©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

ALTERNATING CURRENT

Exercise

1. The power is transmitted from a power house on a voltage $A C$ because
A. Electric current travels faster at higher volts
B. It is more economical due to less power wastage
C. It is difficult to generate power at low voltage
D. Chances of stealing transmission lines are minimized

Answer: B

D Watch Video Solution

2. The potential differences V and the current i flowing through an instrument in an $A C$ circuit of frequency f are given by $V=5 \cos \omega t$ and $I=2 \sin \omega t$ amperes (where $\omega=2 \pi f$). The power dissipated in the instrument is
A. Zero
B. 10 W
C. 5 W
D. 2.5 W

Answer: A

- Watch Video Solution

3. In an $A C$ circuit, V and I are given by
$V=100 \sin (100 t) v o<s, I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$.
The power dissipated in circuit is
A. 10^{4} watt
B. 10 watt
C. 2.5 watt
D. 5 watt

Answer: C

- Watch Video Solution

4. Alternating current can not be measured by D.C.

Ammeter because
A. ac cannot pass through dc ammeter
B. Average value of complete cycle is zero
C. ac is virtual
D. ac changes its direction

Answer: B

- Watch Video Solution

5. The resistance of a coil for $D C$ is in ohms. In AC, the resistance
A. Will remain same
B. Will increase
C. Will decrease
D. Will be zero
6. If instantaneous current is given by $i=4 \cos (\omega t+\varphi)$ amperes, then the $r . m$. s. value of current is
A. 4 amperes
B. $2 \sqrt{2}$ amperes
C. $4 \sqrt{2}$ amperes
D. Zero amperes

Answer: B

- Watch Video Solution

7. In an $A C$ circuit, peak value of voltage is 423 volts. Its effective voltage is
A. 400 volts
B. 323 volts
C. 300 volts
D. 340 volts

Answer: c

- Watch Video Solution

8. In an ac circuit $I=100 \sin 200 \pi t$. The time required for the current to achieve its peak value will be
A. $\frac{1}{100} \mathrm{sec}$
B. $\frac{1}{200} \mathrm{sec}$
C. $\frac{1}{300} \mathrm{sec}$
D. $\frac{1}{400} \mathrm{sec}$

Answer: D

- Watch Video Solution

9. The peak value of Alternating current is 6amp, then r.m.s. value of current will be
A. $3 A$
B. $3 \sqrt{3} A$
C. $3 \sqrt{2} A$
D. $2 \sqrt{3} A$

Answer: C

- Watch Video Solution

10. A generator produces a time varying voltage given by
$V=240 \sin 120 t$, where t is in second. The rms voltage
and frequency are
A. 60 Hz and 240 V
B. 19 Hz and 120 V
C. 19 Hz and 170 V
D. 754 Hz and 70 V

Answer: C

- Watch Video Solution

11. If E_{0} represents the peak value of the voltage in an ac circuit, the r.m.s. value of the voltage will be
A. $\frac{E_{0}}{\pi}$
B. $\frac{E_{0}}{2}$
C. $\frac{E_{0}}{\sqrt{\pi}}$
D. $\frac{E_{0}}{\sqrt{2}}$
12. The peak value of $A C$ mains (in volt) is
A. 155.6 volts
B. 220.0 volts
C. 311.0 volts
D. 440 volts

Answer: c

- Watch Video Solution

13. A sinusoidal ac current flows through a resistor of resistance R. If the peak current is I_{p}, then the power dissipated is
A. $I_{p}^{2} R \cos \theta$
B. $\frac{1}{2} I_{p}^{2} R$
C. $\frac{4}{\pi} I_{p}^{2} R$
D. $\frac{1}{\pi} I_{p}^{2} R$

Answer: B
14. A 40Ω electric heater is connected to a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ mains supply. The peak value of electric current flowing in the circuit is approximately
A. 2.5 A
B. 5.0 A
C. $7 A$
D. 10 A

Answer: c

D Watch Video Solution

15. The frequency of ac mains in India is
A. $30 \mathrm{c} / \mathrm{s}$ or Hz
B. $50 \mathrm{c} / \mathrm{s}$ or Hz
C. $60 \mathrm{c} / \mathrm{s}$ or Hz
D. $120 \mathrm{c} / \mathrm{s}$ or Hz

Answer: b

- Watch Video Solution

16. The r.m.s value of an a.c of 59 Hz is 10 A . The time taken by the alternating current in reaching from zero to maximum value and the peak value of current will be
A. $2 \times 10^{-2} \mathrm{sec}$ and 14.14 amp
B. $1 \times 10^{-2} \mathrm{sec}$ and 7.07 amp
C. $5 \times 10^{-3} \mathrm{sec}$ and 7.07 amp
D. $5 \times 10^{-3} \mathrm{sec}$ and 14.14 amp

Answer: D

- Watch Video Solution

17. The root mean square value of the alternating current is equal to
A. Twice the peak value
B. Half the peak value
C. $\frac{1}{\sqrt{2}}$ times the peak value
D. Equal to the peak value

Answer: C

- Watch Video Solution

18. The peak value of an alternating emf E given by
$E=\left(E_{0}\right) \cos \omega t$
is 10 V and frequency is 50 Hz . At time $t=(1 / 600) s$ the instantaneous value of emf is
A. 10 V
B. $5 \sqrt{3} V$
C. 5 V
D. 1 V

Answer: B

D Watch Video Solution

19. In an $A C$ circuit the voltage applied is $E=E_{0} \sin \omega t$.

The resulting current in the circuit is
$I=I_{0} \sin \left(\omega t-\frac{\pi}{2}\right)$. The power consumption in the circuit is given by
A. $P=\frac{E_{0} I_{0}}{\sqrt{2}}$
B. $P=\sqrt{2} E_{0} I_{0}$
C. $P=\frac{E_{0} I_{0}}{2}$
D. $P=0$

Answer: D

- Watch Video Solution

20. In an $A C$ circuit, the instantaneous values of e.m.f
and current are $e=200 \sin 314 t$ volt and
$i=\sin \left(314 t+\frac{\pi}{3}\right)$ ampere. The average power
consumed in watt is
A. 200
B. 100
C. 50
D. 25

Answer: C

- Watch Video Solution

21. An AC generator produced an output voltage
$E=170 \sin 377 t$ volts, where t is in seconds. The frequnecy of $A C$ voltage is
A. 50 Hz
B. 110 Hz
C. 60 Hz
D. 230 Hz

D Watch Video Solution

22. In general in an alternating current circuit
A. The average value of current is zero
B. The average value of square of the current is zero
C. Average power dissipation is zero
D. The phase difference between voltage and current is zero

Answer: A
23. An $A C$ is given by the equation
$i=i_{1} \cos \omega t+i_{2} \sin \omega t$. The r.m.s. current is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right) \\
& \text { B. } \frac{1}{\sqrt{2}}\left(i_{1}+i_{2}\right)^{2} \\
& \text { C. } \frac{1}{\sqrt{2}}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2} \\
& \text { D. } \frac{1}{2}\left(i_{1}^{2}+i_{2}^{2}\right)^{1 / 2}
\end{aligned}
$$

Answer: C
24. In an $A C$ circuit, the current is given by $i=5 \sin \left(100 t-\frac{\pi}{2}\right)$ and the $A C$ potential is $V=200 \sin (100 t)$ volt. Then the power consumption is
A. 20 watt
B. 40 watt
C. 1000 watt
D. 0 watt

Answer: D
25. An electron lamp is conected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Then the peak value of voltage is
A. 210 V
B. 211 V
C. 311 V
D. 320 V

Answer: C

- Watch Video Solution

26. In a circuit, the value of the alternating current is measured by hot wire ammeter as 10 ammeter. Its peak
value will be
A. 10 A
B. 20 A
C. 14.14 A
D. 7.07 A

