 63
C. 53
D. 45

Answer: B

- Watch Video Solution

27. The modern atomic weight scale is based on
A. C^{12}
B. O^{16}
C. H^{1}
D. C^{13}

- Watch Video Solution

28. In the reaction of sodium thiosulphate with I_{2} in aqueous medium, the equivalent mass of sodium sulphate
A. Molar mass of sodium thisosulphate
B. The average of molar masses of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2}
C. Half the molar mass of sodium thiosulphate
D. Molar mass of sodium thiosulphate $\times 2$

Answer: A

29. To dissolve 0.9 g metal, 100 mL of 1 N HCl is used. What is the equivalent weight of metal?
A. 7
B. 9
C. 10
D. 6

Answer: B

- Watch Video Solution

30. M is molecular weight of KMnO_{4}. The equivalent weight of KMnO_{4} when it is converted into $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
A. Molecular weight / 10
B. $M / 3$
C. $M / 5$
D. $M / 7$

Answer: A

- Watch Video Solution

31. For preparing 0.1 N solution of a compound from its impure sample, of which the percentage purity is known, the weight of the substance required will be
A. More than the theroretical weight
B. Less than the theoretical weight
C. Same as the throretical weight
D. None of these

Answer: A

32. If the molecular weight of $\mathrm{H}_{3} \mathrm{PO}_{3}$ is M , its equivalent weight will be
A. M
B. $M / 2$
C. M/3
D. 2 M

Answer: B

- View Text Solution

33. Which one of the following properties of an element is not variable
?
A. Valency
B. Atomic weight
C. Equivalent weight
D. All of these

Answer: B

- Watch Video Solution

34. In chemical scale, the relative mass of the isotopic mixture of oxygen atoms $\left(O^{16}, O^{17}, O^{18}\right)$ is assumed to be equal to
A. 16.002
B. 16.00
C. 17.00
D. 11.00

Answer: C

35. The mass of a molecule of water is
A. $3 \times 10^{-26} \mathrm{~kg}$
B. $3 \times 10^{-25} \mathrm{~kg}$
C. $1.5 \times 10^{-26} \mathrm{~kg}$
D. $2.5 \times 10^{-26} \mathrm{~kg}$

Answer: A

- Watch Video Solution

36. The value of amu is equal to
A. $1.57 \times 10^{-24} \mathrm{~kg}$
B. $1.66 \times 10^{-24} \mathrm{~kg}$
C. $1.99 \times 10^{-23} \mathrm{~kg}$
D. $1.66 \times 10^{-27} \mathrm{~kg}$

Answer: D

- View Text Solution

37. If we consider that $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will.
A. Decrease twice
B. Increase two fold
C. Remain unchanged
D. Be a function of the molecular mass of the substance

Answer: B

38. The number of hydrogen atoms present in 25.6 g of sucrose $\left(C_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ which has a molar mass of $342.3 g$ is :
A. 22×10^{23}
B. 9.91×10^{23}
C. 11×10^{23}
D. $44 x 10^{23} \mathrm{H}$ atoms

Answer: B

- Watch Video Solution

39. 100 mL of PH_{3} on decomposition produced phosphorus and hydrogen. The change in volume is
A. 50 mL increase
B. 500 mL decrease
C. 900 mL decrease
D. Nil

Answer: A

- Watch Video Solution

40. Which of the following has least mass
A. 2 g atom of nitrogen
B. 3×10^{23} atom of C
C. 1 mole of S
D. 7.0 g of Ag

Answer: B

41. The molecular weight of a gas is 45 . Its density at STP is
A. 22.4
B. 11.2
C. 5.7
D. 2.0

Answer: D

- Watch Video Solution

42. A bivalent metal has an equivalent mass of 32 . The molecular mass of the metal nitrate is
A. 168
B. 192
C. 188
D. 182

- Watch Video Solution

43.1 amu is equal to
A. $\frac{1}{12}$ of $C-12$
B. $\frac{1}{14}$ of $O-16$
C. 1 g of H_{2}
D. $1.66 \times 10^{-23} \mathrm{~kg}$

Answer: D

- Watch Video Solution

44. 1.25 g of a solid dibasic acid is completely neutralised by 25 mL of 0.25 molar $\mathrm{Ba}\left(\mathrm{OH}_{2}\right)$ solution. Molecular mass of the acid is:
A. 100
B. 150
C. 120
D. 200

Answer: D

- Watch Video Solution

45. 1.24 g P is present in 2.2 g
A. $P_{4} S_{3}$
B. $P_{2} S_{2}$
C. $P S_{2}$
D. $P_{2} S_{4}$
46. The atomic weights of two alements A and B are 40 and 80 reapectively. If xg of A contains y atoms, how many atoms are present in 2 xg of B ?
A. $\frac{y}{2}$
B. $\frac{y}{4}$
C. y
D. 2 y

Answer: C

- Watch Video Solution

47. If N_{A} is Avogadro's number then number of valence electrons in 4.2
g of nitride ions $\left(N^{3-}\right)$
A. $2.4 N_{A}$
B. $4.2 N_{A}$
C. $1.6 N_{A}$
D. $3 \cdot 2 N_{A}$

Answer: A

- Watch Video Solution

48. The number of molecule at NTP in 1 ml of an ideal gas will be
A. 6×10^{23}
B. 2.69×10^{19}
C. 2.69×10^{23}
D. None of these

Answer: B

49. The specific heat of a metal os 0.16 its approximate atomic weight would be
A. 32
B. 16
C. 40
D. 64

Answer: C

(Watch Video Solution

50. What volume of NH_{3} gas at STP would be needed to prepare 100 ml of 2.5 molal (2.5 m) ammonium hydroxide solution?
A. 0.056 litres
B. 0.56 litres
C. 5.6 litres
D. 11.2 litres

Answer: C

- Watch Video Solution

51. Caffeine has a molecular weight of 194 . If it contains 28.9% by mass of nitrogen, number of atoms of nitrogen in one molecule of caffeine is
A. 4
B. 6
C. 2
D. 3

Answer: A

52. A 400 mg iron capsule contains 100 mg of ferrous fumarate, $(\mathrm{CHCOO})_{2} \mathrm{Fe}$. The percentage of iron present in it is approximately
A. 0.33
B. 0.25
C. 0.14
D. 0.08

Answer: D

- Watch Video Solution

53. A gaseous mixture contain CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ in equimolecular proportion. The weight of 2.24 litres of this mixture at NTP is
B. 1.6 g
C. 2.3 g
D. 23 g

Answer: C

- Watch Video Solution

54. One gram of hydrogen is found to combine with 80 g of bromine one gram of calcium (valency $=2$) combines with 4 g of bromine the equivalent weight of calcium is
A. 10
B. 20
C. 40
D. 80

Answer: B

55. Assertion: Molecular weight of oxygen is 16.

Reason: Atomic weight of oxygen is 16 .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

56. Assertion : Equivalent weight of a base $=\frac{\text { Molecular weight }}{\text { Acidity }}$

Reason : Acidity is the number of replaceable hydrogen atoms in one molecule of the base.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D Watch Video Solution

57. Assertion : One atomic mass unit (amu) is mass of an atom equal to exactly one-twelfth of the mass of a carbon-12 atom.

Reason : Carbon-12 isotope was selected as standard.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

58. Assertion : Molecular mass of A is $\frac{M}{4}$ if the molecular mass of B is M.

Reason : Vapour density of A four times that of B.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

59. Assertion : Equivalent weight of Cu in CuO is 63.6 and in Cu_{2} O31.8.

Reason : Equivalent weight of an element
$=\frac{\text { Atomic weight of the element }}{\text { Valency of the element }}$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

60. Assertion : 1 amu equals to $1.66 \times 10^{-24} \mathrm{~g}$.

Reason : $1.66 \times 10^{-24} g$ equals to $\frac{1}{12}$ th of mass of a C^{12} atom.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

61. Assertion :- Equivalent weight of NH_{3} in the reaction $\mathrm{N}_{2} \rightarrow \mathrm{NH}_{3}$ is
$17 / 3$ while that of N_{2} is $28 / 6$.
Reason :- Equivalent weight $=\frac{\text { Molecular weight }}{\text { number of } e^{-} \text {lost or gained } / \text { mole }}$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

Ordinary Thinking (Objective Questions) The mole concept

1. The number of oxygen atoms in 4.4 g of CO_{2} is approximately
A. 1.2×10^{23}
B. 6×10^{22}
C. 6×10^{23}
D. 12×10^{23}

Answer: A

2. Molarity of liquid HCl with density equal to $1.17 \mathrm{~g} / m L$ is:
A. 36.5
B. 18.25
C. 35.05
D. 4.65

Answer: C

- Watch Video Solution

3. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
A. 0.011
B. 0.029
C. 0.044
D. 0.333

Answer: B

- Watch Video Solution

4. The numbr of atoms in 0.1 mole of a triatomic gas is \qquad .
$\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
A. 1.800×10^{22}
B. 6.026×10^{22}
C. 1.806×10^{23}
D. 3.600×10^{23}

Answer: C

5. Which has the maximum number of molecules among the following
A. $8 g H_{2}$
B. $64 g \mathrm{SO}_{2}$
C. $44 g \mathrm{CO}_{2}$
D. $48 g O_{3}$

Answer: A

- Watch Video Solution

6. When 22.4 L of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at STP, the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to
A. 0.5 mol of $\mathrm{HCl}(\mathrm{g})$
B. 1.5 mol of $\mathrm{HCl}(\mathrm{g})$
C. 1 mol of $\mathrm{HCl}(\mathrm{g})$
D. 2 mol of $\mathrm{HCl}(\mathrm{g})$

Answer: C

- Watch Video Solution

7. The number of water molecules is maximum in
A. 18 molecules of water
B. 1.8 gram of water
C. 18 gram of water
D. 18 moles of water

Answer: D

8. If Avogadro number N_{A} is changed from $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to 6 $.022 \times 10^{20} \mathrm{~mol}^{-1}$, this would change:
A. The definition of mass in units of grams
B. The mass of one mole of carbon
C. the ratio of chemical species to each other in a balanced equation
D. The ratio of elements to each other in a compound

Answer: B

- Watch Video Solution

9. The maximum amount of BaSO_{4} precipitated on mixing BaCl_{2} (0.5
M) with $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{M})$ will correspond to
A. 0.5 M
B. 1.0 M
C. 18 moles
D. 100 moles

Answer: A

- Watch Video Solution

10. The number of moles of sodium oxide in 620 g of it is
A. 1 mol
B. 10 moles
C. 18 moles
D. 100 moles

Answer: B

11. 80 g of oxygen contains as many atoms as in
A. 10 g of hydrogen
B. 5 g of hydrogen
C. 80 g of hydrogen
D. 1 g of hydrogen

Answer: B

(D) Watch Video Solution

12. The number of sodium atoms in 2 moles of sodium ferrocyanide is
A. 12×10^{23}
B. 26×10^{23}
C. 34×10^{23}
D. 48×10^{23}

Answer: D

- Watch Video Solution

13. The total number of gram-molecules of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in 13.5 g of sulphuryl chloride is
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: A

- Watch Video Solution

14. The molarity of orthophosphoric acid having purity of 70% by weight and specific gravity 1.54 would be
A. 11 M
B. 22 M
C. 33 M
D. 44 M

Answer: A

- View Text Solution

15. Number of atoms of He in 100 atoms of He (at.mass 4 amu) is
A. 25
B. 100
C. 50
D. $100 \times 6 \times 10^{-23}$

Answer: A

D Watch Video Solution

16. If 1 ml of water contains 20 drops. Then no. of molecules in a drop of water is
A. 6.023×10^{23} molecules
B. 1.376×10^{26} molecules
C. 1.677×10^{21} molecules
D. 4.346×10^{20} molecules

Answer: C

17. In an experiment, 4 g of $M_{2} O_{x}$ oxide was reduced to 2.8 g of the metal. If the atomic mass of the metal is $56 \mathrm{gmol}^{-1}$, the number of oxygen atoms in the oxide is:
A. 1
B. 2
C. 3
D. 4

Answer: C

D Watch Video Solution

18. A sample of phosphorus trichloride $\left(P l_{3}\right)$ contains 1.4 moles of the substance. How many atoms are there in the sample?
A. 4
B. 5.6
C. 8.431×10^{23}
D. 3.372×10^{24}

