©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

ATOMIC AND NUCLEAR PHYSICS

Exercise

1. If in nature they may not be an element for
which the principle quantum number $n>4$,
then the total possible number of elements will be
A. 60
B. 32
C. 4
D. 64

Answer: A
(Watch Video Solution
2. In the Bohr's hydrogen atom model, the radius of the stationary orbit is directly proportinal to ($n=$ principle quantum number)
A. n^{-1}
B. n
C. n^{-2}
D. n^{2}

Answer: D

3. In the nth orbit, the energy of an electron $E_{n}=-\frac{13.6}{n^{2}} e V$ for hydrogen atom. The energy rquired to take the electron from first orbit to second orbit will be
A. 10.2 eV
B. 12.1 eV
C. 13.6 eV
D. 3.4 eV

Answer: A

D Watch Video Solution

4. If the following atoms and molecylates for
the transition from $n=2$ to $n=1$, the spectral line of minimum wavelength will be produced by
A. Hydrogen atom
B. Deuterium atom
C. Uni-ionized helium

D. di-ionized lithium

Answer: D

D Watch Video Solution

5. The Lyman series of hydrogen spectrum lies
in the region :
A. Infrared
B. Visible
C. Ultraviolet

D. of X - rays

Answer: C

D Watch Video Solution

6. The size of an atom is of the order of
A. $10^{-8} m$
B. $10^{-10} m$
C. $10^{-12} m$
D. $10^{-14} m$

Answer: B

D Watch Video Solution

7. Which one of the series of hydrogen spectrum is in the visible region?
A. Lyman series
B. Balmer series
C. Paschen series
D. Bracket series 8

Answer: B

D Watch Video Solution

8. The energy levels of the hydrogen spectrum
is shown in figure. There are some transitions
A, B, C, D and E. Transition A, B, and C respectively represent

A. First member of Lyman series, third
spectral line of Balmer series and the
second spectral line of Paschen series
B. Ionization potential of hydrogen, second
spectral line of Balmer series and third
spectral line of Paschen series
C. Series limit of Lyman series, third
spectral line of Balmer series and second
spectral line of Paschen series
D. Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series

Answer: C

D Watch Video Solution

9. In the figure of previous problem, D and E respectively represent
A. Absorption line of Balmer series and the
ionization potential of hydrogen
B. Absorption line of Balmer series and the
wavelength lesser than lowest of the

Lyman series
C. Spectral line of Balmer series and the
maximum wavelength of Lyman seri
D. Spectral line of Lyman series and the
absorption of greater wavelength of
limiting value of Paschen series

Answer: A

D Watch Video Solution

10. The Rutherford α-particle experiment shown that most of the α-particles pass through almost unscattered while some are scattered through large angles. What information does it given about the structure of the atom?
A. Atom is hollow
B. The whole mass of the atom is concentrated in a small centre called nucleus
C. Nucleus is positively charged
D. All the above

Answer: D

- Watch Video Solution

11. Which of the following is true?
A. Lyman series is a continuous spectrum
B. Paschen series is a line spectrum in the infrared
C. Balmer series is a line spectrum in the
ultraviolet
D. The spectral series formula can be
derived from the Rutherford model of
the hydrogen atom

Answer: B

12. The energy required to knock out the electron in the third orbit of a hydrogen atom
is equal to
A. 13.6 eV
B. $+\frac{13.6}{9} \mathrm{eV}$
C. $-\frac{13.6}{3} \mathrm{eV}$
D. $-\frac{3}{13.6} \mathrm{eV}$

Answer: B

D Watch Video Solution
13. An electron has a mass of $9.1 \times 10^{-31} \mathrm{~kg}$. It revolves round the nucleus in a circular orbit of radius 0.529×10^{-10} metre at a speed of $2.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The magnitude of its linear momentum in this motion is

$$
\begin{aligned}
& \text { A. } 1.1 \times 10^{-34} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { B. } 2.0 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { C. } 4.0 \times 10^{-24} \mathrm{~kg}-\mathrm{m} / \mathrm{s} \\
& \text { D. } 4.0 \times 10^{-31} \mathrm{~kg}-\mathrm{m} / \mathrm{s}
\end{aligned}
$$

Answer: B

D Watch Video Solution

14. In a beryllium atom, if a_{0} be the radius of
the first orbit, then the radius of the second orbit will be in general
A. $n a_{0}$
B. a_{0}
C. $n^{2} a_{0}$
D. $\frac{a_{0}}{n^{2}}$

Answer: C

- Watch Video Solution

15. The ionization potential for second He electron is
A. 13.6 eV
B. 1.36 eV
C. 54.4 eV
D. 100 eV

Answer: C

- Watch Video Solution

16. The energy required to remove an electron
in a hydrogen atom from $n=10$ state is
A. 13.6 eV
B. 1.36 eV
C. 0.136 eV
D. 0.0136 eV