Answer: c

(D) Watch Video Solution

27. The voltage of domestic ac is 220 volt. What does this represent
A. Mean voltage
B. Peak voltage
C. Root mean voltage
D. Root mean square voltage

Answer: d

- Watch Video Solution

28. The r.m.s. voltage of domestic electricity supply is 220
volt. Electrical appliances should be designed to withstand an instantaneous voltage of
A. 220 V
B. 310 V
C. 330 V
D. 440 V

Answer: b

D Watch Video Solution

29. The process of converting alternating current into
direct current is known as
A. Purification
B. Amplification
C. Rectification
D. Current amplification

(D) Watch Video Solution

30. In an $A C$ circuit with voltage V and current I, the power dissipated is
A. VI
B. $\frac{1}{2} V I$
C. $\frac{1}{\sqrt{2}} V I$
D. Depends on the phase between V and I

Answer: d
31. For an ac circuit $V=15 \sin \omega t$ and $I=20 \cos \omega t$ the average power consumed in this circuit is
A. 300 watt
B. 150 watt
C. 75 watt
D. zero

Answer: D
32. A bulb is connected first with $D C$ and the then $A C$ of same voltage then it will shine brightly with
A. AC
B. DC
C. Brightness will be in ratio $1 / 1.4$
D. Equally with both

Answer: D

- Watch Video Solution

33. An $A C$ supply gives $30 V_{r m s}$ which passes through a
10Ω resistance. The power dissipated in it is
A. $90 \sqrt{2} W$
B. 90 W
C. $45 \sqrt{2} W$
D. 45 W

Answer: B

- Watch Video Solution

34. The frequency of an alternating voltage is 50 cycles $/ \mathrm{sec}$ and its amplitude is 120 V . Then the r.m.s value of voltage is
A. 101.3 V
B. 84.8 V
C. 70.7 V
D. 56.5 V

Answer: b

D Watch Video Solution

35. A resistance of 20Ω is connected to a source of an alternating potential $V=220 \sin (100 \pi t)$. The time taken by the current to change from the peak value to rms value is
A. 0.2 sec
B. 0.25 sec
C. $25 \times 10^{-3} \mathrm{sec}$
D. $2.5 \times 10^{-3} \mathrm{sec}$

Answer: d

- Watch Video Solution

36. Voltage and current in an ac circuit are given by
$V=5 \sin \left(100 \pi t-\frac{\pi}{6}\right)$ and $I=4 \sin \left(100 \pi t+\frac{\pi}{6}\right)$
A. Voltage leads the current by 30°
B. Current leads the voltage by 30°
C. Current leads the voltage by 60°
D. Voltage leads the current by 60°

Answer: C

- Watch Video Solution

37. If an AC main supply is given to be 220 V . What would be the average e.m.f during a positive half cycle?
A. 198 V
B. 386 V
C. 256 V
D. None of these
38. In an $A C$ circuit, the mass value of the current I_{rms} is
related to the peak current I_{0} as

$$
\begin{aligned}
& \text { A. } I_{r m s}=\frac{1}{\pi} I_{0} \\
& \text { B. } I_{r m s}=\frac{1}{\sqrt{2}} I_{0} \\
& \text { C. } I_{r m s}=\sqrt{2} I_{0} \\
& \text { D. } I_{r m s}=\pi I_{0}
\end{aligned}
$$

Answer: b
39. An alternating voltage is represented as
$E=20 \sin 300 t$. The average value of voltage over one cycle will be
A. Zero
B. 10 volts
C. $20 \sqrt{2}$ volt
D. $\frac{20}{\sqrt{2}}$ volt

Answer: a
40. The ratio of peak value and r.m.s value of an alternating current is
A. 1
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $1 / \sqrt{2}$

Answer: C

- Watch Video Solution

41. A 280 ohm electric bulb is connected to 200 V electric
line. The peak value of current in the bulb will be
A. About one ampere
B. Zero
C. About two ampere
D. About four ampere

Answer: a

- Watch Video Solution

42. An $A C$ source is rated at $220 \mathrm{~V}, 50 \mathrm{~Hz}$. The time taken for voltage to change from its peak value to zero is
A. 50 sec
B. 0.02 sec
C. 5 sec
D. $5 \times 10^{-3} \mathrm{sec}$

Answer: d

- Watch Video Solution

43. If the value of potential in an $a c$, circuit is 10 V , then the peak value of potential is
A. $\frac{10}{\sqrt{2}}$
B. $10 \sqrt{2}$
C. $20 \sqrt{20}$
D. $\frac{20}{\sqrt{2}}$

Answer: b

- Watch Video Solution

44. A lamp consumes only 50% of peak power in an $a . c$. circuit. What is the phase difference between the applied voltage and the circuit current
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: b

D Watch Video Solution

45. If an alternating voltage is represented as
$E=141 \sin (628 t)$, then the rms value of the voltage and the frequency are respectively
A. $141 \mathrm{~V}, 628 \mathrm{~Hz}$
B. $100 \mathrm{~V}, 50 \mathrm{~Hz}$
C. $100 \mathrm{~V}, 100 \mathrm{~Hz}$
D. $141 \mathrm{~V}, 100 \mathrm{~Hz}$

Answer: C
46. The maximum value of a.c. voltage in a circuit is 707

V . Its rms value is
A. 70.7 V
B. 100 V
C. 500 V
D. 707 V

Answer: C

- Watch Video Solution

47. Choke coil works on the principle of
A. Transient current
B. Self induction
C. Mutual induction
D. Wattless current

Answer: B

D Watch Video Solution

48. A choke coil has.
A. High inductance and low resistance
B. Low inductance and high resistance
C. High inductance and high resistance
D. Low inductance and low resistance

Answer: a

- Watch Video Solution

49. Choke coil is used to control
A. ac
B. dc
C. Both ac and dc
D. Neither ac nor dc

- Watch Video Solution

50. Current in the circuit is wattless, if
A. Inductance in the circuit is zero
B. Resistance in the circuit is zero
C. Current is alternating
D. Resistance and inductance both are zero

Answer: B

D Watch Video Solution
51. The phase angle between e.m.f. and current in LCR series ac circuit is
A. 0 to $\pi / 2$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: A

D Watch Video Solution

52. A choke coil is preferred to a rheostate in $A C$ circuit
A. It consumes almost zero power
B. It increases current
C. It increases power
D. It increases voltage

Answer: a

D Watch Video Solution

53. An alternating e.m.f. is applied to purely capacitive circuit. The phase relation between e.m.f. and current
flowing in the circuit is or in a circuit containing
capacitance only
A. e.m.f. is ahead of current by $\pi / 2$
B. Current is ahead of e.m.f. by $\pi / 2$
C. Current lags behind e.m.f. by π
D. Current is ahead of e.m.f. by π

Answer: B

D Watch Video Solution

54. An ac source is connected to a resistive circuits.

Which of the following statements are false?
A. Current leads the voltage and both are in same phase
B. Current lags behind the voltage and both are in same phase
C. Current and voltage are in same phase
D. Any of the above may be true depending upon the value of resistance

Answer: c

D Watch Video Solution

55. Average energy stored in a pure inductance L when
current i flows through it, is

$$
\text { A. } \frac{1}{2} L I^{2}
$$

B. $\frac{1}{4} L I^{2}$
C. $2 L i^{2}$
D. Zero

Answer: d

- Watch Video Solution

56. An alternating current of frequency ' f ' is flowing in a circuit containing a resistance R and a choke L in series. The impedence of this circuit is
A. $R+2 \pi f L$
B. $\sqrt{R^{2}+4 \pi^{2} f^{2} L^{2}}$
C. $\sqrt{R^{2}+L^{2}}$
D. $\frac{10}{2 \pi} H z$