Answer: D

- Watch Video Solution

19. Which among the following is the heavist?
A. One mole of oxygen
B. One molecule of sulphur trioxide
C. 100 amu of uranium
D. Ten moles of hydrogen

Answer: C

20. Which one of the following is the lightest?
A. 0.2 mole of hydrogen gas
B. 6.023×10^{22} molecules of nitrogen
C. 0.1 g of silver
D. 0.1 mole of oxygen gas

Answer: C

(D) Watch Video Solution

21. The number of water molecules in 1 L of water is:
A. 18
B. 18×1000
C. N_{A}
D. $55.55 N_{A}$

- Watch Video Solution

22. The number of moles of BaCO_{3} which contains 1.5 moles of oxygen atoms is
A. 0.5
B. 1
C. 3
D. 6.02×10^{23}

Answer: A

23. 250 ml of a sodium carbonate solution contains 2.65 grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. If 10 ml of this solution is diluted to one litre, what is the concentration of the resultant solution (mol. Wt. of $\mathrm{Na}_{-}(\mathrm{a}) \mathrm{CO}_{3}=106$)
A. 0.1 M
B. 0.001 M
C. 0.01 M
D. $10^{-4} \mathrm{M}$

Answer: B

- Watch Video Solution

24. The mass of 1 mole of neutrons ($m_{n}=1.675 \times 10^{-27} \mathrm{~kg}$) is:
A. $1.800 \times 10^{-3} \mathrm{~kg}$
B. $1.008 \times 10^{-4} \mathrm{~kg}$
C. $1.080 \times 10^{-3} \mathrm{~kg}$
D. $1.008 \times 10^{-3} \mathrm{~kg}$

Answer: D

- Watch Video Solution

25. Which has maximum number of atoms
A. 24 gms of $C_{(12)}$
B. 56 gms of $\mathrm{Fe}_{(56)}$
C. 27 gms of $A l_{(27)}$
D. 108 gms of $A g_{(108)}$

Answer: A

26. In INCORRECT statement for 14 g of CO is \qquad .
A. It occupies 2.24 litre at NTP
B. It corresponds to $\frac{1}{2}$ mole of $C O$
C. It corresponds to same mole of CO and N_{2}
D. It corresponds to 3.01×10^{23} molecules of $C O$

Answer: A

- Watch Video Solution

27. The total number of protons in 10 g of calcium carbonate is $\left(N_{0}=6.023 \times 10^{23}\right)$
A. 1.5057×10^{24}
B. 2.0478×10^{24}
C. 3.0115×10^{24}
D. 4.0956×10^{24}

- Watch Video Solution

28. The number of formula units of calcium fluoride CaF_{2} present in
146.4 g of $C a F_{2}$ (The molar mass of $C a F_{2}$ is $78.08 \mathrm{~g} / \mathrm{mol}$) is
A. $1.129 \times 10^{24} \mathrm{CaF}_{2}$
B. $1.146 \times 10^{24} \mathrm{CaF}_{2}$
C. $7.808 \times 1-{ }^{24} \mathrm{CaF}_{2}$
D. $1.877 \times 10^{24} \mathrm{CaF}_{2}$

Answer: A

- View Text Solution

29. Volume occupied by one molecule of water (density $=1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$)
A. $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
B. $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
C. $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
D. $6.023 \times 10^{-23} \mathrm{~cm}$

Answer: A

- Watch Video Solution

30. The number of gram atom of oxygen in $6.02 \times 10^{24} \mathrm{CO}$ molecules is
A. 1
B. 0.5
C. 5
D. 10

- Watch Video Solution

31. The number of moles of hydrogen that can be added to 1 mole of an oil is the highest in
A. Linseed oil
B. Groundanut oil
C. Sunflower seed oil
D. Mustard oil

Answer: A

- View Text Solution

32. Mass of 0.1 moleof methane is
A. 1.6 g
B. 0.1 g
C. 1 g
D. 16 g

Answer: A

- Watch Video Solution

33. Sodium nitrate on reduction with Zn in presence of NaOH solution produces NH_{3}. Mass of sodium nitrate nitrate absorbing 1 mole of electron will be
A. 7.750
B. 10.625
C. 8.000
D. 9.875

Answer: B

- View Text Solution

34.1 mole of methylamine on reaction with nitrous acid gives at NTP:
A. 1.0 Litre of nitrogen
B. 22.4 Litre of nitrogen
C. 11.2 Litre of nitrogen
D. 5.6 Litre of nitrogen

Answer: B

- Watch Video Solution

35. 100 mL of O_{2} and H_{2} are kept at same temperature and pressure.

What is true about their number of molecules ?
A. $N_{O_{2}}>N_{H_{2}}$
B. $N_{O_{2}}<N_{H_{2}}$
C. $N_{O_{2}}=N_{H_{2}}$
D. $N_{O_{2}}+N_{H_{2}}=1$ mole

Answer: C

- Watch Video Solution

36. Common salt obtained from sea water contains $95 \% \mathrm{NaCl}$ by mass. The appoximate number of molecules present in 10.0 g of the salt is
A. 10^{21}
B. 10^{22}
C. 10^{23}
D. 10^{24}

Answer: C

- Watch Video Solution

37. Which of the following is Loschmidt number
A. 6×10^{23}
B. 2.69×10^{19}
C. 3×10^{23}
D. None of these

Answer: B

- Watch Video Solution

38. Assertion: Volume of a gas is inversely proportional to the number of moles of a gas.

Reason: The ratio by volume of gaseous reactants and products is in agreement with their molar ratio.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

39. Assertion : One mole of SO_{2} contains double the number of molecules present in one mole of O_{2}

Reason : Molecular weight of SO_{2} is double to that of O_{2}.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

(D) Watch Video Solution

40. Assertion : 22.4 L of N_{2} at NTP and $5.6 \mathrm{~L} O_{2}$ at NTP contain equal number of molecules.

Reason : Under similar conditions of temperature and pressure all gases contain equal number of molecules.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

41. Assertion: As mole is the basic chemical unit, the concentration of the dissolved solute is usually specified in terms of number of moles of solute.

Reason: The total number of molecules of reactants involved ina balanced chemical equation is known as molecularity of the reaction.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

(D) Watch Video Solution

42. Assertion : Atomicity of oxygen is 2 .

Reason : 1 mole of an element contains 6.023×10^{23} atoms.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

43. In which case is the number of molecules of water maximum?
A. 18 mL of water
B. 0.18 g of water
C. 0.00224 L of water vapours at 1 atm and 273 K
D. $10^{-3} \mathrm{~mol}$ of water

Answer: A

Ordinary Thinking (Objective Questions) Chemical stochiometry

1. The solution of sulphuric acid contains 80% by weight $\mathrm{H}_{2} \mathrm{SO}_{4}$. Specific gravity of this solution is 1.71 . Its normality is about
A. 18.0
B. 27.9
C. 1.0
D. 10.0

Answer: B

2. Under similar conditions of pressure and temperature, 40 ml of slightly moist hydrogen chloride gas is mixed with 20 ml of ammonia gas, the final volume of gas at the same temperature and pressure will be
A. 100 ml
B. 20 ml
C. 40 ml
D. 60 ml

Answer: B

- Watch Video Solution

3. KMnO_{4} react with oxalic acid according to the equation, $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$, here 20 ml of $0.1 \mathrm{MKMnO}_{4}$ is equivalemt to
A. 20 ml of $0.5 \mathrm{M}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
B. 50 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. 50 ml of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. 20 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: B

- Watch Video Solution

4. A compound contains atoms A, B and C. the oxidation number of A is +2 , of B is +5 and of C is -2 . The possible formula of the compound is
A. $A_{3}\left(B C_{4}\right)_{2}$
B. $A_{3}\left(B_{4} C\right)_{2}$
C. $A B C_{2}$
D. $A_{2}\left(B C_{3}\right)_{2}$

- Watch Video Solution

5. 10 g of hydrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaction will be
A. 2 mol
B. 3 mol
C. 4 mol
D. 1 mol

Answer: C

6.1 .0 g of magnesium is burnt with $0.56 \mathrm{~g} O_{2}$ in a closed vessel. Which reactant is left in excess and how much?
A. $M g, 0.44 g$
B. $O 2,0.28 g$
C. $M g, 0.16 g$
D. $O 2,0.16 g$

Answer: C

- Watch Video Solution

7. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What be the percentage purity of magnsesium carbonate in the sample?
A. 75
B. 96
C. 60
D. 84

Answer: D

(D) Watch Video Solution

8. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of $5.8 \% \mathrm{NaCl}$ solution?
A. 28 g
B. 3.5 g
C. 7 g
D. 14 g

Answer: C

9. Suppose the elements X and Y combine to form two compounds of $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , what are tha atomic masses of X and Y ?
A. 30,20
B. 40,30
C. 60,40
D. 20,30

Answer: B

(D) Watch Video Solution

10. The equivalent weight of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the reaction
$\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ is
A. 25
B. 49
C. 59
D. 98

Answer: D

- Watch Video Solution

11. During electrolysis of water, the volume of oxygen liberate is $2.24 \mathrm{dm}^{3}$. The volume of hydrogen liberated, under same conditions will be
A. $2.24 d m^{3}$
B. $1.12 d m^{3}$
C. $4.48 \mathrm{dm}^{3}$
D. $0.56 d \mathrm{~m}^{3}$

Answer: C

- Watch Video Solution

12. A solution of $10 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{FeSO}_{4}$ war titrated with KMnO_{4} solution in acidic medium. The amount of $K M N O_{4}$ used will be
A. 5 ml of 0.1 M
B. 10 ml of 1.1 M
C. 10 ml of 0.5 M
D. 10 ml of 0.02 M

Answer: D

13. Equivalent weight of KMnO_{4} acting as an oxidant in acidic medium is
A. The same as its molecular weight
B. Half of its molecular weight
C. One-third of its molecular weight
D. One-fifth of its molecular weight

Answer: D

- Watch Video Solution

14. The percentage of $P_{2} O_{5}$ in diammonium hydrogen phosphate is:
A. 23.48
B. 46.96
C. 53.78
D. 71.00

Answer: C

- Watch Video Solution

15. KMnO_{4} reacts with ferrous ammonium sulphate according to the equation $\quad \mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$, here 10 ml of $0.1 \mathrm{MKMnO}_{4}$ is equivalent to
A. 20 ml of 0.1 M FeSO 4
B. 30 ml of 0.1 M FeSO 4
C. 40 ml of 0.1 M FeSO 4
D. 50 ml of 0.1 M FeSO 4

Answer: D

16. What is the stoichiometric coefficient fo Ca in the reaction ?
$C a+A l^{3+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{Al}$
A. 2
B. 1
C. 3
D. 4

Answer: C

Watch Video Solution

17. When 2.76 g of silver carbonate is strongly heated, it yields a residue weighing
A. 2.16 g
B. 2.48 g
C. 2.64 g
D. 2.32 g

Answer: A

- Watch Video Solution

18. In the complex with formula $\mathrm{MCl}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ the co-ordination number of the metal M is six. And there is a no molecule of hydration in it. The volume of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution needed to precitate the free chloride ions in 200 ml of 0.01 M solution of the complex is
A. 40 ml
B. 20 ml
C. 60 ml
D. 80 ml

Answer: B

19. How many mL of perhydrol is requried to produce sufficient oxygen which can be used to completely convert 2 L of SO_{2} gas of SO_{3} gas?
A. 10 mL
B. 5 mL
C. 20 mL
D. 30 mL

Answer: A

- Watch Video Solution

20. One mole of potassium dichromate completely oxidises the following number of moles of ferrous sulphate in acidic medium
A. 1
B. 3
C. 5
D. 6

Answer: D

- Watch Video Solution

21.1 g of a mixture of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is heated to $150^{\circ} \mathrm{C}$. The volume of the CO_{2} produced at STP is 112.0 mL . Calculate the percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture ($\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16$)
A. 20
B. 46
C. 84
D. 16

Answer: D

- Watch Video Solution

22. In order to prepare one litre normal solution of KMnO_{4}, how many grams of KMnO_{4} are required if the solution is used in acidic medium for oxidation
A. 158 g
B. 31.6 g
C. 790 g
D. 62 g

Answer: B

23. The oxygen obtained form 72 kg of water is
A. 72 kg
B. 46 kg
C. 50 kg
D. 64 kg

Answer: D

(D) Watch Video Solution

24. What volume of oxygen gas $\left(O_{2}\right)$ measured at $0^{\circ} \mathrm{C}$ and 1 atm is needed to burn completely $1 L$ of propane gas $\left(C_{3} H_{8}\right)$ measured under the same condition?
A. 5 L
B. 10 L
C. 7 L
D. 6 L