Answer: C

D Watch Video Solution

17. Every series of hydrogen spectrum has an upper and lower limit in wavelength. The spectral series which has an upper limit of wavelegnth equal to $18752 \AA$ is
(Rydberg constant $\quad R=1.097 \times 10^{7}$ per metre)
A. Balmer series
B. Lyman series
C. Paschen series
D. Pfund series

Answer: C

- Watch Video Solution

18. The kinetic energy of the electron in an
orbit of radius r in hydrogen atom is ($e=$ electronic charge)
A. $\frac{e^{2}}{r^{2}}$
B. $\frac{e^{2}}{2 r}$
C. $\frac{e^{2}}{r}$
D. $\frac{e^{2}}{2 r^{2}}$

Answer: B

D Watch Video Solution

19. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state
are excited by monochromatic radiation of
photon energy 12.1 eV . The spectral lines
emitted by hydrogen atoms according to Bohr's theory will be
A. one
B. two
C. three
D. four

Answer: C

D Watch Video Solution
20. Energy levels A, B, C of a certain atom corresponding to increasing values of energy
i.e., $E_{A}<E_{B}<E_{C}$. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct?

$$
\text { A. } \lambda_{3}=\lambda_{1}+\lambda_{2}
$$

$$
\begin{aligned}
& \text { B. } \lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} \\
& \text { C. } \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \text { D. } \lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}
\end{aligned}
$$

Answer: B

- Watch Video Solution

21. The angular momentum of electron in $n^{t h}$ orbit is given by
A. $n h$
B. $\frac{h}{2 \pi n}$
C. $n \frac{h}{2 \pi}$
D. $n^{2} \frac{h}{2 \pi}$

Answer: C

D Watch Video Solution

22. The ratio of the energies of the hydrogen atom in its first to second excited state is
A. $1 / 4$
B. $4 / 9$
C. $9 / 4$
D. 4

Answer: C

D Watch Video Solution

23. An electron jumps from the $4 t h$ orbit to
the $2 n d$ orbit of hydrogen atom. Given the
Rydberg's constant $\quad R=10^{5} \mathrm{~cm}^{-1}$. The
frequency in Hz of the emitted radiation will be

> A. $\frac{3}{16} \times 10^{5}$
> B. $\frac{3}{16} \times 10^{15}$
> C. $\frac{9}{16} \times 10^{15}$
> D. $\frac{3}{4} \times 10^{15}$

Answer: C

- Watch Video Solution

24. The ionisation potential of hydrogen atom
is 13.6 volt. The energy required to remove an
electron in the $n=2$ state of the hydrogen atom is
A. 27.2 eV
B. 13.6 eV
C. 6.8 eV
D. 3.4 eV

Answer: D
25. The ionisation energy of 10 times innised

sodium atom is

A. 13.6 eV
B. $13.6 \times 11 \mathrm{eV}$
C. $\frac{13.6}{11} \mathrm{eV}$
D. $13.6 \times(11)^{2} \mathrm{eV}$

Answer: D
26. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelngth of the second line of the series should be
A. $13122 \AA$
B. $3280 \AA$
C. $4860 \AA$
D. $2187 \AA$

- Watch Video Solution

27. The follwing diagram indicates the energy
levels of a certain atom when the system moves from $2 E$ level to E, a photon of wavelength λ is emitted. The wavelength of photon produced during its transition from $\frac{4 E}{3}$ level to E is

A. $\lambda / 3$
B. $3 \lambda / 4$
C. $4 \lambda / 3$
D. 3λ

Answer: D

D Watch Video Solution

28. A beam of fast moving alpha particles were directed towards a thin film of gold. The parts
A^{\prime}, B^{\prime} and C^{\prime} of the transmitted and
refected beams correcponding ro the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in

A. B^{\prime} will be minimum and in C^{\prime} maximum
B. A^{\prime} will be maximum and in B^{\prime} minimum
C. A^{\prime} will be minimum and in B^{\prime} maximum
D. C^{\prime} will be minimum and in B^{\prime} maximum

Answer: B

D Watch Video Solution

29. According to Bohr's theory the radius of electron in an orbit described by principle quantum number n and atomic number Z is proportional to
A. $Z^{2} n^{2}$
B. $\frac{Z^{2}}{n^{2}}$
C. $\frac{Z^{2}}{n}$
D. $\frac{n^{2}}{Z}$

Answer: D

D Watch Video Solution

30. The radius of electron's second stationary
orbit in Bohr's atom is R. The radius of the third orbit will be
A. 3 R
B. 2.25 R
C. 9 R
D. $\frac{R}{3}$