Answer: b

D Watch Video Solution

57. A resonant $A C$ circuit contains a capacitor of capacitance $10^{-6} \mathrm{~F}$ and an inductor of $10^{-4} \mathrm{H}$. The frequency of electrical oscillation will be
A. $10^{5} \mathrm{~Hz}$
B. 10 Hz
C. $\frac{10^{5}}{2 \pi} \mathrm{~Hz}$
D. $\frac{10}{2 \pi} \mathrm{~Hz}$

Answer: C

- Watch Video Solution

58. Power delivered by an ac source of angular frequency
ω_{0} to an $L C R$ series circuit is maximum when .
A. $\omega L=\omega C$
B. $\omega L=\frac{1}{\omega C}$
C. $\omega L=-\left(\frac{1}{\omega C}\right)^{2}$
D. $\omega L=\sqrt{\omega C}$

- Watch Video Solution

59. An alternating voltage is connected in series with a resistance R and inductance L if the potential drop across the resistance is 200 V and across the inductance is 150 V , then the applied voltage is
A. 350 V
B. 250 V
C. 500 V
D. 300 V

Answer: b
60. An inductive circuit a resistance of 10 ohm and an inductance of 2.0 henry. If an AC voltage of 120 volt and frequency of 60 Hz is applied to this circuit, the current in the circuit would be nearly
A. 0.32 amp
B. 0.016 amp
C. 0.48 amp
D. 0.80 amp

Answer: b
61. Same current is flowing in two alternating circuits.

The first circuit contains only inductances and the other contains only a capacitor, if the frequency of the e.m.f of
$A C$ is increased, the effect on the value of the current will be
A. Increases in the first circuit and decreases in the
other
B. Increases in both the circuits
C. Decreases in both the circuits
D. Decreases in the first circuit and increases in the
other
62. A capacitor becomes a perfect insulator for
A. Alternating currents
B. Direct currents
C. Both ac and dc
D. None of these

Answer: b

- Watch Video Solution

63. In a circuit containing an inductance of zero resistances, the e.m.f of the applied AC voltage leads the current by
A. 90°
B. 45°
C. 30°
D. 0°

Answer: a

- Watch Video Solution

64. In a pure inductive circuit or \ln an ac circuit containing inductance only, the current
A. Leads the e.m.f. by 90°
B. Lags behind the e.m.f. by 90°
C. Sometimes leads and sometime lags behind the e.m.f.
D. Is in phase with the e.m.f.

Answer: B
65. A 20volts $A C$ is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the voltage across the resistance is 12 V , the voltage across the coil is
A. 16 volts
B. 10 volts
C. 8 volts
D. 6 volts

Answer: a
66. A resistance of 300Ω and an inductance of $\frac{1}{\pi}$ henry are connected in series to an $A C$ voltage of 20 volts and 200 Hz frequency. The phase angle between the voltage and current is
A. $\tan ^{-1} \frac{4}{3}$
B. $\tan ^{-1} \frac{3}{4}$
C. $\tan ^{-1} \frac{3}{2}$
D. $\tan ^{-1} \frac{2}{5}$

Answer: a

67. The power factor of LCR circuit at resonance is-
A. 0.707
B. 1
C. Zero
D. 0.5

Answer: B

- Watch Video Solution

68. An inductance of 1 mH a condenser of $10 \mu F$ and a resistance of 50Ω are connected in series. The
reactances of inductor and condensers are same. The reactance of either of them will be
A. 100Ω
B. 30Ω
C. 3.2Ω
D. 10Ω

Answer: d

D Watch Video Solution

69. The natural frequency of a L-C circuit is equal to
A. $\frac{1}{2 \pi} \sqrt{L C}$
B. $\frac{1}{2 \pi \sqrt{L C}}$
C. $\frac{1}{2 \pi} \sqrt{\frac{L}{C}}$
D. $\frac{1}{2 \pi} \sqrt{\frac{C}{L}}$

Answer: b

D Watch Video Solution

70. An alternating voltage $E=200 \sqrt{2} \sin (100 t)$ is connected to a 1 microfarad capacitor through an AC ammeter. The reading of the ammeter shall be
A. 10 mA
B. 20 mA
C. 40 mA
D. 80 mA

Answer: b

D Watch Video Solution

71. An $A C$ circuit consists of an inductor of inductance
$0.5 H$ and a capacitor of capacitance $8 \mu F$ in series. The current in the circuit is maximum when the angular frequency of $A C$ source is
A. $500 \mathrm{rad} / \mathrm{sec}$
B. $2 \times 10 \mathrm{rad} / \mathrm{sec}$
C. $4000 \mathrm{rad} / \mathrm{sec}$
D. $5000 \mathrm{rad} / \mathrm{sec}$

Answer: a

D Watch Video Solution

72. The average power dissipation in a pure capacitance in $A C$ circuit is
A. $\frac{1}{2} C V^{2}$
B. $C V^{2}$
C. $\frac{1}{4} C V^{2}$
D. Zero

- Watch Video Solution

73. In a region of uniform magnetic induction $B=10^{2}$ tesla, a circular coil of radius 30 cm and resistance π^{2} ohm is rotated about an axis which is perpendicular to the directon of B and which form a diameter of the coil.

If the coil rotates at 200 rpm the amplitude of the alternating current induced in the coil is
A. $4 \pi m A$
B. 30 mA
C. $6 m A$
D. 200 mA

Answer: c

- Watch Video Solution

74. An inductive circuit a resistance of 10 ohm and an inductance of 2.0 henry. If an AC voltage of 120 volt and frequency of 60 Hz is applied to this circuit, the current in the circuit would be nearly
A. 0.32 amp
B. 0.16 amp
C. 0.48 amp
D. 0.80 amp

Answer: b

- Watch Video Solution

75. In a $L C R$ circuit having $L=8.0$ henry, $C=0.5 \mu F$ and $R=100$ ohm in series. The resonance frequency in per second is
A. 600 radian
B. 600 Hz
C. 500 radian
D. 500 Hz

(D) Watch Video Solution

76. in a LCR circuit capacitance is chagned from C to 2 C .

For the resomat frequency to remain unchaged, the inductance should be chagned from L to
A. 2 L
B. $L / 2$
C. $L / 4$
D. $4 L$
77. A 120 volt $A C$ source is connected across a pure inductor of inductance 0.70 henry. If the frequency of the source is 60 Hz , the current passing through the inductor is
A. 4.55 amps
B. 0.355 amps
C. 0.455 amps
D. 3.55 amps

Answer: C
78. The impedence of a circuit consists of $30 h m$ resistance and $40 h m$ reactance. The power factor of the circuit is
A. 0.4
B. 0.6
C. 0.8
D. 1

Answer: b

- Watch Video Solution

79. L, C and R represent the physical quantities, inductance, capacitance and resistance respectively. The combination(s) which have the dimensions of frequency
are

> A. $\frac{1}{R C}$
> B. $\frac{R}{L}$
> C. $\frac{1}{\sqrt{L C}}$
> D. $\frac{C}{L}$

Answer: d
80. The power factor of a good choke coil is
A. Nearly zero
B. Exactly zero
C. Nearly one
D. Exactly one

Answer: a

- Watch Video Solution

81. If resistance of 100Ω, inductance of 0.5 henry and capacitor of $10 \times 10^{-6} F$ are connected in series through 50 Hz AC supply, then impedence is
A. 1.876
B. 18.76
C. 189.72
D. 101.3

Answer: c

- Watch Video Solution

82. An alternating current source of frequency 100 Hz is
joined to a combination of a resistance, a capacitance and a coil in series. The potential difference across the coil, the resistance and the capacitor is 46,8 and 40
volt respectively. The electromotive force of alternating current source in volt is
A. 94
B. 14
C. 10
D. 76

Answer: c

D Watch Video Solution

83. A 10 ohm resistance, 5 mH coil and $10 \mu \mathrm{~F}$ capacitor are joined in series. When a suitable frequency
alternating current source is joined to this combination,
the circuit resonates. If the resistance is halved, the resonance frequency
A. Is halved
B. Is doubled
C. Remains unchanged
D. In quadrupled