Answer: A

- Watch Video Solution

25. In the reaction:
$2 A l_{(s)}+6 \mathrm{HCl}_{(a q .)} \rightarrow 2 \mathrm{Al}_{(a q .)}^{3+}+6 \mathrm{Cl}_{(a q .)}^{-}+3 \mathrm{H}_{2(g)}$
A. $6 L H C l_{(a q)}$ is consumed for every $3 L H_{2(g)}$ produced
B. $33.6 L H_{2(g)}$ is produced regardless of temperature and pressure for avery mole Al that reacts
C. $67.2 L H_{2(g)}$ at STP is produced for every mole Al that reacts
D. $11.2 \mathrm{H}_{2(g)}$ at STP is produced for every mole $\mathrm{HCl}_{(a q)}$ consumed

Answer: D

26. Acidified potassium permanganate soultion is decoloursied by
A. Bleaching powder
B. White vitriol
C. Mohr's salt
D. Microcosmic salt

Answer: C

- Watch Video Solution

27. 12 g of Mg (at. Mass 24) will react completely with acid to give
A. One mole of H_{2}
B. $1 / 2$ mole of H_{2}
C. $2 / 3$ mole of O_{2}
D. Both $1 / 2 \mathrm{~mol}$ of H_{2} and $1 / 2 \mathrm{~mol}$ of O_{2}

Answer: B

- Watch Video Solution

28. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{CaHPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ the equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the above reaction is
A. 21
B. 27
C. 38
D. 49

Answer: D

29. 5 litre of a solution contains 25 mg of CaCO_{3}. What is its concentration in ppm? (mol.wt of CaCO_{3} is 100)
A. 25
B. 1
C. 5
D. 2500

Answer: C

- Watch Video Solution

30. In the reaction, $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, when

1 mole of ammonia and 1 mole of O_{2} are made to react to completion
A. 1.0 mole of $\mathrm{H}_{2} \mathrm{O}$ is produced
B. 1.0 mole of NO will be produced
C. All the oxygen will be consumed
D. All the ammonia will be consumed

Answer: C

D Watch Video Solution

31. 1.5 mol of O_{2} combines with Mg to form oxide MgO . The mass of Mg (at. Mass 24) that has combined is
A. 72 g
B. 36 g
C. 48 g
D. 24 g

Answer: A

32. How much of NaOH is reuired to neutralise $1500 \mathrm{~cm}^{3}$ of 0.1 N HCl ($\mathrm{Na}=23$)?
A. 40 g
B. 4 g
C. 6 g
D. 60 g

Answer: C

- Watch Video Solution

33. The decomposition of cetian mass of CaCO_{3} gave $11.2 \mathrm{dm}^{3}$ of CO_{2} gas at STP. The mass of KOH required to completely neutralise the gas is:
A. 56 g
B. 28 g
C. 42 g
D. 20 g

Answer: B

- Watch Video Solution

34. For the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$, the volume of carbon monoxide required to reduce one mole of ferric oxide is
A. $67.2 d m^{2}$
B. $11.2 d m^{2}$
C. $22.4 d m^{3}$
D. $44.8 \mathrm{dm}^{3}$

Answer: A

35. Number of hydrogen ions present in 10 millionth part of $1.33 \mathrm{~cm}^{3}$ of pure water at $25^{\circ} \mathrm{C}$ is
A. 6.023 million
B. 60 million
C. 8.01 million
D. 80.23 million

Answer: C

- Watch Video Solution

36. If CO_{2} gas is passed through 500 ml of $0.5(\mathrm{M}) \mathrm{Ca}(\mathrm{OH})_{2}$, the amount of CaCO_{3} produced is
A. 10 g
B. 20 g
C. 50 g
D. 25 g

Answer: D

- View Text Solution

37. The mass of BaCO_{3} produced when excess CO_{2} is bubbled through a solution of $0.205 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ is
A. 81 g
B. 40.5 g
C. 20.25 g
D. 162 g

Answer: B

38. Mohr's salt is dissolved in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ instead of distilled water to
A. Enhance the rate of dissolution
B. Prevent cationic hydrolysis
C. Increase the rate of ionisation
D. Increase its reducing strength

Answer: B

- Watch Video Solution

39. If isobutane and n-butane are present in a gas, then how much oxygen should be required for complete combustion of 5 kg of this gas
A. 17.9 kg
B. 9 kg
C. 27 kg
D. 1.8 kg

Answer: A

- Watch Video Solution

40. The correct order of stoichiometries of $A g C I$ formed when AgNO_{3} in excess is treated with the complex:
$\mathrm{CoCI}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCI}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCI}_{3} .4 \mathrm{NH}_{3}$ respectively is:
A. $3 \mathrm{AgCl}, 1 \mathrm{agCl}, 2 \mathrm{AgCl}$
B. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
C. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
D. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$

Answer: B
41. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
A. 1.4
B. 3.0
C. 2.8
D. 4.4

Answer: C

- Watch Video Solution

42. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below

Then the species undergoing disproportionation is
A. BrO_{3}^{-}
B. BrO_{4}^{-}
C. $B r_{2}$
D. HBrO

Answer: D

- View Text Solution

Ordinary Thinking (Objective Questions) Oxidation, Reduction, Oxidizing and Reducing agent

1. Which substance is serving as a reducing agent in the following reaction?
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ni}^{2+}$
A. $\mathrm{H}_{2} \mathrm{O}$
B. Ni
C. H^{+}
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Answer: B

- Watch Video Solution

2. The oxide which cannot act as reducing agent is
A. SO_{2}
B. NO_{2}
C. CO_{2}
D. ClO_{2}

Answer: C
3. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Oxidised only
B. Reduced only
C. Proton acceptor only
D. Both oxidised and reduced

Answer: D

- Watch Video Solution

4. (a) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Role of hydrogen peroxide in the above reactions is respectively
A. Reducing in (i) and (ii)
B. Oxidizing in (i) and (ii)
C. Oxidizing in (i) and reducing in (ii)
D. Reducing in (i) and oxidizing in (ii)

Answer: C

- Watch Video Solution

5. The compound that can work both as oxidising and reducing agent is
A. KMnO_{4}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. BaO_{2}
D. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: B

D Watch Video Solution

6. Following reaction describes the rusting of iron
$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}^{2-}$

Which one of the following statements is incorrect?
A. This is an example of a redox reaction
B. Metallic iron is reduced to $F e^{3+}$
C. $F e^{3+}$ is an oxidising agent
D. Metallic iron is a reducing agent

Answer: B

7. The strongest reducing agent is
A. F^{-}
B. Cl^{-}
C. $B r^{-}$
D. I^{-}

Answer: D

- Watch Video Solution

8. Oxidation involves
A. Loss of electrons
B. Gain of electrons
C. Increase in the valency of negative part
D. Decrease in the valency of positive part

- Watch Video Solution

9. A reducing agent is a substance which can
A. Accept electron
B. Donate electrons
C. Accept protons
D. Donate protons

Answer: B

- Watch Video Solution

10. When zinc is added to CuSO_{4} solution, copper is precipitated. It is
A. Oxidation of Cu^{+2}
B. Reduction of $C u^{+2}$
C. Hydrolysis of CuSO_{4}
D. Ionization of CuSO 4

Answer: B

D Watch Video Solution

11. Which one is oxidising substance?
A. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
B. $C O$
C. $H_{2} S$
D. CO_{2}
12. In $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as
A. Oxidising agent
B. Reducing agent
C. (a) and (b) both
D. None of these

Answer: A

- Watch Video Solution

13. Which of the following statements are correct concerning redox properties?
(i) A metal M for which E° for the half cell reaction $M^{n+}+\mathrm{ne}^{-} \Leftrightarrow M$ is very negative will be a good reducing agent.
(ii) The oxidizing power of the halogen decreases from chlorine to
iodine.
(iii) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide.
A. (i), (ii) and (iii)
B. (i) and (ii)
C. (i) only
D. (ii) and (iii)

Answer: A

(D) Watch Video Solution

14. Which of the following species can functon as an oxidising as well as reducing agent?
A. Cl^{-}
B. ClO_{4}^{-}
C. ClO^{-}
D. MnO_{4}^{-}

Answer: C

(D) Watch Video Solution

15. In the reaction.
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
A. $\mathrm{H}_{2} \mathrm{~S}$ is an acid and $\mathrm{H}_{2} \mathrm{O}_{2}$ is a base
B. $\mathrm{H}_{2} \mathrm{~S}$ is a base and $\mathrm{H}_{2} \mathrm{O}_{2}$ is an acid
C. $\mathrm{H}_{2} \mathrm{~S}$ is an oxidizing agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent
D. $\mathrm{H}_{2} \mathrm{~S}$ is a resucing agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ is oxidizing agent

Answer: D

16. The ion(s) that act/s as oxidizing agent in solution is/are
A. $T l^{+}$and $A l^{3+}$
B. B^{3+} and $A l^{3+}$
C. $T l^{3+}$ only
D. B^{3+} only

Answer: C

- Watch Video Solution

17. Pick out the stronger reducing agent among the following oxyacids of phosphorus
A. Hypophosphorous acid
B. Phosphorous acid
C. Hypophosphoric acid
D. Pyrophosphorous acid

Answer: A

- Watch Video Solution

18. Which of the following pairs of transition metal ions are the stronger oxidising agents in aquesous solutions
A. V^{2+} and $C r^{2+}$
B. $T i^{2+}$ and $C r^{2+}$
C. Mn^{2+} and Co^{3+}
D. V^{2+} and $F e^{2+}$

Answer: C

19. Which one is an oxidising agent
A. $\mathrm{Fe} \mathrm{SO}_{4}$
B. HNO_{3}
C. $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B::D

- Watch Video Solution

20. When copper turnings are added to silver nitrate solution, a blue coloured solution is formed after sometime. It is because, copper
A. Displaces silver from the solution
B. Forms a blue coloured complex with AgNO_{3}
C. Is oxidised to Cu^{2+}
D. Is reduced to Cu^{2+}

Answer: A: C

- Watch Video Solution

21. Maximum number of moles of electrons taken up by one mole of NO_{3}^{-}when it is reduced to :
A. NH_{3}
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. NO
D. NO_{2}

Answer: A

22. One gas bleaches the colour of flowers by reduction and other by oxidation. These gases are
A. $C O$ and $C l_{2}$
B. SO_{2} and Cl_{2}
C. $\mathrm{H}_{2} \mathrm{~S}$ and $B r_{2}$
D. NH_{2} and SO_{2}

Answer: B

- Watch Video Solution

23. Which of the following is not a reducing agent?
A. NaNO_{2}
B. NaNO_{3}
C. $H I$
D. SnCl_{2}

Answer: B

- Watch Video Solution

24. In which of the following reactions, $\mathrm{H}_{2} \mathrm{O}_{2}$ is acting as a reducing agent?
A. $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $2 \mathrm{KI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{KOH}+\mathrm{I}_{2}$
C. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer: D

25. $\mathrm{H}_{2} \mathrm{O}_{2}$ reduces $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
A. In neutral solution
B. In acidic solution
C. In non-polar solvent
D. In alkaline solution

Answer: B

- Watch Video Solution

26. In acidic medium, reaction $\mathrm{MnO}_{4}^{-} \Leftrightarrow \mathrm{Mn}^{2+}$ is an example of -
A. Oxidation by 3 electrons
B. Reduction by 3 electrons
C. Oxidation by 5 electrons
D. Reduction by 5 electrons

- Watch Video Solution

27. In the following reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}$
A. Bromine is oxidised and carbonate is reduced
B. Bromine is reduced and water is oxidised
C. Bromine is neither reduced nor oxidised
D. Bromine is both reduced and oxidised

Answer: D

- Watch Video Solution

28. In the reaction $3 M g+N_{2} \rightarrow M g_{3} N_{2}$
A. Magnesium is reduced
B. Magnesium is oxidized
C. Nitrogen is oxidized
D. None of these

Answer: B

D Watch Video Solution

29. Reducing property of SO_{2} is shown in the reaction
A. $2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{I}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{I}^{-}+4 \mathrm{H}^{+}$
C. $3 \mathrm{Fe}+\mathrm{SO}_{2} \rightarrow 3 \mathrm{FeO}+\mathrm{Fe} \mathrm{S}$
D. $4 \mathrm{NA}+3 \mathrm{SO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Answer: B