Answer: B

D Watch Video Solution

31. If m is mass of electron, v its velocity, r the radius of stationary circular orbit around a nucleus with charge Z_{e}, then from Bohr's first postulate, the kinetic energy $k=\frac{1}{2} m v^{2}$ of the electron in $C . G . S$. system is equal to
A. $\frac{1}{2} \frac{Z e^{2}}{r}$
B. $\frac{1}{2} \frac{Z e^{2}}{r^{2}}$
C. $\frac{Z e^{2}}{r}$
D. $\frac{Z e}{r^{2}}$

Answer: A

- Watch Video Solution

32. Consider an eelctron in the nth orbit of a hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in
terms of the de Broglie wavelength λ o fthat

electron as

A. (0.259) $n \lambda$
B. $\sqrt{n} \lambda$
C. (13.6) λ
D. $n \lambda$

Answer: D
(Watch Video Solution
33. In any Bohr orbit of the hydrogen atom, the ratio of kinetic energy to potential eenrgy of the electron is
A. $1 / 2$
B. 2
C. $-1 / 2$
D. -2

Answer: C

- Watch Video Solution

34. The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the
A. Balmer series
B. Pfund series
C. Paschen series
D. Lyman series

Answer: D

D Watch Video Solution
35. Figure shows the enegry levels P, Q, R, S and G of an atom where G is the ground state. A red line in the emission spectrum of the atom can be obtaned by an energy level change from Q so S. A blue line can be obtained by following energy level change

A. P to Q
B. Q to R

C. R to S

D. R to G

Answer: D

D Watch Video Solution

36. A hydrogen atom (ionisation potential
13.6 eV) makes a transition from third excited
state to first excied state. The enegry of the photon emitted in the process is
A. 1.89 eV
B. 2.55 eV
C. 12.09 eV
D. 12.75 eV

Answer: B

D Watch Video Solution

37. The figure indicates the enegry level diagram of an atom and the origin of six spectral lines in emission (e.g. line no. 5 series
from the transition from level B to A). The following spectral lines will also occur in the absorption spectrum

A. $1,4,6$
B. $4,5,6$
C. 1, 2, 3
D. $1,2,3,4,5,6$

Answer: C

D Watch Video Solution

38. when a hydrogen atom is raised from the ground state to an excited state
A. P.E. increases and K.E. decreases
B. P.E. decreases and K.E. increases
C. Both kinetic energy and potential energy
increase

D. Both K.E. and P.E. decrease

Answer: A

D Watch Video Solution

39. An electron makes a transition from orbit $n=4$ to the orbit $n=2$ of a hydrogen atom.

The wave number of the emitted radiations
($R=$ Rydberg's constant) will be
A. $\frac{16}{3 R}$
B. $\frac{2 R}{16}$
C. $\frac{3 R}{16}$
D. $\frac{4 R}{16}$

Answer: C

D Watch Video Solution

40. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
A. Infinite energy

B. The maximum energy

C. The minimum energy
D. Zero energy

Answer: C

D Watch Video Solution

41. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
A. -1
B. 2
C. 1:2
D. None of these

Answer: A

D Watch Video Solution
42. An electron in the $n=1$ orbit of hydrogen atom is bound by 13.6 eV . If a hydrogen atom I
sin the $n=3$ state, how much energy is

required to ionize it

A. 13.6 eV
B. 4.53 eV
C. 3.4 eV
D. 1.51 eV

Answer: D
(Watch Video Solution
43. Which of the following statements about the Bohr model of the hydrogen atom is false ?
A. Acceleration of electron in $n=2$ orbit is
less than that in $n=1$ orbi
B. Angular momentum of electron in $n=2$
orbit is more than that in $n=1$ orbit
C. Kinetic energy of electron in $n=2$ orbit
is less than that in $n=1$ orbi

D. Potential energy of electron in $n=2$

 orbit is less than that in $n=1$ orbit
Answer: D

D Watch Video Solution

44. If an electron jumps from 1st orbital to 3rd orbital, than it will.
A. Absorb energy
B. Release energy
C. No gain of energy
D. None of these

Answer: A

D Watch Video Solution

45. The ratio of the frequencies of the long wavelenght limits of Lyman and Balmer series of hydrogen spectrum is
A. $27: 5$
B. $5: 27$
C. $4: 1$
D. 1:4

Answer: A

- Watch Video Solution

46. Which of the following transitions in a hydrogen atom emits photon of the highest frequency?
A. $n=1$ to $n=2$
B. $n=2$ to $n=1$
C. $n=2$ to $n=6$
D. $n=6$ to $n=2$

Answer: A

D Watch Video Solution
47. In terms of Rydberg's constant R, the wave number of the first Balman line is
A. R
B. 3 R
C. $\frac{5 R}{36}$
D. $\frac{8 R}{9}$