Answer: C

- Watch Video Solution

84. L,C and R represent the physical quantities inductance, capacitance and resistance respectively.

Which of the following combinations have dimensions of frequency?
A. $L C$
B. $(L C)^{-1 / 2}$
C. $\left(\frac{L}{C}\right)^{-1 / 2}$
D. $\frac{C}{L}$

Answer: b

D Watch Video Solution

85. In a series circuit $R=300 \Omega, L=0.9 H, C=2.0 \mu F$
and $\omega=1000 \mathrm{rad} / \mathrm{sec}$. The impedence of the circuit is
A. 1300Ω
B. 900Ω
C. 500Ω
D. 400Ω

Answer: C

(D) Watch Video Solution

86. In a $L-R$ circuit, the value of L is $\left(\frac{0.4}{\pi}\right)$ henry
and the value of R is 30 ohm. If in the circuit, an alternating e.m.f of 200 vol at 50 cycles per sec is connected, the impendence of the circuit will be
A. $11.4 \Omega, 17.5 A$
B. $30.7 \Omega, 6.5 A$
C. $40.4 \Omega, 5 A$
D. $50 \Omega, 4 A$

Answer: d

(D) Watch Video Solution

87. The reactance of a coil when used in the domestic AC
power supply $(220 \mathrm{~V}, 50$ cycles $)$ is 100 ohm . The selfinductance of the coil is nearly
A. 3.2 henry
B. 0.32 henery
C. 2.2 henry
D. 0.22 henry

Answer: b

- Watch Video Solution

88. In a series LCR circuit, operated with an ac of angular
frequency ω, the total impedance is
A. $\left[R^{2}+(L \omega-C \omega)^{2}\right]^{1 / 2}$
B. $\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]^{1 / 2}$
c. $\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]^{-1 / 2}$
D. $\left[(R \omega)^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]^{1 / 2}$

Answer: B

D Watch Video Solution

89. The reactance of a $25 \mu F$ capacitor at the AC frequency of 4000 Hz is
A. $\frac{5}{\pi}$ ohm
B. $\sqrt{\frac{5}{\pi}}$ ohm
C. 10 ohm
D. $\sqrt{10} o h m$

Answer: A

- Watch Video Solution

90. The frequency for which a $5 \mu F$ capacitor has a reactance of $\frac{1}{100}$ ohm is given by
A. $\frac{100}{\pi} M H z$
B. $\frac{1000}{\pi} H z$
C. $\frac{1}{1000} H z$
D. 1000 Hz

Answer: a
91. An e.m.f. $E=4 \cos (1000 t)$ volt is applied to an $L R$ circuit of inductance 3 mH and resistance $4 o h m$. The amplitude of current in the circuit is
A. $\frac{4}{\sqrt{7}} A$
B. 1.0 A
C. $\frac{4}{7} A$
D. 0.8 A

Answer: d
92. In an AC circuit, a resistance of Rohm is connected is series with an inductance L. If phase angle between volage and current be 45°, the value of inductive reactance will be
A. $\frac{R}{4}$
B. $\frac{R}{2}$
C. R
D. Cannot be found with the given data

Answer: c

- Watch Video Solution

93. A coil of inductance L has an inductive reactance of
X_{L} in an $A C$ circuit in which the effective current is I.
The coil is made from a super-conducting material and has no resistance. The rate at which power is dissipated in the coil is
A. 0
B. $I X_{L}$
C. $I^{2} X_{L}$
D. $I X_{L}^{2}$

Answer: a

94. The phase difference between the current and voltage of $L C R$ circuit in series combination at resonance is
A. 0
B. $\pi / 2$
C. π
D. $-\pi$

Answer: a

- Watch Video Solution

95. In a series resonant circuit, the $A C$ voltage across
resistance R, inductance L, and capacitance C are
$5 \mathrm{~V}, 10 \mathrm{~V}$ and 10 V respectively. The $A C$ voltage applied to the circuit will be
A. 20 V
B. 10 V
C. 5 V
D. 25 V

Answer: c
96. When 100 volts $D C$ is applied across a coil, a current of $1 a m p$ flows through it. When 100 volt $A C$ at 50 cycles
s^{-1} is applied to the same coil, only 0.5 ampere current follows.then the impedence of the coil is
A. 100Ω
B. 200Ω
C. 300Ω
D. 400Ω

Answer: b
97. The coefficient of induction of a choke coil is $0.1 H$ and resistance is 12Ω. If it is connected to an alternating current source of frequency 60 Hz , then power factor will be
A. 0.32
B. 0.30
C. 0.28
D. 0.24

Answer: b

- Watch Video Solution

98. For series LCR circuit, correct statements are

A. Applied e.m.f. and potential difference across
resistance are in same phase
B. Applied e.m.f. and potential difference at inductor coil have phase difference of $\pi / 2$
C. Potential difference at capacitor and inductor have phase difference of $\pi / 2$
D. Potential difference across resistance and
capacitor have phase difference of $\pi / 2$

Answer: C

Watch Video Solution
99. In a purely resistive ac circuit, the current
A. Lags behind the e.m.f. in phase
B. Is in phase with the e.m.f.
C. Leads the e.m.f. in phase
D. Leads the e.m.f. in half the cycle and lags behind it in the other half

Answer: B

D Watch Video Solution

100. If an 8Ω resistance and 6Ω reactance are present in an $A C$ series circuit then the impedence of the circuit will be
A. 20 ohm
B. 14 ohm
C. 10 ohm
D. $14 \sqrt{2}$ ohm

Answer: C
101. A $12 o h m$ resistor and a 0.21 henry inductor are connected in series to an $A C$ source operating at 20 volts, 50 cycle/second. The phase angle between the current and the source voltage is
A. 30°
B. 40°
C. 80°
D. 90°

Answer: c
102. What will be the phase difference between virtual voltage and virtual current, when the current in the circuit is wattless
A. 90°
B. 45°
C. 180°
D. 60°

Answer: a
103. The resonant frequency of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant frequecy will become
A. $f / 2$
B. $2 f$
C. f
D. $f / 4$

Answer: a
104. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant frequency?
A. Resistive
B. Capacitive
C. Inductive
D. None of the above

Answer: b
105. In an ac circuit the potential differences across an inductance and resistance joined in series are, respectively, 16 V and 20 V . The total potential difference across the circuit is
A. 20.0 V
B. 25.6 V
C. 31.9 V
D. 53.5 V

Answer: b
106. A 220 V , 50 Hz ac source is connected to an inductance of 0.2 H and a resistance of 20 ohm in series.

What is the current in the circuit
A. 10 A
B. $5 A$
C. 33.3 A
D. 3.33 A

Answer: d
107. An $L C R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $C=0.1 \mu F$. The impedence of the circuit will be minimum for a frequency of
A. $\frac{10^{5}}{2 \pi} s^{-1}$
B. $\frac{10^{6}}{2 \pi} s^{-1}$
C. $2 \pi \times 10^{5} s^{-1}$
D. $2 \pi \times 10^{6} s^{-1}$

Answer: A
108. In a series $L C R$ circuit, resistance $R=10 \Omega$ and the impedence $Z=20 \Omega$ the phase difference between the current and the voltage is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C
109. A series $A C$ circuit consists of an inductor and a capacitor. The inductance and capacitance is respectively

1henry and $25 \mu F$ if the current is maximum in circuit then angular frequency will be
A. 200
B. 100
C. 50
D. $200 / 2 \pi$