30. $\mathrm{H}_{2} \mathrm{~S}$ may provide the colloidal sulphur by
A. Oxidation
B. Reduction
C. Neutralization
D. Hydrolysis

Answer: A

- Watch Video Solution

31. Which one of the following does not get oxidised by bromine water
A. $F e^{+2}$ to $F e^{+3}$
B. Cu^{+}to $\mathrm{Cu} u^{+2}$
C. Mn^{+2} to MnO_{4}^{-}
D. $S n^{+2}$ to $S n^{+4}$

Answer: C

- Watch Video Solution

32. Of the four oxyacids of chlorine the strongest oxidising agent in dilute aqueous solution is :
A. HClO_{4}
B. HClO_{3}
C. HClO_{2}
D. HOCl

Answer: A

33. In the reaction $\mathrm{P}+\mathrm{NaOH} \rightarrow \mathrm{PH}_{3}+\mathrm{NaH}_{2} \mathrm{PO}_{2}$
A. P is oxidised only
B. P is reduced only
C. P is oxidized as well as reduced
D. Na is reduced

Answer: C

- Watch Video Solution

34. Which statement is NOT true for the given reaction $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}$?
A. Fe^{3+} being reduced
B. Oxidation state of Fe has changed
C. Fe^{3+} could be referred to an oxidising agent in this reaction
D. Both Fe^{3+} and Fe^{2+} are called acid radicals

Answer: D

D Watch Video Solution

35. In the reaction $\mathrm{Pb}(s)+C u^{2+}(a q) \rightarrow P b^{2+}(a q)+C u(s)$ which is reducing agent
A. $\mathrm{Pb}^{2+}(a q)$
B. $\mathrm{Cu}^{2+}(a q)$
C. $P b(s)$
D. $C u(s)$

Answer: C

36. In reaction of hydrogen peroxide and sodium carbonate, $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as \qquad -
A. Oxidising agent
B. Reducing agent
C. Bleaching agent
D. Both oxidising and bleaching agent

Answer: B

- Watch Video Solution

37. Serveral blocks of magnesium are fixed to the bottom of a ship to
A. Keep away the sharks
B. Make the ship lighter
C. Prevent action of water and salt
D. Prevent puncturing by under-sea rocks

Answer: C

- Watch Video Solution

38. Which of the following chemical reactions depicts the oxidizing behaviour of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{I}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaHSO} 4+\mathrm{HCl}$
D. $2 \mathrm{PCl}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{POCl}_{3}+2 \mathrm{HCl}+\mathrm{SO}_{2} \mathrm{Cl}_{2}$

Answer: A

39. Strongest reducing agent is-
A. K
B. Mg
C. Al
D. Br

Answer: A

- Watch Video Solution

40. Which of the following acids possesses oxidising, reducing, and complex forming properties ?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HCl
D. HNO_{2}

Answer: D

D Watch Video Solution

41. Which is not oxidised by $\mathrm{MnO}_{-}(2)$?
A. F
B. Cl
C. Br
D. 1

Answer: A

- Watch Video Solution

42. What is the oxidation state of iodine in $\mathrm{H}_{5} \mathrm{IO}_{6}$?
A. 9
B. 5
C. 7
D. 2

Answer: C

- Watch Video Solution

43. The ultimate products oxidation of most of hydrogen and carbon in food stuffs are
A. $\mathrm{H}_{2} \mathrm{O}$ alone
B. CO_{2} alone
C. $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}
D. None of these

Answer: C

- Watch Video Solution

44. Which of the following substances acts as an oxidising as well as a reducing agent?
A. $\mathrm{Na} a_{2} \mathrm{O}$
B. SnCl_{2}
C. $\mathrm{Na}_{2} \mathrm{O}_{2}$
D. NaNO_{2}

Answer: D

- Watch Video Solution

45. The oxidant which is used as an antiseptic is
A. KBrO_{3}
B. KMnO_{4}
C. CrO_{3}
D. KNO_{3}

Answer: B

- Watch Video Solution

46. What is the oxidising agent in chlorine water ?
A. HCl
B. HClO_{2}
C. HOCl
D. None of these

Answer: C
47. In organic reactions, metallic lithium in liquid ammonia behaves as
A. Oxidising agent
B. Reducing agent
C. Bleaching agent
D. Dehydrating agent

Answer: B

- Watch Video Solution

48. In the reaction
$\mathrm{HAsO}_{2}+\mathrm{Sn}^{2+} \rightarrow \mathrm{As}+\mathrm{Sn}^{4+}+\mathrm{H}_{2} \mathrm{O}$ oxidising agent is
A. $S n^{2+}$
B. $S n^{4+}$
C. $A s$
D. HAsO_{2}

Answer: D

- Watch Video Solution

49. Consider the following statements :

In the chemical reaction
(1) Manganese ion is oxidised (2) Manganese ion is reduced
(3) Chloride ion is oxidised (4) Chloride ion is reduced which of theses statements are correct
A. 1 and 3
B. 1 and 4
C. 2 and 3
D. 2 and 4

Answer: C

- Watch Video Solution

50. When NaCl is dissolved in water the sodium ion becomes
A. Oxidised
B. Reduced
C. Hdrolysed
D. Hydrated

Answer: D

- Watch Video Solution

51. Assertion (A): $S O_{2}$ and $C l_{2}$ are both bleaching agents.

Reason (R): Both are reducing agents.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

(D) Watch Video Solution

52. Assertion: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride to mercury

Reason: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not do so.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

53.

Assertion
In
a
reaction
$\mathrm{Zn}_{(s)}+\mathrm{CuSO}_{4(a q)} \rightarrow \mathrm{ZnSO}_{4(a q)}+\mathrm{Cu}_{(s)}, \mathrm{Zn}$ is a reductant but itself get oxidized.

Reason: In a redox reaction, oxidant is reduced by accepting electrons and reductant is oxidized by losing electrons.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

(D) Watch Video Solution

54. Statement 1: $\mathrm{H}_{2} \mathrm{SO}_{4}$ cannot act as reducing agent.

Statement 2 : Sulphur cannot increase its oxidation number beyond + 6.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

Ordinary Thinking (Objective Questions) Oxidation number and Oxidation state

1. In which of the following compounds transition metal has zero oxidation state?
A. CrO_{5}
B. $\mathrm{NH}_{2} \cdot \mathrm{NH}_{2}$
C. NOClO_{4}
D. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$

Answer: D

- Watch Video Solution

2. The oxidation state of Fe in $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is :
A. $\frac{3}{2}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{8}{3}$

Answer: D

- Watch Video Solution

3. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of $M n$ changes from
A. 7 to 4
B. 6 to 4
C. 7 to 2
D. 4 to 2

Answer: C

(D) Watch Video Solution

4. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} \mathrm{O}_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2}<\mathrm{SO}_{3}^{2-}$
B. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{4}^{2}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer: B

- Watch Video Solution

5. Oxidation numbers of P in PO_{4}^{3-}, of S in SO_{4}^{2-}, and that of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are respectively,
A. $+5,+6$ and +6
B. $+3,+6$ and +5
C. $+5,+3$ and +6
D. $-3,+6$ and +6

Answer: A

6. Oxidation no. of P in $H_{4} P_{2} O_{5}, H_{4} P_{2} O_{6}$, and $H_{4} P_{2} O_{7}$ are respectively
A. $+3,+4,+5$
B. $+3,+5,+4$
C. $+5,+3,+4$
D. $+5,+4,+3$

Answer: A

- Watch Video Solution

7. When $C l_{2}$ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
A. Zero to +1 and Zero to -5
B. Zero to -1 and Zero to +5
C. Zero to -1 and Zero to +3
D. Zero to +1 and Zero to -3

Answer: B

- Watch Video Solution

8. In which of the following compounds nitrogen exhibits highest oxidation state
A. $N_{2} H_{4}$
B. NH_{3}
C. $N_{3} H$
D. $\mathrm{NH}_{2} \mathrm{OH}$

Answer: C

9. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
A. S
B. H
C. Cl
D. C

Answer: C

- Watch Video Solution

10. Among the following, the correct order of acidity is:
A. $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
B. $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
C. $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
D. $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}$

Answer: B

- Watch Video Solution

11. Hot concentrated sulpuric acis is a moderatly strong oxidizing agent. Which of the following reaction does not shwo oxidizing behaviour?
A. $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+2 \mathrm{HF}$
B. $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
12. Oxidation number of nickel in $\mathrm{Ni}(\mathrm{CI})_{4}$
A. 0
B. +4
C. -4
D. +2

Answer: A

(Watch Video Solution

13. The oxidation state of sulphur in $N a_{2} S_{4} O_{6}$ is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{3}{5}$
D. $\frac{5}{2}$

Answer: D

D Watch Video Solution

14. Oxidation number of osmium (Os) in OsO_{4} is
A. +4
B. +6
C. +7
D. +8

Answer: D

- Watch Video Solution

15. HNO_{2} acts both as reductant and as oxidant, while HNO_{3} acts only as oxidant. It is due to their
A. Solubility ability
B. Maximum oxidation number
C. Minimum oxidation number
D. Minimum number of valence electrons

Answer: B

- Watch Video Solution

16. Oxidation number of fluorine in $\mathrm{F}_{2} \mathrm{O}$ is:
A. -1
B. +1
C. +2
D. -2

Answer: A

- Watch Video Solution

17. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. +6
B. -7
C. +2
D. -2

Answer: A

- Watch Video Solution

18. When sodium reacts with excess of oxygen, oxidation number of oxygen changes from
A. 0
B. $0-1$
C. 1
D. 0-2

Answer: B

(D) Watch Video Solution

19. If HNO_{3} changes into $\mathrm{N}_{2} \mathrm{O}$, the oxidation number is changed by
A. +2
B. -1
C. 0
D. +4

Answer: D

D Watch Video Solution

20. What is the oxidation number of Co in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClNO}_{2}\right]$?
A. +2
B. +3
C. +4
D. +5

Answer: A

- Watch Video Solution

21. The oxidation state of nitrogen is highest in
A. $N_{3} H$
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. $\mathrm{N}_{2} \mathrm{H}_{2}$
D. NH_{3}

Answer: A

- Watch Video Solution

22. In which reaction there is a change in valency
A. $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
B. $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
D. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
23. When SO_{2} is passed through acidic solution of potassium dichromate, then chromium sulphate is formed. Change in valency of chronium is
A. +4 to +2
B. +5 to +3
C. +6 to +3
D. +7 to +2

Answer: C

- Watch Video Solution

24. The oxidation state of M^{3+} after removing three elelctrons is
B. +3
C. +6
D. -6

Answer: C

- Watch Video Solution

25. Oxidation number of iodine varies from -
A. -1 to +1
B. -1 to +7
C. +3 to +5
D. -1 to +5

Answer: B

26. Which one of the following has the highest oxidation number of iodine?
A. $K I_{3}$
B. $K I$
C. $I F_{5}$
D. KIO_{4}

Answer: D

- Watch Video Solution

27. The charge on cobalt in $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3}$ is -
A. -6
B. -3
C. +3
D. +6

Answer: C

D Watch Video Solution

28. Oxidation state of oxygen inhydrogen peroxide is
A. -1
B. +1
C. 0
D. -2

Answer: A

- Watch Video Solution

29. The oxidation number of P in $\mathrm{Mg}_{2} P_{2} O_{7}$ is
A. +3
B. +2
C. +5
D. -3

Answer: C

- Watch Video Solution

30. The atomic number of an element which can not show the oxidation state of +3 is-
A. 13
B. 32
C. 33
D. 17

- Watch Video Solution

31. The oxidation number of S in $N a_{2} S_{4} O_{6}$ is
A. -2
B. +2
C. -6
D. +6

Answer: D

- Watch Video Solution

32. Oxidation number of N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is
A. $-1 / 3$
B. -1
C. +1
D. -3

Answer: D

- Watch Video Solution

33. The oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$ are respectively
A. $+3,+4,+5$
B. $+5,+4,+3$
C. $+6,+3,+5$
D. $+3,+5,+4$

Answer: C

34. Which of the following statement is correct
A. Hydrogen has oxidation number -1 and +1
B. Hydrogen has same electronegativity as halogens
C. Hydrogen will not be liberated at anode
D. Hydrogen has same ionization potential as alkali metals