Answer: C

D Watch Video Solution

48. If the ionisation potential of helium atom
is 24.6 volt, the energy required to ionise it
A. 24.6 eV
B. 24.6 eV
C. 13.6 V
D. 13.6 eV

Answer: A

D Watch Video Solution

49. Which of the transitions in hydrogen atom emits a photon of lowest frequecny ($n=$ quantum number)?

$$
\begin{aligned}
& \text { A. } n=2 \text { to } n=1 \\
& \text { B. } n=4 \text { to } n=3 \\
& \text { C. } n=3 \text { to } n=1 \\
& \text { D. } n=4 \text { to } n=2
\end{aligned}
$$

Answer: B

D Watch Video Solution

50. According to Bohr's theory, the expression for the kinetic and potential eenrgy of an
electron revolving in an orbit is given
respectively by

$$
\begin{aligned}
& \text { A. }+\frac{e^{2}}{8 \pi \varepsilon_{0} r} \text { and } \frac{e^{2}}{4 \pi \varepsilon_{0} r} \\
& \text { B. }+\frac{8 \pi \varepsilon_{0} e^{2}}{r} \text { and }-\frac{4 \pi \varepsilon_{0} e^{2}}{r} \\
& \text { C. }-\frac{e^{2}}{8 \pi \varepsilon_{0} r} \text { and }-\frac{e^{2}}{4 \pi \varepsilon_{0} r} \\
& \text { D. }+\frac{e^{2}}{8 \pi \varepsilon_{0} r} \text { and }+\frac{e^{2}}{4 \pi \varepsilon_{0} r}
\end{aligned}
$$

Answer: A

D Watch Video Solution

51. In the lowest energy level of hydrogen
atom, the electron has the angular
momentum
A. π / h
B. h / π
C. $h / 2 \pi$
D. $2 \pi / h$

Answer: C

D Watch Video Solution
52. The minimum enegry required to excite a hydrogen atom from its ground state is
A. 13.6 eV
B. -13.6 eV
C. 3.4 eV
D. 10.2 eV

Answer: D

D Watch Video Solution
53. Ratio of the wavelength of first line of Lyaman series and first line of Balmer series is
A. 1:3
B. $27: 5$
C. 5: 27
D. $4: 9$

Answer: C

- Watch Video Solution

54. The Rydberg constant R for hydrogen is

$$
\begin{aligned}
& \text { A. } R=-\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \cdot \frac{2 \pi^{2} m e^{2}}{c h^{2}} \\
& \text { B. } R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right) \cdot \frac{2 \pi^{2} m e^{4}}{c h^{2}} \\
& \text { C. } R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \cdot \frac{2 \pi^{2} m e^{4}}{c^{2} h^{2}} \\
& \text { D. } R=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \cdot \frac{2 \pi^{2} m e^{4}}{c h^{3}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

55. The wavelength of the first line of Balmer series is $6563 \AA$. The Rydbergs constant fro hydrogen is about
A. 1.09×10^{7} per m
B. $1.09 \times 10^{8} \mathrm{perm}$
C. 1.09×10^{9} perm
D. $1.09 \times 10^{5} \mathrm{perm}$

Answer: A

- Watch Video Solution

56. According to Bohr's theory the moment of momentum of an electron revolving in second orbit of hydrogen atom will be
A. $2 \pi h$
B. πh
C. $\frac{h}{\pi}$
D. $\frac{2 h}{\pi}$

Answer: C

D Watch Video Solution
57. The velocity of an electron in the second
orbit of sodium atom (atomic number $=11$)
is v. The velocity of an electron in its fifth orbit
will be
A. v
B. $\frac{22}{5} v$
C. $\frac{5}{2} v$
D. $\frac{2}{5} v$

Answer: D

58. The absorpotion transitions between the first and the fourth energy states of hydrogen
atom are 3 . The emission transitions between these states will be
A. 3
B. 4
C. 5
D. 6

Answer: D

D Watch Video Solution

59. The ratio of longest wavelength and the shortest wavelength observed in the five
spectral series of emission spectrum of hydrogen is
A. $\frac{4}{3}$
B. $\frac{524}{376}$
C. 25

900
 11

Answer: D

D Watch Video Solution

60. In the Bohr model of a hydrogen atom, the
centripetal force is furnished by the Coulomb
attraction between the proton and the electrons. If a_{0} is the radius of the ground state orbit, m is the mass and e is the charge
on the electron and e_{0} is the vacuum permittivity, the speed of the electron is
A. 0
B. $\frac{e}{\sqrt{\varepsilon_{0} a_{0} m}}$
C. $\frac{e}{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}$
D. $\frac{\sqrt{4 \pi \varepsilon_{0} a_{0} m}}{e}$