Answer: a

110. An alternating EMF of frequency $\frac{1}{2 \pi \sqrt{L C}}$ is applied to a series LCR circuit. For this frequency of the applied EMF,
A. The circuit is at resonance and its impedance is
made up only of a reactive part
B. The current in the circuit is in phase with the applied e.m.f. and the voltage across R equals this
applied emf
C. The sum of the p.d.'s across the inductance and
capacitance equals the applied e.m.f. which is 180°
ahead of phase of the current in the circuit
D. The quality factor of the circuit is $\omega L / R$ or $1 / \omega C R$ and this is a measure of the voltage magnification (produced by the circuit at resonance) as well as the sharpness of resonance of the circuit

Answer: bd

D Watch Video Solution

111. In the circuit below, the $A C$ source the voltage $V=20 \cos (\omega t)$ volts with $\omega=2000 \mathrm{rad} / \mathrm{sec}$. The
amplitude of the current will be nearest to

A. $2 A$
B. $3.3 A$
C. $2 / \sqrt{5} A$
D. $\sqrt{5} A$

Answer: a
112. The value of the current through an inductance of 1

H and of negligible resistance, when connected through an ac source of 200 V and 50 Hz , is
A. 0.637 A
B. 1.637 A
C. 2.637 A
D. 3.637

Answer: a

- Watch Video Solution

113. The quality factor of LCR circuit having resistance (R) and inductance (L) at resonance frequency (ω) is given by
A. $\frac{\omega L}{R}$
B. $\frac{R}{\omega L}$
C. $\left(\frac{\omega L}{R}\right)^{1 / 2}$
D. $\left(\frac{\omega L}{R}\right)^{2}$

Answer: a

- Watch Video Solution

114. Power factor is maximum in an $L C R$ circuit when
A. $X_{L}=X_{C}$
B. $R=0$
C. $X_{L}=0$
D. $X_{C}=0$

Answer: a

D Watch Video Solution

115. In an $A C$ circuit the reactance of a coil is $\sqrt{3}$ times its resistance, the phase difference between the voltage across the current through the coil will be
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 4$
D. $\pi / 6$

Answer: a

- Watch Video Solution

116. The capacitance of a pure capacitance is 1 farad. In DC circuits, its effective resistance will be
A. Zero
B. Infinite
C. 1 ohm
D. $1 / 2 \mathrm{ohm}$

Answer: b

- Watch Video Solution

117. In an ac circuit, the current lags behind the voltage
by $\pi / 3$. The components in the circuit are
A. R and L
B. R and C
C. L and C
D. Only R
118. The reactance of a coil when used in the domestic AC power supply $(220 \mathrm{~V}, 50 \mathrm{cycles})$ is 50 ohm . The inductance of the coil is nearly
A. 2.2 henry
B. 0.22 henry
C. 1.6 henry
D. 0.16 henry

Answer: d

119. In an $A C$ circuit, the power factor
A. Is zero when the circuit contains an ideal resistance only
B. Is unity when the circuit contains an ideal resistance only
C. Is zero when the circuit contains an ideal inductance only
D. Is unity when the circuit contains an ideal inductance only

Answer: bc

120. A resistance of 40 ohms and an inductance of 95.5 millihenry are connected in series in a 50 cycle/sec AC circuit. The impedence of this combination is very nearly
A. 30 ohm
B. 40 ohm
C. 50 ohm
D. 60 ohm

Answer: c

D Watch Video Solution

121. For high frequency, a capacitor offers
A. More reactance
B. Less reactance
C. Zero reactance
D. Infinite reactance

Answer: b

- Watch Video Solution

122. The coil of choke in a circuit
A. Increases the current
B. Decreases the current
C. Does not change the current
D. Has high resistance to dc circuit

Answer: b

- Watch Video Solution

123. In a circuit, the current lags behind the voltage by a phase difference of $\pi / 2$, the circuit will contain which of the following ?
A. Only R
B. Only L
C. Only C
D. R and C

Answer: b

D Watch Video Solution

124. Reactance of an inductor of $\frac{1}{\pi}$ henry at 50 Hz frequency is
A. $\frac{50}{\pi}$ ohm
B. $\frac{\pi}{50} o h m$
C. 100 ohm
D. 50 ohm

- Watch Video Solution

125. An oscillator circuit consists of an inductance of 0.5 mH and a capacitor of $20 \mu F$. The resonant frequency of the circuit is nearly
A. 15.92 Hz
B. 159.2 Hz
C. 1592 Hz
D. 15910 Hz

Answer: c
126. Reactance of a capacitor of capacitance $C \mu F$ for ac
frequency $\frac{400}{\pi} H z$ is 25Ω. The value C is
A. $50 \mu F$
B. $25 \mu F$
C. $100 \mu F$
D. $75 \mu F$

Answer: a

- Watch Video Solution

127. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is
A. $R / \omega L$
B. $R /\left(R^{2}+\omega^{2} L^{2}\right)^{1 / 2}$
C. $\omega L / R$
D. $R /\left(R^{2}-\omega^{2} L^{2}\right)^{1 / 2}$

Answer: B
128. A circuit has a resistance of 11Ω, an inductive reactance of 25Ω, and a capacitive resistance of 18Ω. It is connected to an $A C$ source of 260 V and 50 Hz . The current through the circuit (in amperes) is
A. 11
B. 15
C. 18
D. 20

Answer: d
129. A 0.7 henry inductor is connected across a $120 \mathrm{~V}-60 \mathrm{HzAC}$ source. The current in the inductor will be very nearly
A. 4.55 amp
B. 0.355 amp
C. 0.455 amp
D. 3.55 amp

Answer: C
130. There is a 5Ω resistance in an $A C$, circuit. Inductance of 0.1 H is connected with it in series. If equation of $A C$ emf is $5 \sin 50 t$ then the phase difference between current and e.m.f. is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. 0

Answer: c
131. An inductor of inductance L and ressistor of resistance R are joined in series and connected by a source of frequency ω. Power dissipated in the circuit is
A. $\frac{\left(R^{2}+\omega^{2} L^{2}\right)}{V}$
B. $\frac{V^{2} R}{\left(R^{2}+\omega^{2} L^{2}\right)}$
C. $\frac{V}{\left(R^{2}+\omega^{2} L^{2}\right)}$
D. $\frac{\sqrt{R^{2}+\omega^{2} L^{2}}}{V^{2}}$

Answer: b

- Watch Video Solution

132. In a ac circuit of capacitance the current from potential is
A. Forward
B. Backward
C. Both are in the same phase
D. None of these

Answer: a

D Watch Video Solution

133. A coil of 200Ω resistance and $1.0 H$ inductance is
conneted to an $A C$ source of frequency $200 / 2 \pi H z$.

Phase angle between potential and current will be
A. 30
B. 90
C. 45
D. 0

Answer: c

D Watch Video Solution

134. In a $L C R$ circuit the $P . D$ between the terminals of
the inductance is 60 V , between the terminals of the capacitor is 30 V and that between the terminals of resistance is 40 V . The supply voltage will be equal to.
A. 50 V
B. 70 V
C. 130 V
D. 10 V

Answer: a

- Watch Video Solution

135. Radio frequency choke uses core of
A. Air
B. Iron
C. Air and iron

D. None of these

Answer: a

- Watch Video Solution

136. in a LCR circuit capacitance is chagned from C to $2 C$.