Answer: A

- Watch Video Solution

35. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
A. 0
B. +2
C. -2
D. +4

Answer: A

D Watch Video Solution

36. Oxidation number of nitrogen in NaNO_{2} is
A. +2
B. +3
C. +4
D. -3

Answer: B

- Watch Video Solution

37. The highest oxidation state of $M n$ is shown by
A. $K M n O_{4}$
B. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
C. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
D. MnO_{2}

Answer: A

- Watch Video Solution

38. The oxidation number and the electronic configuration of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
A. $+4,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
B. $+2,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
C. $+3,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
D. $+6,1 s^{2} 2 s^{2} 2 p^{6}$

- Watch Video Solution

39. Oxidation number of N in NH_{3} is
A. -3
B. +3
C. 0
D. +5

Answer: A

- Watch Video Solution

40. Nitrogen shows different oxidation states in the range:
A. 0 to +5
B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: B

- Watch Video Solution

41. Oxidation number if iodine in $I O_{3}^{-}, I O_{4}^{-}, K I$ and I_{2} respectively are
A. $-1,-1,0,+1$
B. $+3,+5,+7,0$
C. $+5,+7,-1,0$
D. $-1,-5,-1,0$

Answer: C

42. Oxidation state of phosphorus in cyclotrimetaphosphoric acid is
A. +3
B. +5
C. -3
D. +2

Answer: B

(D) Watch Video Solution

43. In which of the following the oxidation number of oxygen has been arrangd in increasing order :-
A. $O F_{2}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
B. $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}$
C. $\mathrm{BaO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}<\mathrm{KO}_{2}$
D. $\mathrm{KO}_{2}<\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{BaO}_{2}$

Answer: B

- Watch Video Solution

44. Oxygen has an oxidation state of +2 in
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. CO_{2}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $O F_{2}$

Answer: D

45. The sum of the oxidation states of all the carbon atoms present in the compound $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ is:
A. +2
B. 0
C. +4
D. -4

Answer: D

- Watch Video Solution

46. Oxidation state of chlorine in perchloric acid is
A. -1
B. 0
C. -7
D. +7

Answer: D

- Watch Video Solution

47. In the conversion fo Br_{2} to BrO_{3}^{-}, the oxidation state of Br changes from.
A. -1 to -1
B. 0 to - 1
C. 0 to +5
D. 0 to -5

Answer: C

48. Which of the following have been arranged in the decreasing order of oxidation number of sulphur ?
A. $N a_{2} S_{4} O_{6}>H_{2} S_{2} O_{7}>N a_{2} S_{2} O_{3}>S_{8}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{SO}_{2}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
C. $\mathrm{SO}_{2}^{2+}>\mathrm{SO}_{4}^{2-}>\mathrm{SO}_{3}^{2-}>\mathrm{HSO}_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{SO}_{5}>\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{SCl}_{2}>\mathrm{H}_{2} \mathrm{~S}$

Answer: D

- Watch Video Solution

49. Chlorine is in +3 oxidation state in
A. HCl
B. HClO_{4}
C. ICl
D. ClF_{3}

Answer: D

- Watch Video Solution

50. In the chemical reaction $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{HCl}+\mathrm{S}$, the oxidation number of sulphur changes from
A. 0 to 2
B. 2 to 0
C. -2 to 0
D. -2 to -1

Answer: C

51. Oxidation number of oxygen in ozone
A. +3
B. -3
C. -2
D. 0

Answer: D

(D) Watch Video Solution

52. In which of the following compounds iron has lowest oxidation state?
A. $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $K_{4} F e(C N)_{6}$
C. $\mathrm{Fe}(\mathrm{CO})_{5}$
D. $\mathrm{Fe}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

53. In which of the following compounds the oxidation number of carbon is maximum
A. HCHO
B. CHCl_{3}
C. $\mathrm{CH}_{3} \mathrm{OH}$
D. $C_{12} H_{22} O_{11}$

Answer: B

54. the oxidation number of C in CO_{2} is
A. -2
B. +2
C. -4
D. +4

Answer: D

- View Text Solution

55. In XeO_{3} and XeF_{6} the oxidation state of Xe is
A. +4
B. +6
C. +1
D. +3

Answer: B

- Watch Video Solution

56. Calculate the oxidatioin number of S in SO_{4}^{2-} ion.
A. +6
B. +3
C. +2
D. -2

Answer: A

- Watch Video Solution

57. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is:-
A. -1
B. +1
C. +2
D. +3

Answer: B

(D) Watch Video Solution

58. Phosphorus has the oxidation state +3 in
A. Orthophosphoric acid
B. Phosphorus acid
C. Metaphosphoric acid
D. Pyrophosphoric acid

Answer: B

59. The oxidation state of Cr in CrO_{5} is
A. 3
B. 4
C. 6
D. 7

Answer: C

- Watch Video Solution

60. Oxidation number of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is
A. +1
B. +2
C. +3
D. -3

Answer: B

- Watch Video Solution

61. The oxidation state of chromium in the final product formed by the reaction between Kl and acidified potassium dichromate solution is :
A. +4
B. +6
C. +2
D. +3

Answer: D

- Watch Video Solution

62. The oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is:
A. +3
B. +2
C. +1
D. 0

Answer: A

- Watch Video Solution

63. The oxidation number of oxygen in $\mathrm{KO}_{3}, \mathrm{Na}_{2} \mathrm{O}_{2}$ respectively are:
A. 3,2
B. 1,0
C. 0,1
D. $-0.33,-1$
64. Oxidation state of oxygen atom in potassium superoxide is
A. 0
B. -1
C. $-\frac{1}{2}$
D. -2

Answer: C

- Watch Video Solution

65. The oxidation number of nitrogen in $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)^{+}$is
A. -3
B. (-2)
C. -1
D. +2

Answer: B

- Watch Video Solution

66. The oxidation number of Ba in barium peroxide is
A. +6
B. +2
C. 1
D. +4

Answer: B

67. Carbon has zero oxidation number in
A. $C O$
B. CH_{4}
C. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D. $\mathrm{CH}_{3} \mathrm{Cl}$

Answer: C

- Watch Video Solution

68. The oxidation state shown by silicon when it combines with strongly electropositive metals is
A. -2
B. -4
C. +4
D. -2

Answer: B

- Watch Video Solution

69. A compound is in its high oxidation state. Then its will be
A. Highly acidic
B. Highly basic
C. Highest oxidising property
D. Half acidic, half basic

Answer: C

D Watch Video Solution

70. Oxidation numbers of two Cl atoms in belaching powder, CaOCl_{2},
A. $-1,-1$
B. $+1,-1$
C. $+1,+1$
D. $0,-1$

Answer: B

- Watch Video Solution

71. In chromite ore, the oxidation number of iron and chromium are respectively.
A. $+3,+2$
B. $+3,+6$
C. $+2,+6$
D. $+2,+3$

- Watch Video Solution

72. When a mananous salt is fused with a mixture of KNO_{3} and and solid NaOH , the oxidation number of Mn change from +2 to:
A. +4
B. +3
C. +6
D. +7

Answer: C

73.

$6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow 5 \mathrm{NaCl}+\mathrm{A}+3 \mathrm{H}_{2} \mathrm{O}$. What is the oxidation number of chlorine in "A"?
A. +5
B. -1
C. +3
D. +1

Answer: A

- Watch Video Solution

74. The oxidation state of iodine in IPO_{4} is
A. +1
B. +3
C. +5
D. +7

Answer: B

- Watch Video Solution

75. The oxidation states of S atoms in $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$ from left to right respectively are

A. $+6,0,0,+6$
B. $+3,+1,+1,+3$
C. $+5,0,0,+5$
D. $+4,+1,+1,+4$

- Watch Video Solution

76. The oxidation state of nickel in $K_{4} N i(C N)_{4}$ is:
A. -2
B. -1
C. +2
D. 0

Answer: D

- Watch Video Solution

77. The oxidation state of nitrogen in $N_{3} H$ is
A. $+\frac{1}{3}$
B. +3
C. -1
D. $-\frac{1}{3}$

Answer: D

- Watch Video Solution

78. The oxidation number and covalency of sulphur in the sulphur molecule (S_{8}) are respectively:
A. 0 and 2
B. 6 and 8
C. 0 and 8
D. 6 and 2

Answer: A

79. Oxidation number of N in NH_{3} is
A. +5
B. +3
C. -5
D. -3

Answer: D

(D) Watch Video Solution

80. Assertion: Fluorine exists only in -1 oxidation state.

Reason: Fluorine has $2 s^{2} 2 p^{5}$ configuration.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

81. Assertion: HClO_{4} is a stronger acid than HClO_{3}.

Reason: Oxidation state of Cl in HClO_{4} is +VII and in $\mathrm{HClO}_{3}+\mathrm{V}$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

82. Assertion :- Oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{O}$ is zero.

Reason :- $\mathrm{CH}_{2} \mathrm{O}$ (formaldehyde) is a covalent compound.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

83. Assertion : The oxidation numbers are artificial, they are useful as a book keeping device of elements in reactions

Reason : The oxidation numbers do not usually represent real charge on atoms, they are simply conventions that indicate what the maximum charge could possibly be on atom in a molecule.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

Ordinary Thinking (Objective Questions) Redox reaction and Method for balancing Redox reaction

1. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. One fifth
B. Five
C. One
D. Two

Answer: D

(D) Watch Video Solution

2. In the balanced chemical reaction

$$
I O_{3}^{\ominus}+a l^{\ominus}+b H^{\ominus} \rightarrow c H_{2} O+d I_{2}
$$

a, b, c, and d, respectively, correspond to
A. $5,6,3,3$
B. 5, 3, 6, 3
C. $3,5,3,6$
D. $5,6,5,5$

Answer: A

- Watch Video Solution

3. Which of the following reaction involves oxidation reduction?
A. $\mathrm{NaBr}+\mathrm{HCl} \rightarrow \mathrm{NACl}+\mathrm{HBr}$
B. $\mathrm{HBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
C. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
D. $2 \mathrm{NaOH} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
4. In the equation
$\left.4 \mathrm{M}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4\left[\mathrm{M(CN}_{2}\right)\right]^{-}+4 \mathrm{OH}^{-}$
The metal M is
A. Copper
B. Iron
C. Gold
D. Zinc

Answer: C

(D) Watch Video Solution

5. Which of the following is the strongest oxidising agent?
A. $\mathrm{BrO}_{3}^{-} / \mathrm{Br}^{2+}, E^{\circ}=+1.50$
B. $F e^{3+} / F e^{2+}, E^{\circ}=+0.76$
C. $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}, E^{\circ}=+1.52$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}, E^{\circ}=+1.33$

Answer: C

- Watch Video Solution

6. MnO_{4}^{-}ions are reduced in acidic conditions to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_{2}. The oxidation of 25 mL of a solution x containing Fe^{2+} ions required in acidic condition 20 mL of a solution y containing MnO_{4} ions. What value of solution y would be required to oxidize 25 mL of solution x containing Fe^{2+} ions in neutral condition?
A. 11.4 ml
B. 12.0 ml
C. 33.3 ml
D. 35.0 ml

Answer: B

- Watch Video Solution

7. Which of the following equations is a balanced one?
A. $5 \mathrm{BiO}_{3}^{-}+22 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
B. $5 \mathrm{BiO}_{3}^{-}+14 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}$
C. $2 \mathrm{BiO}_{3}^{-}+4 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 2 \mathrm{Bi}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
D. $6 \mathrm{BiO}_{3}^{-}+12 \mathrm{H}^{+}+3 \mathrm{Mn}^{2+} \rightarrow 6 \mathrm{Bi}^{3+}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{MnO}_{4}^{-}$

Answer: B

- Watch Video Solution

8. Number of electron involved in the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion in acidic solution to Cr^{3+} is:
A. 0
B. 2
C. 3
D. 5

Answer: C

- Watch Video Solution

9. Number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ can be reduced by 1 mole of Sn^{2+} ions is:
A. $1 / 3$
B. $1 / 6$
C. $2 / 3$
D. 1

Answer: A
(D) Watch Video Solution
10. Which of the following reaction is a redox reaction?
A. $\mathrm{P}_{2} \mathrm{O}_{5}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
B. $2 \mathrm{AgNO}_{3}+\mathrm{BaCl}_{2} \rightarrow 2 \mathrm{AgCl}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$
D. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