Answer: C

- Watch Video Solution

61. The electron in a hydrogen atom makes a transition $n_{1} \rightarrow n_{2}$, where n_{1} and n_{2} are the principle quantum numbers of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. the possible values of n_{1} and n_{2} are

$$
\begin{aligned}
& \text { A. } n_{1}=4, n_{2}=2 \\
& \text { B. } n_{1}=8, n_{1}=2 \\
& \text { C. } n_{1}=8, n_{2}=1
\end{aligned}
$$

$$
\text { D. } n_{1}=6, n_{2}=3
$$

Answer: A::D

D Watch Video Solution

62. As par Bohr model, the minimum energy (in
$e V$) required to remove an electron from the
ground state of doubly ionized $L i$ atom
$(Z=3)$ is
A. 1.51
B. 13.6
C. 40.8
D. 122.4

Answer: D

- Watch Video Solution

63. In Bohr's model of hydrogen atom, let $P E$
represents potential energy and $T E$ the total
energy. In going to a higher level
A. PE decreases, TE increases
B. PE increases, TE increases
C. PE decreases, TE decreases
D. PE increases, TE decreases

Answer: B

- Watch Video Solution

64. According to Bohr's model, the radius of the second orbit of helium atom is
A. $0.53 \AA$
B. $1.06 \AA$
C. $2.12 \AA$
D. $0.265 \AA$

Answer: B

D Watch Video Solution

65. The fact that photons carry energy was established by
A. Doppler's effect
B. Compton's effect
C. Bohr's theory
D. Diffraction of light

Answer: C

- Watch Video Solution

66. An ionic atom equivalent to hydrogen atom has wavelength equal to $1 / 4$ of the wavelengths of hydrogen lines. The ion will be
A. $H e^{+}$
B. $L i^{++}$
C. $N e^{9+}$
D. $N a^{10+}$

Answer: A

D Watch Video Solution

67. The extreme wavelength of Paschen series
are
A. $0.365 \mu \mathrm{~m}$ and $0.565 \mu \mathrm{~m}$
B. $0.818 \mu \mathrm{~m}$ and $1.89 \mu \mathrm{~m}$
C. $1.45 \mu \mathrm{~m}$ and $4.04 \mu \mathrm{~m}$
D. $2.27 \mu m$ and $7.43 \mu m$

Answer: B

D Watch Video Solution
68. The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength
of 108.5 mm . The ground state energy of an

electron of this ion will e

A. 3.4 eV
B. 13.6 eV
C. 54.4 eV
D. 122.4 eV

Answer: C

- Watch Video Solution

69. An electron in the $n=1$ orbit of hydrogen
atom is bound by 13.6 eV energy is required to ionize it is
A. 13.6 eV
B. 6.53 eV
C. 5.4 eV
D. 1.51 eV

Answer: A

- Watch Video Solution

70. Ionization energy of hydrogen is 13.6 eV . If
$h=6.6 \times 10^{-34} \mathrm{~J}-s$, the value of R will of
the order of

> A. $10^{10 m^{-1}}$
> B. $10^{7} m^{-1}$
> C. $10^{4} m^{-1}$
> D. $10^{-7} m^{-1}$

Answer: B

- Watch Video Solution

71. To explain his theory, Bohr used
A. Conservation of linear momentum
B. Conservation of angular momentum
C. Conservation of quantum frequency
D. Conservation of energy

Answer: B
72. The ionisation energy of hydrogen atom is
13.6 eV . Following Bohr's theory, the energy
corresponding to a transition between the 3rd and the 4th orbit is
A. 3.40 eV
B. 1.51 eV
C. 0.85 eV
D. 0.66 eV

Answer: D

73. Hydrogen atoms are excited from ground state of the principle quantum number 4 . Then
the number of spectral lines observed will be
A. 3
B. 6
C. 5
D. 2

Answer: B
74. Hydrogen atom emits blue light when it changes from $n=4$ energy level to the $n=2$ level. Which colour of light would te atom emit when it changes from the $n=5$ level to the $n=2$ level ?
A. Red
B. Yellow
C. Green
D. Violet

Answer: D

D Watch Video Solution

75. In Rutherford scattering experiment, what
will b ethe correct angle for α scattering for an impact parameter $b=0$?
A. 90°
B. 270°
C. 0°
D. 180°

Answer: D

D Watch Video Solution

76. The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} \mathrm{~m}$. After collision with an electron it is found to have a radius of $21.2 \times 10^{-11} \mathrm{~m}$. What is the principle quantum number of n of the final state of the atom?

$$
\text { A. } n=4
$$

B. $n=2$
C. $n=16$
D. $n=3$

Answer: B

D Watch Video Solution
77. The splitting of line into groups under the effect of magnetic field is called
A. Zeeman's effect
B. Bohr's effect
C. Heisenberg's effect
D. Magnetic effect