For the resomat frequency to remain unchaged, the inductance should be chagned from L to
A. 4 L
B. 2 L
C. $L / 2$
D. $L / 4$

Answer: c

- Watch Video Solution

137. In an LCR series a.c. Circuit the voltage across each of hte components L, C and R is 50 V . The voltage across the LC combination will be
A. 50 V
B. $50 \sqrt{2} V$
C. 100 V
D. 0 V (zero)

Answer: d
138. A coil has $L=0.04 H$ and $R=12 \Omega$. When it is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply the current flowing through the coil, in ampere is
A. 10.7
B. 11.7
C. 14.7
D. 12.7

Answer: d

- Watch Video Solution

139. The current in series $L C R$ circuit will be the maximum when ω is
A. As large as possible
B. Equal o natural frequency of LCR system
C. $\sqrt{L C}$
D. $\sqrt{1 / L C}$

Answer: d

D Watch Video Solution

140. An inductor L and a capacitor C are connected in the circuit as shown in the figure. The frequency of the
power supply is equal to the resonant frequency of the circuit. Which ammeter will read zero ampere

A. A_{1}
B. A_{2}
C. A_{3}
D. None of these

Answer: c
141. Which of the following components of a LCR circuit, with ac supply, dissipates energy
A. LCR
B. R
C. C
D. All of these

Answer: b

- Watch Video Solution

142. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :
A. $\frac{1}{2 \pi f(2 \pi f L+R)}$
B. $\frac{1}{\pi f(2 \pi f L+R)}$
C. $\frac{1}{2 \pi f(2 \pi f L-R)}$
D. $\frac{1}{\pi f(2 \pi f L-R)}$

Answer: a

D Watch Video Solution

143. In an A.C. circuit the current
A. Always leads the voltage
B. Always lags behind the voltage
C. Is always in phase with the voltage
D. May lead or lag behind or be in phase with the voltage

Answer: D

- Watch Video Solution

144. For the series $L C R$ circuit shown in the figure, what is the resonance frequency and the amplitude of
the current at the resonating frequency

A. $2500 \mathrm{rad}-s^{-1}$ and $5 \sqrt{2} A$
B. $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $5 A$
C. $2500 \mathrm{rad}-\mathrm{s}^{-1}$ and $\frac{5}{\sqrt{2}} A$
D. $25 \mathrm{rad}-s^{-1}$ and $5 \sqrt{2} A$

Answer: B
145. When 100 V DC is applied across a solenoid, a current of 1.0 A flows in it. When 100 V AC is applied across the same coil. The current drops to $0.5 A$. If the frequency of the ac source is 50 Hz , the impedance and inductance of the solenoid are
A. 200Ω and 0.55 henry
B. 100Ω and 0.86 henry
C. 200Ω and 1.0 henry
D. 100Ω and 0.93 henry

Answer: a

146. In an $L R$-circuit, the inductive reactance is equal to
the resistance R of the circuit. An e.m.f $E=E_{0} \cos (\omega t)$
applied to the circuit. The power consumed in the circuit
is
A. $\frac{E_{0}^{2}}{R}$
B. $\frac{E_{0}^{2}}{2 R}$
C. $\frac{E_{0}^{2}}{4 R}$
D. $\frac{E_{0}^{2}}{8 R}$

Answer: C

147. One $10 \mathrm{~V}, 60 \mathrm{~W}$ bulb is to be connected to 100 V line. The required inductance coil has self-inductance of value $(f=50 \mathrm{~Hz})$
A. 0.052 H
B. 2.42 H
C. 16.2 mH
D. 1.62 mH

Answer: a
148. In the circuit given below, what will be the reading of the voltmeter?

A. 300 V
B. 900 V
C. 200 V
D. 400 V

Answer: c
149. In the circuit shown below, what will be the reading of the voltmeter and ammeter?

A. 800 V, 2A
B. $300 \mathrm{~V}, 2 \mathrm{~A}$
C. $220 \mathrm{~V}, 2.2 \mathrm{~A}$
D. $100 \mathrm{~V}, 2 \mathrm{~A}$

- Watch Video Solution

150. A bulb and a capacitor are connected in series to a source of alternating current. If its frequency is increased, while keeping the voltage of the source constant, then
A. Bulb will give more intense light
B. Bulb will give less intense light
C. Bulb will give light of same intensity as before
D. Bulb will stop radiating light

- Watch Video Solution

151. An alternating e.m.f. of angular frequency ω is
applied across an inductance. The instantaneous power
developed in the circuit has an angular frequency
A. $\frac{\omega}{4}$
B. $\frac{\omega}{2}$
C. ω
D. 2ω

Answer: d
152. The voltage of an ac source varies with time according to the equation $V=100 \sin 100 \pi t \cos 100 \pi t$ where t is in seconds and V is in volt. Then
A. The peak voltage of the source is 100 volts
B. The peak voltage of the source is 50 volt
C. The peak voltage of the source is $100 / \sqrt{2}$ volts
D. The frequency of the source is 50 Hz

Answer: b

153. The diagram shows a capacitor C and a resistor R connected in series to an $A C$ source. V_{1} and V_{2} are voltmeters and A is ammeter

Now, consider the following statemensts :
(I) Reading in A and V_{2} are always in phase.
(II) Reading in V_{1} is ahead in phase with reading in V_{2},
(III) Reading in A and V_{1} are always in phase. Which of these statements are/is correct
A. I only
B. II only
C. I and II only
D. II and III only

Answer: b

D Watch Video Solution

154. In the circuit shown in figure neglecting source resistance the voltmeter and ammeter reading will
respectively, will be

A. 0 V, 3 A
B. $150 \mathrm{~V}, 3 \mathrm{~A}$
C. $150 \mathrm{~V}, 6 \mathrm{~A}$
D. $0 \mathrm{~V}, 8 \mathrm{~A}$

Answer: d
155. The voltage of an AC source varies with time according to the relation: $E=120 \sin 100 \pi t \cos 100 \pi t V$.What is the peak voltage of the source?
A. 120 volts, 100 Hz
B. $\frac{120}{\sqrt{2}}$ volts, 100 Hz
C. 60 volts, 200 Hz
D. 60 volts, 100 Hz

Answer: d

- Watch Video Solution

156. In the circuit shown in figureure the $A C$ source gives a voltage $V=20 \cos (2000 t)$. Neglecting source resistance, the voltmeter and and ammeter readings will be

A. 0 V, 0.47 A
B. $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
C. $0 \mathrm{~V}, 1.4 \mathrm{~A}$
D. $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$

Answer: d

- Watch Video Solution

157. A telephone wire of length 200 km has a capacitance of $0.014 \mu F \operatorname{perkm}$. If it carries an $A C$ of frequency

5 kHz what should be the value of an inductor required to be connected in series so that impedence of the circuit is minimum?
A. 0.35 mH
B. 35 mH
C. 3.5 mH
D. Zero

(D) Watch Video Solution

158. In a certain circuit current changes with time accroding to $i=2 \sqrt{t}$. r.m.s. value of current between $t=2$ to $t=4 s$ will be
A. $3 A$
B. $3 \sqrt{3} A$
C. $2 \sqrt{3} A$
D. $(2-\sqrt{2}) A$
159. Match the following

Currents
(1) $x_{0} \sin \omega t$
(2) $x_{0} \sin \omega t \cos \omega t$
(3) $x_{0} \sin \omega t+x_{0} \cos \omega t \quad(i i i) \quad \frac{x_{0}}{(2 \sqrt{2})}$
A. 1. (i), 2. (ii), 3. (iii)
B. 1. (ii), 2. (iii), 3. (i)
C. 1. (i), 2. (iii), 3. (ii)
D. None of these

Answer: b
160. The reading of ammeter in the circuit shown will be

A. $2 A$
B. $2.4 A$
C. Zero
D. $1.7 A$
161. An $A C$ source of angular frequency ω is fed across a resistor R and a capacitor C in series. The current registered is I. If now the frequency of source is changed to $\omega / 3$ (but maintaining the same voltage), the current in the circuit is found to be halved. The ratio of reactance to resistance at the original frequency ω will be.
A. $\sqrt{\frac{3}{5}}$
B. $\sqrt{\frac{2}{5}}$
C. $\sqrt{\frac{1}{5}}$
D. $\sqrt{\frac{4}{5}}$

D Watch Video Solution

162. An $L-C-R$ series circuit with 100Ω resistance is
connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°.

When only the inductance is removed the current leads
the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit
A. 50 W
B. 100 W
C. 200 W
D. 400 W