Answer: D

11. What is ' A ' in the following reaction
$2 F e_{(a q)}^{3+}+S n_{(a q)}^{2+} \rightarrow 2 F e_{(a q)}^{2+}+A$?
A. $S n_{(a q)}^{3+}$
B. $S n_{(a q)}^{4+}$
C. $S n_{(a q)}^{2+}$
D. $S n$

Answer: B

D Watch Video Solution

12. Which of the following is not a redox reaction
A. $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$
B. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{CuI}+\mathrm{I}_{2}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
D. $4 \mathrm{KCN}+\mathrm{Fe}(\mathrm{CN})_{2} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer: D

- Watch Video Solution

13. $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Z}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$. In this reaction
Z is
A. $M n^{+2}$
B. $M n^{+4}$
C. MnO_{2}
D. $M n$

Answer: A

- Watch Video Solution

14. When KMnO_{4} acts as an oxidising agnet and ultimetely from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. 4,3,1,5
B. 1,5,3,7
C. 1,3,4,5
D. $3,5,7,1$

Answer: C

- Watch Video Solution

15. which of the following is a redox reaction
A. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}+\mathrm{KCl}$
B. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
D. $A n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$

Answer: D

- View Text Solution

16. Stannous sulphate $\left(\mathrm{SnSO}_{4}\right)$ and potassium permanganate are used as oxidising agents in acidic medium for oxidation of ferrrous ammnium sulphate to ferric sulphate. The ration of number of moles of stannous sulphate required per mole of ferrous ammonium sulphate to the number of moles of KMnO_{4} required per mole of ferrous ammonium sulphate, is:
A. 5.0
B. 0.2
C. 0.6
D. 2.5

Answer: D

- Watch Video Solution

17. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{nO} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

In this equation, the ratio of the coefficients of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ is
A. 1:1
B. 2:3
C. 3:2
D. 1:3

Answer: B

18.

$x \mathrm{KMnO}_{4}+\mathrm{NH}_{3} \rightarrow y \mathrm{KNO}_{3}+\mathrm{MnO}_{2}+\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}, \mathrm{x}$ and y are
A. $x=4, y=6$
B. $x=3, y=8$
C. $x=8, y=6$
D. $x=8, y=3$

Answer: D

- Watch Video Solution

19. The value of x in the partial redox equation
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+x e \Leftrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ is
A. 5
B. 3
C. 1
D. 0

Answer: A

- Watch Video Solution

20. Starch iodide paper is used to test for the presence of
A. lodine
B. Oxidising agent
C. Iodine ion
D. Reducing agent

Answer: B

21. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction are
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
165
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
$\begin{array}{lll}\text { B. } & 5 & 16\end{array}$
C. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
D. $\begin{array}{lll}\mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+} \\ 5 & 16 & 2\end{array}$

Answer: B

- Watch Video Solution

Critical Thinking

1. One litre hard water contains $12.00 \mathrm{mg} \mathrm{Mg}{ }^{2+}$ millieqivalent of washing soda required to remove its hardness is
A. 1
B. 12.15
C. 1×10^{-3}
D. 12.15×10^{-3}

Answer: A

- Watch Video Solution

2. The molar heat capacity of water at constant pressure, C, is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g water which is free to expand, the increase in temperature of water is :
A. 6.6 K
B. 1.2 K
C. 2.4 K
D. 4.8 K

Answer: C

- Watch Video Solution

3. A compound possesses 8% sulphur by mass. The least molecular mass is?
A. 200
B. 400
C. 155
D. 355

Answer: B

- Watch Video Solution

4. In a mole of water vapours at STP, the volume actually occupied or taken by the molecules (i.e., Avogadro's No. \times volume of one molecule) is
A. Zero
B. Less than 1% of 22.4 litres
C. About 10% of the volume of container
D. 1% to 2% of 22.4 litres

Answer: B

- Watch Video Solution

5. Complete combustion of 0.858 g of compound X gives 2.63 g of CO_{2} and 1.28 g of $\mathrm{H}_{2} \mathrm{O}$. The lowest molecular mass X can have
A. 43 g
B. 86 g
C. 129 g
D. 172 g

Answer: A

- Watch Video Solution

6. The set of numerical coefficients that balances the chemical equation
$\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{HCl} \rightarrow \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
A. 1,1,2,2,1
B. 2,2,1,1,1
C. 2,1,1,2,1
D. 2,2,1,2,1

Answer: D

7. Mixture of sand and sulphur may best be separated by
A. Fractional crystallisation from aqueous solution
B. Magnetic method
C. Fractional distillation
D. Dissolving in $C S_{2}$ and filtering

Answer: B

(D) Watch Video Solution

8. How much time would it take to distribute one Avogadro number of wheat grains, if 10^{10} grains are distributed each second?
A. 0.1673
B. 1.673
C. 16.73
D. 167.3

Answer: B

- Watch Video Solution

9. A 100% pure sample of a divalent metal carbonate weighing 2 g on complete thermal decomposition releases 448 cc of carbon dioxide at STP. The equivalent mass of the metal is
A. 40
B. 20
C. 28
D. 12

Answer: A

10. In the following reaction, which choice has value twice that of the equivalent mass of the oxidising agent
$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$
A. 64
B. 32
C. 16
D. 48

Answer: B

- Watch Video Solution

11. What volume of hydrogen gas at 273 K and 1 atm. Pressure will be consumed in obtaining 21.6 g elemental boron (Atomic mass=10.8) from the reduction of boron trichloride by hrogen?
A. 22.4 L
B. 89.6 L
C. 67.2 L
D. 44.8 L

Answer: C

(D) Watch Video Solution

12. A mixture of $C a C l_{2}$ and NaCl weighing 4.44 is treated with sodium carbonate solution to precipitate all the $C a^{2+}$ ions as calcium carbonate. The calcium carbonate so obtained is heated strongly to get 0.56 g of CaO . The percentage of NaCl in the mixture of (atomic mass of $C a=40)$ is
A. 75
B. 30.5
C. 25
D. 69.4

Answer: A

- Watch Video Solution

13. The volume of 0.1 M oxalic acid that can be completely oxidised by 20 mL of $0.025 \mathrm{MKMnO}_{4}$ solution is
A. 125 mL
B. 25 mL
C. 12.5 mL
D. 37.5 mL

Answer: C

JEE Section (Only one choice correct answer)

1. White P reacts with caustic soda, the products are $P H_{3}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$. This reaction is an example of:
A. Oxidation
B. Reduction
C. Oxidation and reduction (Redox)
D. Neutralization

Answer: C

(D) Watch Video Solution

2. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. +3
B. -3
C. -1
D. +5

Answer: A

- Watch Video Solution

3. If 0.50 mol of $B a C l_{2}$ is mixed with 0.20 mol of $N a_{3} P O_{4}$, the maximum number of moles of $B a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is
A. 0.70
B. 0.50
C. 0.20
D. 0.10

- Watch Video Solution

4. HBr and HI can reduce sulphurie acid, HCI can reduced KMnO_{4} and HF can reduce.
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. KMnO_{4}
C. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
D. None of the above

Answer: D

- Watch Video Solution

5. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{O}$ is.
A. -2
B. +2
C. 0
D. +4

Answer: C

- Watch Video Solution

6. If 10^{21} molecules are removed from 200 mg of CO_{2}, the number of moles of CO_{2} left will be ?
A. 2.85×10^{-3}
B. 28.8×10^{-3}
C. 0.288×10^{-3}
D. 1.68×10^{-2}

- Watch Video Solution

7. The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$. The oxidation state of Fe is
A. 1
B. 2
C. 3
D. 0

Answer: A

8. The equivalent weight of MnSO_{4} is half its molecular weight when it is converted to
A. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. MnO_{2}
C. MnO_{4}^{-}
D. MnO_{4}^{2-}

Answer: B

- Watch Video Solution

9. In which mode of expression, the concentration of a solution remains independent of temperature?
A. Molarity
B. Normality
C. Formality
D. Molality

Answer: D

- Watch Video Solution

10. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction are
A. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
A. $2 \quad 5 \quad 16$
B. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
1652
C. $\mathrm{MnO}_{4}^{-} \quad \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{H}^{+}$
D. $\begin{array}{lll}5 & 16 & 2 \\ \mathrm{MnO}_{4}^{-} & \mathrm{C}_{2} \mathrm{O}_{4}^{2-} & \mathrm{H}^{+} \\ 2 & 16 & 5\end{array}$

Answer: A
11. The oxidation number of phosphorus in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is:-
A. +3
B. +2
C. +1
D. -1

Answer: C

- Watch Video Solution

12. The sulphate of a metal M contains 9.87% of M, This sulphate is isomorphous with $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The atomic weight of M is
A. 40.3
B. 36.3
C. 24.3
D. 11.3

Answer: C

(D) Watch Video Solution

13. The weight of 1×10^{22} molecules of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. 41.59 g
B. 415.9 g
C. 4.159 g
D. None of these

Answer: C

14. The oxidation states of the most electronegative element in the products of the reaction between BaO_{2} with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ are
A. 0 and -1
B. -1 and -2
C. -2 and 0
D. -2 and +1

Answer: B

- Watch Video Solution

15. The compound which could not act both as oxidising and reducing agent is
A. SO_{2}
B. MnO_{2}
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. CrO

Answer: C

- Watch Video Solution

16. The law of multiple proportion was proposed by
A. Lavoisier
B. Dalton
C. Proust
D. Gay-Lussac

Answer: B

- Watch Video Solution

17. Which of the following is the most powerful oxidizing agent?
A. F_{2}
B. $C l_{2}$
C. $B r_{2}$
D. I_{2}

Answer: A

D Watch Video Solution

18. The simplest formula of a compound containing 50% of element X (atomic mass 10) and 50% of element Y (atomic mass 20) is
A. $X Y$
B. $X_{2} Y$
C. $X Y_{3}$
D. $X_{2} Y_{3}$

Answer: B

- Watch Video Solution

19. The compound $\mathrm{Yba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ which shows super conductivity has copper in oxidation state \qquad . Assume that the rare earth element yttrium is in its usual +3 oxidation state.
A. $3 / 7$
B. $7 / 3$
C. 3
D. 7

Answer: B

20. Which has the most stable +2 oxidation state ?
A. $A g$
B. $F e$
C. $S n$
D. Pb

Answer: D

- Watch Video Solution

21. The number of moles of KMnO_{4} that will be needed to react completely with one mole of ferrous oxalate in acidic solution is:
A. $\frac{3}{5}$
B. $\frac{2}{5}$
C. $\frac{4}{5}$
D. 1

Answer: A

- Watch Video Solution

22. The normally of 0.3 M phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
A. 0.1
B. 0.9
C. 0.3
D. 0.6

Answer: D

- Watch Video Solution

23. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}$ and $H_{2} S$ respectively are:
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

- Watch Video Solution

24. One mole of calciium phosphide on reaction with excess water gives
A. 1 mole of phosphine
B. 2 moles of phosphoric acid
C. 2 moles of phosphine
D. 1 mole of phosphorus pentaoxide

Answer: C

D Watch Video Solution

25. The oxidation number of sulphur in $S_{8}, S_{2} F_{2}$ and $H_{2} S$ respectively are:
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

26. Among the following identify the species with an atom in +6 oxidation state.
A. MnO_{4}^{-}
B. $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
C. $N i F_{6}{ }^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

27. Among the following, identify the species with an atom in +6 oxidation state.
A. MnO_{4}^{-}
B. $\mathrm{Cr}(\mathrm{CN})_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO} \mathrm{O}_{2} \mathrm{Cl}_{2}$

Answer: D

- Watch Video Solution

28. The reaction $3 \mathrm{ClO}^{-}(a q) \rightarrow \mathrm{ClO}_{3}^{-}(a q)+2 \mathrm{Cl}^{-}(a q)$ an example of
A. Oxidation reaction
B. Reduction reaction
C. Disproportionation reaction
D. Decomposition reaction

Answer: C
29. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise $10 m L$ of this solution is
A. 40 ml .
B. 20 ml .
C. 10 ml .
D. 4 ml .