Answer: A

- Watch Video Solution

78. The energy of a hydrogen atom in its ground state is -13.6 eV . The energy of the
level corresponding to the quantum number
$n=2$ (first excited state) in the hydrogen atom is
A. $-2.72 e V$
B. -0.85 eV
C. $-0.54 e V$
D. $-3.4 e V$

Answer: D

D Watch Video Solution
79. The first line of Balmer series has wvaelength $6563 \AA$. What will be the wavelength of the ifrst member of Lyman series?
A. $1215.4 \AA$
B. $2500 \AA$
C. $7500 \AA$
D. $600 \AA$

Answer: A
80. The wavelength of Lyman series is

$$
\begin{aligned}
& \text { A. } \frac{4}{3 \times 10967} \mathrm{~cm} \\
& \text { B. } \frac{3}{4 \times 10967} \mathrm{~cm} \\
& \text { C. } \frac{4 \times 10967}{3} \mathrm{~cm} \\
& \text { D. } \frac{3}{4} \times 10967 \mathrm{~cm}
\end{aligned}
$$

Answer: A
81. When hydrogen atom is in first excited level, its radius is....its ground state radius
A. Half
B. Same
C. Twice

D. Four times

Answer: B

D Watch Video Solution

82. Hydrogen atom excites energy level from
fundamental state to $n=3$. Number of
spectrum lines according to Bohr, is
A. 4
B. 3
C. 1
D. 2

Answer: B

D Watch Video Solution
83. Number of spectral lines in hydrogen atom
is
A. 3
B. 6
C. 15
D. Infinite

Answer: D

D Watch Video Solution
84. In Bohr's model, if the atomic radius of the
first orbit is r_{0}, then the radius of the fourth orbit is
A. $\frac{r_{0}}{9}$
B. r_{0}
C. $9 r_{0}$
D. $3 r_{0}$

Answer: C

85. The wavelength of the energy emitted when electron come from fourth orbit to second orbit in hydrogen is 20.397 cm . The wavelength of energy for the same transition in He^{+}is
A. $5.099 \mathrm{~cm}^{-1}$
B. $20.497 \mathrm{~cm}^{-1}$
C. $40.994 \mathrm{~cm}^{-1}$
D. $81.988 \mathrm{~cm}^{-1}$
86. Minimum excitation potential of Bohr's
first orbit hydrogen atom is
A. 13.6 V
B. 3.4 V
C. 10.2 V
D. 3.6 V

Answer: C

D Watch Video Solution
87. Which of the following statement is true regarding Bohr's model of hydrogen atom?
(I) Orbiting speed of electrons decreases as if falls to discrete orbits away from the nuclues.
(II) Radii of allowed orbits of electrons are proportional to the principle quantum number.
(III) Frequency with which electrons orbit around the nucleus in discrete orbits is inversely proportional to the principle
quantum number.
(IV) Binding froce with which the elctron is bound to the nuclues increases as it shifts to outer orbits.

Selected the correct answer using the codes given below:
A. I and III
B. II and IV
C. I, II and III
D. II, III and IV

- Watch Video Solution

88. The wavelength of radiation emitted is λ_{0}
when an electron jumps from the third to the second orbit of hydrogen atom. For the electron jump from the fourth to the second orbit of hydrogen atom, the wavelength of radiation emitted will be
A. $\frac{16}{25} \lambda_{0}$
B. $\frac{20}{27} \lambda_{0}$
c. $\frac{27}{20} \lambda_{0}$
D. $\frac{25}{16} \lambda_{0}$

Answer: B

D Watch Video Solution

89. For electron moving in $n^{t h}$ orbit of the atom, the angular velocity is proportional to:
A. n
B. $1 / n$
C. n
D. $1 / n$

Answer: D

D Watch Video Solution

90. The energy of electron in first excited state
of H-atom is $-3.4 e V$ its kinetic energy is
A. $-3.4 e V$
B. +3.4 eV
C. $-6.8 e V$

D. 6.8 eV

Answer: B

D Watch Video Solution

91. The energy required to excite an electron
from the ground state of hydrogen atom to
the first excited state, is

$$
\begin{aligned}
& \text { А. } 1.602 \times 10^{-14} J \\
& \text { В. } 1.619 \times 10^{-16} J
\end{aligned}
$$

C. $1.632 \times 10^{-18} J$

D. $1.656 \times 10^{-20} J$

Answer: C

D Watch Video Solution

92. Which of the following phenomena suggests the presence of electron energy
levels in atoms
A. Radio active decay
B. Isotopes
C. Spectral lines
D. $\alpha-$ particles scattering