Answer: d

D Watch Video Solution

163. A virtual current of $4 A$ and $50 H z$ flows in an $A C$
circuit contaning a coil. The power consumed in the coil
is $240 W$.If the virtual voltage across the coil is 100 v then
its inductance will be
A. $\frac{1}{3 \pi} H$
B. $\frac{1}{5 \pi} H$
C. $\frac{1}{7 \pi} H$
D. $\frac{1}{9 \pi} H$

Answer: b

D Watch Video Solution

164. For a series $R L C$ circuit $R=X_{L}=2 X_{C}$. The impedence of the current and phase different (between)
V and i will be
A. $\frac{\sqrt{5} R}{2}, \tan ^{-1}(2)$
B. $\frac{\sqrt{5} R}{2}, \tan ^{-1}\left(\frac{1}{2}\right)$
C. $\sqrt{5} X_{C}, \tan ^{-1}(2)$
D. $\sqrt{5} R, \tan ^{-1}\left(\frac{1}{2}\right)$

Answer: b

- Watch Video Solution

165. In the adjoining $A C$ circuit the voltmeter whose reading will be zero at resonance is

A. V_{1}
B. V_{2}
C. V_{3}
D. V_{4}

Answer: d

- Watch Video Solution

166. In the adjoining figure the impedance of the circuit will be

A. 120 ohm
B. 50 ohm
C. 60 ohm
D. 90 ohm

Answer: C

D Watch Video Solution

167. If $i=t^{2}, 0<t<T$ then r. m. s. value of current is
A. $\frac{T^{2}}{\sqrt{2}}$
B. $\frac{T^{2}}{2}$
c. $\frac{T^{2}}{\sqrt{5}}$
D. None of these

Answer: c

- Watch Video Solution

168. Is it possible

A. Yes
B. No
C. Cannot be predicted
D. Insufficient data to reply

Answer: a

D Watch Video Solution

169. In a series circuit $C=2 \mu F, L=1 m H$ and
$R=10 \Omega$, when the current in the circuit is maximum, at that time the ratio of the energies stored in the capacitor and the inductor will be
A. $1: 1$
B. $1: 2$
C. 2:1
D. $1: 5$

Answer: d

D Watch Video Solution

170. Which of the following curves represents the variation of impedence (Z) with frequency f in series $L C R$ circuit?

B.
(b) ${ }_{2}^{2} \xrightarrow{2}$
C.
${ }^{(c)}{ }^{z}{ }^{f}$
${ }^{\text {(d) }}$

Answer: c

- Watch Video Solution

171. The variation of the instantaneous current (I) and the instantaneous e.m.f (E) in a circuit is as shown in
figure. Which of the following statement is correct?

A. The voltage lags behind the current by $\pi / 2$
B. The voltage leads the current by $\pi / 2$
C. The voltage and the current are in phase
D. The voltage leads the current by π

Answer: b
172. The figure shows variation of R, X_{L} and X_{C} with frequency f in a series L, C, R circuit. Then for what frequency point, the circuit is inductive?

A. A
B. B
C. C
D. All points
173. An alternating emf is applied across a parallel combination of a resistance R, capacitance C and an inductance L. If I_{R}, I_{L}, I_{C} are the currents through R, L and C respectively. Then the diagram which correctely represents, the phase relationship among I_{R}, I_{L}, I_{C} and source emf $E \mathrm{~m}$ is given by
A.
${ }_{1 / 2}^{n} \underbrace{}_{k} \varepsilon$
B.
(4) $4 \square$
C.
${ }_{n}^{(c)} \underbrace{}_{n} \varepsilon$

Answer: c

- Watch Video Solution

174. An $A C$ source of variable frequency f is connected to an $L C R$ series circuit. Which one of the graphs in figure represents the variation of current of current I in the circuit with frequecy f ?
(b)
B.

C.
(c)
D.
(d)

Answer: d

- Watch Video Solution

175. The r.m.s. voltage of the wave form shown is

A. 10 V
B. 7 V
C. 6.37 V
D. None of these

Answer: a
176. A constant voltage at different frequencies is applied across a capacitance C as shown in the figure.

Which of the following graphs correctly depicts the variation of current with frequency

A.C. generator
A.

B.
(b) $1 \uparrow$
C.
(c) ${ }^{\prime}$
D.
${ }^{(\mathrm{d})}{ }^{\prime}$

Answer: b

- Watch Video Solution

177. The output current versus time curve of a rectifire is shown in the figure. The voltage value of output current
in this case is

A. 0
B. $\frac{I_{0}}{2}$
C. $\frac{2 I_{0}}{\pi}$
D. I_{0}

Answer: C
178. An alternating current I in an inductance coil varies
with time t according to the graph as shown: Which one of the following graph gives the variation of voltage with time?

A.

B.
C.

D.

Answer: b

- Watch Video Solution

179. When an ac source of emfe $=E_{0} \sin (100 t)$ is connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be
$(\pi) /(4)$ as shown in fig. If the circuit consists possibly
only of R-C or $\mathrm{R}-\mathrm{C}$ of L-R series, find the relationship find the relationship between the two elements.

A. $R=1 k \Omega, C=10 \mu F$
B. $R=1 k \Omega, C=1 \mu F$
C. $R=1 k \Omega, L=10 H$
D. $R=1 k \Omega, L=1 H$

Answer: a
180. Two sinusoidal voltage of the same frequency are shown in the diagram. What is the frequency, and the phase relationship between the voltage?

Frequency in $H z$ phase lead of N over M in radius
A.

Frequency m Hz Phase lead of N over M in radians $0.4 \quad-\pi / 4$
B.

Frequency m Hz Phase lead of N over M in radians
2.5
$-\pi / 2$
C.

Frequency m Hz Phase lead of N over M in radians 2.5 $+\pi / 2$
D.

Frequency m Hz Phase lead of N over M in radians
2.5
$-\pi / 4$

Answer: b

- Watch Video Solution

181. The voltage across a pure inductor is represented by
the following diagram. Which one of the following
diagrams will represent the current

A.
(b)
C.

D.

- Watch Video Solution

182. In pure inductive circuit, the curves between frequency f and reciprocal of inductive reactance $1 / X_{L}$ is

Answer: c

D Watch Video Solution

183. The vector diagram of current and voltage for a circuit as shown. The components of the circuit will be

A. LCR
B. LR
C. LCR ot LR
D. None of these

Answer: c

- Watch Video Solution

184. The resonance point in $X_{L}-f$ and $X_{C}-f$ curves is

A. P
B. Q
C. R
D. S

Answer: c
185. The $i-v$ curve for anti-resonant circuit is

Answer: b

- Watch Video Solution

186. The graphs given below depict the dependence of two reactive impedences X_{1} and X_{2} on the frequency of the alternating e.m.f. applied individually to them. We can then say that

A. X_{1} is an inductor and X_{2} is a capacitor
B. X_{1} is a resistor and X_{2} is a capacitor
C. X_{1} is a capacitor and X_{2} is an inductor
D. X_{1} is an inductor and X_{2} is a resistor
187. Which of the following plots may represent the reactance of a series $L C$ combination?

A. a
B. b
C. c
D. d

- Watch Video Solution

188. Identify the graph which correctly reperesents the
variation of capacitive reactance X_{C} with frequency
A.
$\xrightarrow[\rightarrow i]{()^{(2)}}$
B.
(b) $\begin{gathered}x_{c} \\ \uparrow \\ \rightarrow f\end{gathered}$
C.
$\underset{\rightarrow f}{\stackrel{\text { c) }}{\substack{x \\ i}}{ }_{\rightarrow}^{\rightarrow+}}$

Answer: b

D Watch Video Solution

189. Assertion: In series $L C R$ circuit resonance can take place.

Reason: Resonance takes place if inductance and capacitive reactance are equal and opposite.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

D Watch Video Solution

190. Assertion: The alternating current lags behined the e.m.f. by a phase angle of $\pi / 2$, when $A C$ flows through an inductor.