Answer: A

- Watch Video Solution

30. In the standardization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by iodometry, th equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}$ is
A. (Molecular weight) / 2
B. (Molecular weight) / 6
C. (Molecular weight) / 3
D. Same as molecular weight

Answer: B

- Watch Video Solution

31. How many moles of electrons weigh one kilogram?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{31}$
c. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

32. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $\mathrm{X}+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are
A. $0.01,0.01$
B. $0.02,0.01$
C. 0.01, 0.02
D. $0.02,0.02$

Answer: A

- Watch Video Solution

33. For $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ the correct choice is
A. $\mathrm{H}_{2} \mathrm{PO}_{3}$ is dibasic and resucing
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and non-reducing
C. $H_{3} \mathrm{PO}_{4}$ is tribasic and reducing
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is tribasic and non-reducing

Answer: A

- Watch Video Solution

34. When MnO_{2} is fused with KOH , a coloured compound is formed, the product and its colour is:
A. $\mathrm{K}_{2} \mathrm{MnO}_{4}$, purple green
B. KMnO_{4}, purple
C. $\mathrm{Mn}_{2} \mathrm{O}_{3}$, brown
D. $\mathrm{Mn}_{3} \mathrm{O}_{4}$ black

Answer: A

35. The product of oxidation of I^{-}with MnO_{4}^{-}in alkaline medium is
A. IO_{3}^{-}
B. I_{2}
C. IO^{-}
D. IO_{4}^{-}

Answer: A

- Watch Video Solution

36. The pair of the compounds in which both the metals are in the highest possible oxidation state is
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
B. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{MnO}_{4}^{-}$
C. $\mathrm{TiO}_{3}, \mathrm{MnO}_{2}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}, \mathrm{MnO}_{3}$

Answer: B

- Watch Video Solution

37. Consider a titration of potassium dichromate solution with acidified Mohr's salt solution using diphenylamine as indicator. The number of moles of Mohr's salt required per mole of dichromate is:
A. 3
B. 4
C. 5
D. 6

Answer: D

38. Oxidation states of the metal in the minerals haematite and magnetite, respectively, are
A. II, III in haematite and III in magnetite
B. II, III in haematite and II in magnetite
C. II in haematite and II, III in magnetite
D. III in haematite and II, III in magnetite

Answer: D

- Watch Video Solution

39. Which ordering of compounds is according to the decreasing order of the oxidation state of nitrogen ?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NO}, \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$

Answer: B

- Watch Video Solution

40. The reaction of white phosphorus with aqueous NaOH gives phosphine along with another phosphorus containing compound. The reacation type, the oxidation states of phosphorus in phosphine and the other product are respectvely:
A. Redox reaction, -3 and -5
B. Redox reaction, +3 and +5
C. Disproportionation reaction, -3 and +5
D. Disproportionation reaction, -3 and +3

- Watch Video Solution

41. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing agent?
(A) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{H}_{2} \mathrm{O}_{2}-2 e^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}^{+}$
(C). $\mathrm{H}_{2} \mathrm{O}_{2}+2 e^{-} \rightarrow 2 \mathrm{OH}^{-}$
(D) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-}-2 e^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. (1), (2)
B. (3), (4)
C. (1), (3)
D. (2),(4)

Answer: D

42. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture 1: 4 . The ratio of number of their molecule is :
A. 1:4
B. 7:32
C. 1:8
D. 3:16

Answer: B

- Watch Video Solution

43. The equation which is balanced and represents the correct product(s) is .
A. $\mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{K}_{2} \mathrm{O}$
B. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{+}+5 \mathrm{H}^{+} \rightarrow \mathrm{Co}^{2+}+5 \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
C. $\left[M g\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+(\text { EDTA })^{4-} \xrightarrow{\text { excess } \mathrm{NaOH}}[M g(E D T A)]^{2+}$
D. $\mathrm{CuSO}_{4}+4 \mathrm{KCN} \rightarrow \mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

44. 1 g of a carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on treatment with excess HCl produces 0.01186 mole of CO_{2}. The molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in gmol^{-1} is
A. 84.3
B. 118.6
C. 11.86
D. 1186
45. The most abundant elements by mas in the body of a healthy human adult are Oxygen (61.4%), Carbon (22.9%). Hydrogen (10.0) \%), and Nitrogen (2.6%). The weight which a 75 kg person would gain if all . ${ }^{1} \mathrm{H}$ atoms are replaced by.$^{2} \mathrm{H}$ atoms is
A. 37.5 kg
B. 7.5 kg
C. 10 kg
D. 15 kg

Answer: B

- Watch Video Solution

46. Which of the following reactions is an example of redox reactions ?
A. $X e F_{2}+P F_{5} \rightarrow[X e F]^{+}+P F_{6}^{-}$
B. $\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF}$
C. $\mathrm{XeF}_{6}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+4 \mathrm{HF}$
D. $\mathrm{XeF}_{4} \mathrm{O}_{2} \mathrm{~F}_{2} \rightarrow \mathrm{XeF}_{6}+\mathrm{O}_{2}$

Answer: D

- Watch Video Solution

47. The order of the oxidation state of the phosphours atom in $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ is
A. $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{6}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{2}$
C. $\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}>\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$

Answer: B

- Watch Video Solution

JEE Section (More than one correct answer)

1. Reduction of the metal centre in aqueous permanganate ion involves
A. $3 e^{-}$in neutral medium
B. $5 e^{-}$in neutral medium
C. $3 e^{-}$in alkaline medium
D. $5 e^{-}$in acidic medium

Answer: A::D

2. For the reaction : $\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$ The correct statement(s) in the balanced equation is/are:
A. Stoichiometric coefficient of HSO_{4}^{-}is 6
B. Iodide is oxidized
C. Sulphur is reduced
D. $\mathrm{H}_{2} \mathrm{O}$ is one og the products

Answer: A::B::D

- Watch Video Solution

3. No reaction occurs in which of the following equations
A. $I^{\ominus}+\mathrm{Fe}^{2+} \rightarrow$
B. $\mathrm{F}_{2}+2 \mathrm{NaCl} \rightarrow$
C. $\mathrm{Cl}_{2}+2 \mathrm{NaF} \rightarrow$
D. $I_{2}+2 \mathrm{NaBr} \rightarrow$

Answer: A::C::D

- Watch Video Solution

4. Which of the following is / are disproportionation redox changes?
A. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
B. $5 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{ClO}_{2}+2 \stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{Cl}+\stackrel{\ominus}{\%} \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
C. $3 \mathrm{ClO}^{\ominus} \rightarrow \mathrm{ClO}_{3}^{\ominus}+\mathrm{Cl}^{\ominus}$
D. $2 \mathrm{HCuCl} 2 \xrightarrow[\text { with water }]{\text { Dilution }} \mathrm{Cu}+\mathrm{Cu}^{2+}+4 \mathrm{Cl}+.^{\ominus} 2 \mathrm{H}^{\oplus}$

Answer: C::D

D Watch Video Solution

5. Which of the following reactions does not involve oxidationreduction ?
A. $2 \mathrm{Rb}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{RbOH}+\mathrm{H}_{2}$
B. $2 \mathrm{CuI}_{2} \rightarrow 2 \mathrm{CuI}=\mathrm{I}_{2}$
C. $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
D. $4 \mathrm{KCN}+\mathrm{Fe}(\mathrm{CN})_{2} \rightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

Answer: C::D

- Watch Video Solution

6. 0.1 n mol of " $\mathrm{MnO}_{4}^{\ominus}$ (in acidic medium) can:
A. Oxidies 0.5 mol of Fe^{2+}
B. Oxidise 0.166 mol of $\mathrm{FeC}_{2} \mathrm{O}_{4}$
C. Oxidise 0.25 mol of $\mathrm{C}_{2} \mathrm{O}_{4}^{-2}$
D. Oxidise 0.6 mol of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$

Answer: A::B::C

D Watch Video Solution

7. When $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated
A. There is oxidation of N
B. There is reduction of Cr
C. Net reaction is disproportionation
D. Net reaction is neutralisation

Answer: A::B

- Watch Video Solution

8. which of the following represent redox reactions?
I. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
II. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
iii. $\mathrm{MnO}_{4}^{\ominus}+3 \mathrm{Mn}^{2+}+\stackrel{\ominus}{\mathrm{O}} \mathrm{H} \rightarrow 5 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{IV} .2 C u^{\oplus} \rightarrow C u+C u^{2+}$
A. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
B. $2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}$
C. $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+4 \mathrm{OH}^{-}+4 \mathrm{OH}^{-} \rightarrow 5 \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}$

Answer: C::D

- Watch Video Solution

9. A mixture containing one mole of BaF_{2} and two mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be neutralised by:
A. 1 mol of KOH
B. 2 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$
C. 4 mol of KOH
D. 2 mol of KOH

Answer: D

(D) Watch Video Solution

10. A sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution labelled as " 28 volume" has density of $265 \mathrm{~g} / \mathrm{L}$. Mark the correct option(s) representing concentration of same solution in other units :
A. $M_{\mathrm{H}_{2} \mathrm{O}_{2}}=2.5$
B. $\% \frac{w}{v}=17$
C. Mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}=0.2$
D. $\mathrm{m} m_{\mathrm{H}_{2} \mathrm{O}_{2}}=13.88$

- Watch Video Solution

11. In acidic medium dichromate oin osxidizes stannous ion as :
$x \mathrm{Sn}^{2+}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+z \mathrm{H}^{+} \rightarrow \mathrm{aSn}^{4+}+b \mathrm{Cr}^{3+}{ }_{\mathrm{cH}}^{2} 2 \mathrm{O}$
A. The value of $x: y$ is $1: 3$
B. The value of $x+y+z$ is 18
C. The value of $a: b$ is $3: 2$
D. The value of $z-c$ is 7

Answer: B::C::D

- Watch Video Solution

12. Two bulbs A and B contains $16 g O_{2}$ and $16 g O_{3}$, respectively. Which of the statements are ture?
A. Both bulbs contain same number of atoms
B. Both bulbs contain different number of atoms
C. Both bulbs contain same number of molecules
D. Bulb A contains $N_{A} / 2$ molecules while bulb B contains $N_{A} / 3$ molecules ($N_{A}=$ Avogardro's number)

Answer: A::D

(D) Watch Video Solution

JEE Section (Reasoning type questions)

1. Assertion (A) : If 30 mL of H_{2} and 20 mL of O_{2} react to form water, $5 m L$ of H_{2} is left at the end of the reaction.

Reason (R): H_{2} is the limiting reagent.
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

Answer: D

(D) Watch Video Solution

2. Statement-1 : Atomic mass of sodium is 23 u

Statement-2 : An atom of sodium is 23 times heavier than atom of $\mathrm{C}-12$ isotope
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 2
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 2
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

Answer: C

(D) Watch Video Solution

3. Assertion (A): Calomel is a chemical compound whereas brass is a mixture.

Reason (R): Calomel always contains 5.6 times as much mercury as chlorine by weight. Brass can be made with widely different ratios of copper and zine.
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 3
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 3
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

Answer: A

(D) Watch Video Solution

4. Assertion (A): HNO_{3} acts only as an oxidising agent, while HNO_{2} acts both as an oxidising agnet and a reducing agent.

Reason (R): The oxidation number of N in HNO_{3} is maximum.
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 4
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 4
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

Answer: A

- Watch Video Solution

5. Assertion (A): Sodium perxenate $\left(\mathrm{Na}_{4} \mathrm{XeO}_{6}\right)$ reacts with NaF in acidic medium to give XeO_{3} and F_{2}

Reason (R): XeO_{6}^{4-} is a stronger oxidant than F_{2}.
A. Statement 1 is true, statement 2 is true, statement 2 is a correct
explanation for statement 5
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 5
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

Answer: A

- Watch Video Solution

6. Assertion (A): A reaction between $F e$ and I_{2} occurs, but a reaction between Fe^{2+} and I^{\ominus} does not occur. Reason (R): $F e$ is a better reducing agent than I^{\ominus}.
A. Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 6
B. Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 6
C. Statement 1 is true, statement 2 is false
D. Statement 1 is false, statement 2 is true

- Watch Video Solution

JEE Section (Comprehension type questions)

1. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.
$25 m L$ of household bleach solution was mixed with 30 mL of 0.50 MKI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of $0.25 \mathrm{NNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was used to reach the end point. The molarity of the household bleach solution is :
A. 0.48 M
B. 0.96 M
C. 0.24 M
D. 0.024 M

Answer: C

- Watch Video Solution

2. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.

Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that oxoacid is:
A. $\mathrm{Cl}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
C. ClO_{2}
D. $\mathrm{Cl}_{2} \mathrm{O}_{6}$
3. One litre of mixture of O_{2} and O_{3} at STP was allowed to react with an excess of acidified solution of KI . The iodine liberated required 40 " mL of " $\frac{M}{10}$ sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for complete decomposition of ozone in the original mixture?
A.
B.
C.
D.

Answer:

4. One litre of mixture of O_{2} and O_{3} at STP was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 " mL of " $\frac{M}{10}$ sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for complete decomposition of ozone in the original mixture?
A.
B.
C.
D.

Answer:

5. One litre of mixture of O_{2} and O_{3} at STP was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 " mL of " $\frac{M}{10}$ sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for complete decomposition of ozone in the original mixture?
A. 1.20×10^{21}
B. 1.20×10^{20}
C. 1.20×10^{22}
D. 1.20×10^{23}

Answer: A

6. Nitric acid is the most important oxyacid formed y nitrogen .It is one of the major industial chemicl and is widely used. Nitric acid is manufactured by the catalytic oxidation of ammonia in what is known as OSTWALD PROCESS which can be represented by the sequenve of reactions shown below:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow[\text { Catalyst }]{\mathrm{Pt} / \mathrm{Rh}} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \ldots(i)$
$2 \mathrm{NO}(f)+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{1120 \mathrm{~K}} 2 \mathrm{NO}_{2}(g)$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
The aqueous nitric acid obtained by this method can be concentrated by distillation to $\sim 68.5 \%$ by weight . Further concentrated to 98% acid can be achieved by dehyration with concentrated sulphuric acid.

85 kg of $\mathrm{NH}_{3}(\mathrm{~g})$ was heated with 320 kg oxygen in the first step and
NHO_{3} is prepared according to the above reactions. If the above reactions. If the final solution has volume 500 L , then molarity of HNO_{3} is :
[Assume NO formed finally is not reused]

$$
\text { A. } 3.33 \mathrm{M}
$$

B. 8 M
C. 2 M
D. 6.66 M

Answer: D

- Watch Video Solution

7. Nitric acid is the most important oxyacid formed y nitrogen .It is one of the major industial chemicl and is widely used. Nitric acid is manufactured by the catalytic oxidation of ammonia in what is known as OSTWALD PROCESS which can be represented by the sequenve of reactions shown below:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow[\text { Catalyst }]{\mathrm{Pt} / R h} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}(f)+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{1120 \mathrm{~K}} 2 \mathrm{NO}_{2}(g)$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
The aqueous nitric acid obtained by this method can be concentrated by distillation to $\sim 68.5 \%$ by weight . Further concentrated to 98% acid
can be achieved by dehyration with concentrated sulphuric acid. If 180 litre of water completely reacts with NO_{2} produced to form nitric acid according ot the above reactions then the volume of air at STP containing 20% of NH_{3} is : $\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{gm} / \mathrm{ml}\right)$
A. $1.56 \times 10^{6} L$
B. $6.72 \times 10^{4} L$
C. $3.36 \times 10^{6} L$
D. None of these

Answer: C

D Watch Video Solution

8. Nitric acid is the most important oxi-acid formed by nitrogen. It is one of the major idustrial chemicals and is widely used. Nitric is manufactured by ostwald process in which catalytic oxidation of ammonia is done in following sequence as shown by reactions
$4 \mathrm{NH}_{3}(\mathrm{~g})+50_{2}(\mathrm{~g}) \xrightarrow[\text { Catalyst }]{\mathrm{Pt} / \mathrm{Rh}} 4 N O(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{1120 \mathrm{~K}} 2 \mathrm{NO}_{2}(\mathrm{~g}) . . .(\mathrm{ii})$
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)$
In this process the aqueous nitric acid is obtained which can be concentrated by distillation to $\sim 68.5 \%$ by weight. Then concentration to 98% acid can be achieved by dehydration with concentrated sulfuric acid.

If 170 kg of NH_{3} is heated in excess of oxygen, then the volume of $\mathrm{H}_{2} \mathrm{O}(l)$ produced in 1st reaction at STP is
$\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=1 \mathrm{~g} / m L\right)$
A. $33.6 \times 10^{3} L$
B. 270 L
C. $224 \times 10^{3} L$
D. 170 L

Answer: B

9. Redox reactions play a vital role in chemistry and biology. The values of standard redox potential $\left(E^{\circ}\right)$ of two half-cells reactions decide which way the reaction is expected to proceed. A simple example is a Daniell cell in which zince goes into solution and copper gets deposited. Given below are set of half-cell reactions (acidic medium) along with their E° in V with respect to normal hydrogen electrode values.

$$
\begin{array}{ll}
l_{2}+2 e^{-} \rightarrow 2 l^{-} & E^{\circ}=0.54 \\
\mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-} & E^{\circ}=1.36 \\
\mathrm{Mn}^{3+}+e^{-} \rightarrow \mathrm{Mn}^{2+} & E^{2}=1.50 \\
\mathrm{Fe}^{3+}+e^{-} \rightarrow \mathrm{Fe}^{2+} & E^{\circ}=0.77 \\
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} & E^{\circ}=1.23
\end{array}
$$

Among the following, identify the correct statement
A. Chloride ion is oxidised by O_{2}
B. $F e^{2+}$ is oxidised by iodide
C. Iodide ion is oxidised by chlorine
D. Mn^{2+} is oxidised by chlorine

Answer: D

D Watch Video Solution

10. Redox reactions play a pivotal role in chemistry and biology. The values standard redox potential $\left(E^{c-}\right)$ of two half cell reactions decided which way the reaction is expected to preceed. A simple example is a Daniell cell in which zinc goes into solution and copper sets deposited. Given below are a set of half cell reactions (acidic medium) along with their E^{c-} (V with respect to normal hydrogen electrode) values. Using this data, obtain correct explanations for Question.
$I_{2}+2 e^{-} \rightarrow 2 I^{c-}, \quad E^{c-}=0.54$
$C l_{2}+2 e^{-} \rightarrow 2 C l^{c-}, \quad E^{c-}=1.36$
$\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}, \quad E^{c-}=1.50$
$F e^{3+}+e^{-} \rightarrow \mathrm{Fe}^{2+}, \quad E^{c-}=0.77$
$\mathrm{O}_{2}+4 \mathrm{H}^{\oplus}+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}, \quad E^{c-}=1.23$
While Fe^{3+} is stable, Mn^{3+} is not stable in acid solution because
A. O_{2} oxidises Mn^{2+} to Mn^{3+}
B. O_{2} oxidises both Mn^{2+} to Mn^{3+} and Fe^{2+} to Fe^{3+}
C. Fe^{3+} oxidises $\mathrm{H}_{2} \mathrm{O}$ to O_{2}
D. Mn^{3+} oxidises $\mathrm{H}_{2} \mathrm{O}$ to O_{2}

Answer: D

- Watch Video Solution

11. Redox reactions play a pivotal role in chemistry and biology. The values standard redox potential $\left(E^{c-}\right)$ of two half cell reactions decided which way the reaction is expected to preceed. A simple example is a Daniell cell in which zinc goes into solution and copper sets deposited. Given below are a set of half cell reactions (acidic medium) along with their E^{c-} (V with respect to normal hydrogen electrode) values. Using this data, obtain correct explanations for Question.
$I_{2}+2 e^{-} \rightarrow 2 I^{c-}, \quad E^{c-}=0.54$

$$
C l_{2}+2 e^{-} \rightarrow 2 C l^{c-}, \quad E^{c-}=1.36
$$

$$
M n^{3+}+e^{-} \rightarrow M n^{2+}, \quad E^{c-}=1.50
$$

$$
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}, \quad E^{c-}=0.77
$$

$$
\mathrm{O}_{2}+4 H^{\oplus}+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}, \quad E^{c-}=1.23
$$

Sodium fusion extract obtained from aniline on treatment with iron
(II) sulphate and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the presence of air gives a Prussion blue precipitate. The blue colour is due to the formation of
A. $F e_{4}\left[F e(C N)_{6}\right]_{3}$
B. $F e_{3}\left[F e(C N)_{6}\right]_{2}$
C. $F e_{4}\left[F e(C N)_{6}\right]_{2}$
D. $F e_{3}\left[F e(C N)_{6}\right]_{3}$

Answer: A

D Watch Video Solution

1. The oxidation number of Mn in the product of alkaline oxidative fusion of MnO_{2} is

- Watch Video Solution

2. A student of performs a titration with different burettes and finds titre values of $25.2 m L, 25.25 m L$, and 25.0 mL . The number of significant figures in the average titre value is

- Watch Video Solution

3. Among the following, the number of elements showing only one non-zero oxidation state is:
$O, C, F, N, P, S n, T l, N a, T i$
4. A decapeptide (Mol. Wt. 769) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine.

Glycine contributes 47.0% to the total weight of the hydrolysed products. The number of glycine units. Present in the decapeptide is.

- Watch Video Solution

5. The difference in the oxidation numbers of two types of sulphul atoms in $\mathrm{Na}_{2} S_{4} \mathrm{O}_{6}$ is.....

- Watch Video Solution

6. The answer to each of the following questions is a single digit integer, ranging from 0 to 9 . If correct answers to the question number A, B, C and D (say) are 4,0,9 and 2 respectively, then correct darkening of bubbles should be as shown on the side.
(C) Reaction of Br_{2} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aqueous solution gives sodium
bromide and sodium bromate with evolution of CO_{2} gas. The number of sodium bromide molecules involved in the balanced chemical equation is \qquad

D Watch Video Solution

7. $29.2 \%(w / w) \mathrm{HCl}$ stock, solution has a density of $1.25 \mathrm{gmL} \mathrm{L}^{-1}$. The molecular weight of HCl is $36.5 \mathrm{gmol}^{-1}$. The volume $(m L)$ of stock solution required to prepare a 200 mL solution of 0.4 MHCl is :

- Watch Video Solution

8. In dilute aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ the complete diaquadioxalatoferrate (II) is oxidised by MnO_{4}^{-}. For the reaction, the ratio of the rate of change of $\left[\mathrm{H}^{+}\right]$to the rate of change of $\left[\mathrm{MnO}_{4}^{-}\right]$is
9. in neutral or faintly alkaline solution, 8 moles of permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. The magnitude of X is

- Watch Video Solution

10. Washing soda $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ is widely used in softening of hard water. If 1 L of hard water requires 0.0286 g of washing soda, the hardness of NaOH in ppm is

- View Text Solution

11. In the following reaction
$x \mathrm{Zn}+y \mathrm{HNO}_{3}($ dil $) \rightarrow a \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+b \mathrm{H}_{2} \mathrm{O}+c \mathrm{NH}_{4} \mathrm{NO}_{3}$
What is the sum of the coefficients $(a+b+c)$

- Watch Video Solution

12. $C N^{\ominus}$ ion is oxidised by a powerful oxidising agent to $N O_{3}^{\ominus}$ and CO_{2} or CO_{3}^{2-} depending on the acidity of the reaction mixture.
$C N^{\ominus} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}_{3}^{\ominus}+\mathrm{H}^{\oplus}+\not \boldsymbol{F}^{-}$
What is the number (n) of electrons involved in the process, divided by $10 ?$

(D) Watch Video Solution

13. What is the n-factor for the phenol in the following reaction Phenol $\xrightarrow{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}$

- View Text Solution

14. The value of n in the molecular fromula $B e_{n} A l_{2} S i_{6} O_{18}$.
15. A sample contains a mixtrure of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

HCl is added to 15.0 g .of the sample, yielding 11.0 g of NaCl . What percent of the sample is $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
$\left[\begin{array}{l}\text { Reaction are } \\ \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{NaHCO}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\end{array}\right]$
$M w$ ofNaCl $=58.5, \mathrm{MwofNaHCO}_{3}=84, \mathrm{MwofNa} \mathrm{CO}_{3}=106 \mathrm{gmol}^{-1}$

- Watch Video Solution

16. What volume of 90% alcohol by weight $\left(d=0.8 g m L^{-1}\right)$ must be used to prepared 80 mL of 10% alcohol by weight $\left(d=0.9 g m L^{-1}\right)$

- Watch Video Solution

JEE Section (Matrix Match type questions)

1. Match the reactions in Column \mid with the nature of the reactions/type of the products listed in Column II.

- View Text Solution

2. Match the reaction given in Column I with average oxidation number given in Column II.

- View Text Solution

3. Match the no. of moles listed in Column I with their relevant amounts listed in Column II.

- View Text Solution