Answer: C

D Watch Video Solution

93. Which of the following spectral series in hydrogen atom give spectral line of $4860 \AA$
A.) Lyman

B. Balmer

C. Paschen

D. Brackett

Answer: B

D Watch Video Solution

94. If scattering particles are 56 for 90° angle
than this will be at 60° angle
A. 224
B. 256
C. 98
D. 108

Answer: A

- Watch Video Solution

95. When an electron in hydrogen atom is excited, from its 4 th to 5 the stationary orbit, the change in angular momentum of electron is (Planck's constant: $h=6.6 \times 10^{-34} J-s$)
A. $4.16 \times 10^{-34} J-s$
B. $3.32 \times 10^{-34} J-s$
C. $1.05 \times 10^{-34} J-s$
D. $2.08 \times 10^{-34} J-s$

Answer: C

D Watch Video Solution
96. Energy of electron in a orbit of H -atom is
A. Positive

B. Negative

C. Zero
D. Nothing can be said

Answer: B

D Watch Video Solution

97. In a hydrogen atom, the distance between
the electron and proton is $2.5 \times 10^{-11} \mathrm{~m}$. The electricl force of attraction between then will be
A. $2.8 \times 10^{-7} N$
B. $3.7 \times 10^{-7} N$
C. $6.2 \times 10^{-7} N$
D. $9.1 \times 10^{-7} N$

Answer: B

D Watch Video Solution

98. If $\lambda_{\max }$ is $6563 \AA$, then wave length of second line of Balmer series will be

> A. $\lambda=\frac{16}{3 R}$
> B. $\lambda=\frac{36}{5 R}$
> C. $\lambda=\frac{4}{3 R}$
D. None of these

Answer: A

- Watch Video Solution

99. What will be the angular momentum of an electron, if energy of this electron in H-atom is 1.5 eV (in $J-s$)?
A. 1.05×10^{-34}
B. 2.1×10^{-34}
C. 3.15×10^{-34}
D. -2.1×10^{-34}

Answer: C

D Watch Video Solution

100. The time of revolution of an electron around a nucleus of charge $Z e$ in nth Bohr orbit is directly proportional to
A. n
B. $\frac{n^{3}}{Z^{2}}$
C. $\frac{n^{2}}{Z}$
D. $\frac{Z}{n}$

Answer: B

D Watch Video Solution

101. In Bohr's model, if the atomic radius of the
first orbit is r_{0}, then the radius of the fourth orbit is
A. r_{0}
B. $4 r_{0}$
C. $r_{0} / 16$
D. $16 r_{0}$

Answer: D

D Watch Video Solution

102. If R is the Rydberg's constant for hydrogen the wave number of the first line in
the Lyman series will be
A. $\frac{R}{4}$
B. $\frac{3 R}{4}$
C. $\frac{R}{2}$
D. $2 R$

Answer: B

D Watch Video Solution

103. In hydrogen atom, if the difference in the energy of the electron in $n=2$ and $n=3$
orbits is E, the ionization energy of hydrogen atom is
A. $13.2 E$
B. $7.2 E$
C. 5.6 E
D. 3.2 E

Answer: B
(Watch Video Solution
104. The first member of the paschen series in hydrogen spectrum is of wavelength $18,800 \AA$.

The short wavelength limit of Paschen series is

A. $1215 \AA$

B. $6560 \AA$
C. $8225 \AA$
D. $12850 \AA$

Answer: C

- Watch Video Solution

105. The ratio of the largest to shortest
wavelength in Lyman series of hydrogen
spectra is

> A. $\frac{25}{9}$
> B. $\frac{17}{6}$
> C. $\frac{9}{5}$
> D. $\frac{4}{3}$

Answer: D

D Watch Video Solution
106. In Bohr model of hyrogen atom, the ratio
of periods of revolution of an electon in $n=2$
and $n=1$ orbit is
A. $2: 1$
B. $4: 1$
C. $8: 1$
D. 16:1

Answer: C

- Watch Video Solution

107. The ratio of the longest to shortest
wavelength in Brackett series of hydrogen
spectra is

> A. $\frac{25}{9}$
> B. $\frac{17}{6}$
> C. $\frac{9}{5}$
> D. $\frac{4}{3}$

Answer: A

D Watch Video Solution
108. The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true?
A. Its kinetic energy increases and its potential and total energies decrease
B. Its kinetic energy decreases, potential
energy increases and its total energy
remains the same
C. Its kinetic and total energies decrease and its potential energy increases
D. Its kinetic, potential and total energies
decreases

Answer: A

D Watch Video Solution
109. The ratio of minimum to maximum wavelength in Balmer series is
A. $5: 9$
B. 5: 36
C. 1:4
D. 3: 4

Answer: A

D Watch Video Solution
110. The radius of the Bohr orbit in the ground state of hydrogen atom is $0.5 \AA$. The radius o
fifth orbit of the electron in the third excited
state of $\mathrm{He}{ }^{+}$will be
A. $8 \AA$
B. $4 \AA$
C. $0.5 \AA$
D. $0.25 \AA$