Reason: The inductive reactance increases as the frequency of $A C$ source decreases.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: c

D Watch Video Solution

191. Assertion: Capacitance serves as a block for $D C$ and offers an easy path to $A C$.

Reason: Capacitance reactance is inversely proportional to frequency.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

192. Assertion: When capacitive reactance is smaler than the inductive reactance is $L C R$ circuit, e.m.f. leads the current.

Reason : The phase angle is the angle between the alternating e.m.f. and alternating current of the circuit.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.
193. Assertion: Chock coil is the prefered over a resistor to adjust current in an $A C$ circuit.

Reason: Power factor for inductance is zero.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

- Watch Video Solution

194. Assertion: If the frequency of alternating current in
an $A C$ circuit consisting of an inductance coil is increased then current gets decreased.

Reason: The current is inversely proportional to frequency of alternating current.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

D Watch Video Solution

195. Assertion: A bulb connected in series with a solenoid is connected to $A C$ source. If a soft iron core is introduced in the solenoid, the bulb will glow brighter.

Reason: On introducing soft iron core in the solenoid, the inductance increases.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d

- Watch Video Solution

196. Statement 1: An alternating current shown magnetic effect.

Statement 2: Alternating current varies with time .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: b

D Watch Video Solution

197. Statement 1: Both dc and ac can be measured by a hot wire instrument.

Statement 2: the hot wire instrument is based on the principle of magnetic effect of current.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: c

D Watch Video Solution

198. Assertion: $A C$ is more dangerous than $D C$

Reason: Frequency of $A C$ is dangerous for humban body.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

199. Assertion: Average value of $A C$ over a complete cycle is always zero.

Reason: Average value of $A C$ is always defined over half cycle.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.
200. Assertion: The division are equaly marked on the scale of $A C$ ammeter.

Reason: Heat produced is directely proportional to the current
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: d

- Watch Video Solution

201. Assertion: When $A C$ circuit contain resistor only, its power is minimum.

Reason: Power of a circuit is independent of phase angle.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.

D. If the assertion and reason both are false.

Answer: d

D Watch Video Solution

202. Assertion: An electric lamp connected in series with
a variable capacitor and $A C$ source, its brightness increases with increases in capacitance.

Reason: Capacitive reactance decrease with increases in capacitance of capacitor.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: a

D Watch Video Solution

203. Assertion: An inductance and a resistance are connected in series with an $A C$ circuit. In this circuit the current and the potential difference across the resistance lag behind potential difference across the inductance by an angle $\pi / 2$.

Reason: In $L R$ circuit voltage leads the current by phase angle which depends on the value of inductance and resistance both.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: b

D Watch Video Solution

204. Assertion: A capacitor of suitable capacitance can be used in an $A C$ circuit in place of the choke coil. Reason: A capacitor blocks $D C$ and allows $A C$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the a ssertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: b

1. A bulb and a capacitor are in series with an $A C$ source. On increasing frequency how will glow of the bulb change
A. The glow decreases
B. The glow increases
C. The glow remain the same
D. The bulb quenches

Answer: b
2. The r.m.s current in an $A C$ circuit is $2 A$. If the wattless current be $\sqrt{3} A$, what is the power factor?
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

3. $\frac{2.5}{\pi} \mu F$ capacitor and $3000-$ ohm resistance are joined in series to an $A C$ source of 200 volts and
$50 \mathrm{sec}^{-1}$ frequency. The power factor of the circuit and the power dissipated in it will respectively
A. $0.6,0.06 W$
B. $0.06,0.6 W$
C. $0.6,4.8 W$
D. $4.8,0.6 \mathrm{~W}$

Answer: c

D Watch Video Solution

4. The self-inductance of a choke coil is 10 mH . When it is connected with a 10 VDC source, then the loss of power is 20 watt. When it is connected with 10 volt $A C$
source loss of power is 10 watt . The frequency of $A C$ source will be
A. 50 Hz
B. 60 Hz
C. 80 Hz
D. 100 Hz

Answer: c

D Watch Video Solution

5. In an $L C R$ circuit $R=100 \mathrm{ohm}$. When capacitance C is removed, the current lags behind the voltage by $\pi / 3$.

When inductance L is removed, the current leads the voltage by $\pi / 3$. The impedence of the circuit is
A. 50 ohm
B. 100 ohm
C. 200 ohm
D. 400 ohm

Answer: B

D Watch Video Solution

6. A group of electric lamps having a total power rating of 1000 watt is supplied by an $A C$ voltage
$E=200 \sin \left(310 t+60^{\circ}\right)$. Then the r.m.s value of the circuit current is
A. 10 A
B. $10 \sqrt{2} A$
C. 20 A
D. $20 \sqrt{2} A$

Answer: b

D Watch Video Solution

7. Following figure shows an $A C$ generator to a "block box" through a pair of terminals. The box contains possible R, L, C or their combination, whose elements
and arrangements are not known to us.

Measurements, outside the box reveals that $e=75 \sin (\omega t)$ volts, $i=1.5 \sin \left(\omega t+45^{\circ}\right)$ amp then.
the wrong statements is
A. There must be a capacitor in the box
B. There must be an inductor in the box
C. There must be a resistance in the box
D. The power factor is 0.707

Answer: B
8. A resistor R, an inductor L and a capacitor C are connected in series to a source of frequency n. If the resonant frequency is n_{r}, then the current lags behind voltage when
A. $n=0$
B. $n<n_{r}$
C. $n=n_{r}$
D. $n>n_{r}$

Answer: d
9. If power factor is $1 / 2$ in a series $R L$, circuit $R=100 \Omega . A C$ mains is used then L is
A. $\frac{\sqrt{3}}{\pi}$ Henery
B. π Henry
C. $\frac{\pi}{\sqrt{3}}$ Henry
D. None of these

Answer: A

- Watch Video Solution

10. What will be the self-inductance of a coil, to be connected in a series with a resistance of $\pi \sqrt{3} \Omega$ such
that the phase difference between the e.m.f. and the current at 50 Hz frequency is 30° ?
A. 0.5 Henry
B. 0.03 Henry
C. 0.05 Henry
D. 0.01 Henry

Answer: D

- Watch Video Solution

11. The phase difference between the voltage and the current in an AC circuit is $\pi / 4$. If the frequency is 50 Hz then this phase difference will be equivalent to a time of
A. 0.02 s
B. 0.25 s
C. 2.5 ms
D. 25 ms

Answer: C

D Watch Video Solution

12. Instantaneous values of current and e.m.f in an $A C$ circuit are $\quad I=I / \sqrt{2} \sin 314 \quad$ tamp and $E=\sqrt{2} \sin (314 t-\pi / 6) V$ respectively. The phase difference between E and I will be
A. $-\pi / 6 \mathrm{rad}$
B. $-\pi / 3 \mathrm{rad}$
C. $\pi / 6 \mathrm{rad}$
D. $\pi / 3 \mathrm{rad}$

Answer: a

D Watch Video Solution

13. If A and B are indentical bulbs, which bulb glows brighter?

A. A
B. B
C. Both equally bright
D. Cannot say

Answer: a
14. The instantaneous values of current and voltage in an ac circuit are $i=100 \sin 314$ ramp and $e=200 \sin (314 t+\pi / 3) V$ respectively. If the resistance is 1Ω then the reactance of the circuit will be
A. $-200 \sqrt{3} \Omega$
B. $\sqrt{3} \Omega$
C. $-200 / \sqrt{3} \Omega$
D. $100 \sqrt{3} \Omega$

Answer: b
15. What is the r.m.s. value of an alternating current which when passed through a resistor produces heat which is thrice of that produced by a direct current of 2 amperes in the same resistor?
A. 6 amp
B. 2 amp
C. 3.46 amp
D. 0.66 amp

Answer: c