Answer: B
(Watch Video Solution
111. The ratio of the speed of the electron in
the first Bohr orbit of hydrogen and the speed of light is equal to (where e, h and c have their usual meanings)
A. $2 \pi h c / e^{2}$
B. $e^{2} h / 2 \pi c$
C. $e^{2} c / 2 \pi h$
D. $2 \pi e^{2} / h c$

Answer: D

112. According to the Rutherford's atomic model, the electrons inside the atom are
A. Stationary
B. Not stationary
C. Centralized
D. None of these

Answer: B

D Watch Video Solution
113. The energy of hydrogen atom in its ground state is -13.6 eV . The energy of the level corresponding to the quantum number n is equal 5 is

$$
\begin{aligned}
& \text { A. }-5.40 \mathrm{eV} \\
& \text { B. }-2.72 \mathrm{eV} \\
& \text { C. }-0.85 \mathrm{eV} \\
& \text { D. }-0.54 \mathrm{eV}
\end{aligned}
$$

114. According to classical theory, the circular path of an electron in Rutherford atom is
A. Spiral
B. Circular
C. Parabolic
D. Straight line

Answer: A

D Watch Video Solution
115. Rutherford's a particle experiment showed
that the atoms have
A. Proton
B. Nucleus
C. Neutron
D. Electrons

Answer: B
116. Orbital acceleration of electron is

$$
\begin{aligned}
& \text { A. } \frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{3}} \\
& \text { B. } \frac{n^{2} h^{2}}{2 n^{2} r^{3}} \\
& \text { C. } \frac{4 n^{2} h^{2}}{\pi^{2} m^{2} r^{3}} \\
& \text { D. } \frac{4 n^{2} h^{2}}{4 \pi^{2} m^{2} r^{3}}
\end{aligned}
$$

Answer: A
117. Which of the following is true for number of spectral lines in going from Lyman series to Pfund series?
A. Increases
B. Decreases
C. Unchanged
D. May decreases or increases

Answer: B

D Watch Video Solution
118. The wavelength of yellow line of sodium is
$5896 \AA$. Its wave number will be
A. 50883×10 per second
B. 16961 per cm
C. 17581 per cm
D. 50883 per cm

Answer: B

D Watch Video Solution
119. Radius of the first orbit of the electron in a
hydrogen atom is $0.53 \AA$. So, the radius of the
third orbit will be
A. $2.12 \AA$
B. $4.77 \AA$
C. $1.06 \AA$
D. $1.59 \AA$

Answer: B
120. The first line in the Lyman series has
wavelength λ. The wavelegnth of the first line
in Balmer series is
A. $\frac{2}{9} \lambda$
B. $\frac{9}{2} \lambda$
C. $\frac{5}{27} \lambda$
D. $\frac{27}{5} \lambda$

Answer: D

- Watch Video Solution

121. In hydrogen atom which quantity is
integral multiple of $\frac{h}{2 \pi}$
A. Angular momentum
B. Angular velocity
C. Angular acceleration
D. Momentum

Answer: A
(Watch Video Solution
122. In the following transitions, which one has
higher frequency ?
A. $3-2$
B. $4-3$
C. $4-2$
D. $3-1$

Answer: D

- Watch Video Solution

123. The diagram shown the path of four α particles of the same energy being scattered by the nucleus of an atom simutaneously. Which of these are/is not physically possible ?

A. 3 and 4
B. 2 and 3
C. 1 and 4

D. 4 only

Answer: D

D Watch Video Solution

124. An electron jumps from $5 t h$ orbit to $4 t h$ orbit of hydrogen atom. Taking the Rydberg constant as 10^{7} per meter. What will be the frequency of radiation emitted?

$$
\text { A. } 6.75 \times 10^{12} \mathrm{~Hz}
$$

B. $6.75 \times 10^{14} \mathrm{~Hz}$
C. $6.75 \times 10^{13} \mathrm{~Hz}$
D. None of these

Answer: C

D Watch Video Solution

125. For principle quantum number $n=3$, the possible values of orbital quantum number 'I' are
A. 1, 2, 3
B. $0,1,2,3$
C. $0,1,2$
D. $-1,0,+1$

Answer: C

D Watch Video Solution
126. Four lowest energy levels of H-atom are
shown in the figure. The number of possoble
\qquad

$$
n=1
$$

A. 3
B. 4
C. 5
D. 6

Answer: D
127. Energy of an electron in an excited
hydrogen atom is $-3.4 e V$. Its angualr momentum will be: $h=6.626 \times 10^{-34} J-s$.
A. $1.11 \times 10^{34} \mathrm{~J} \mathrm{sec}$
B. $1.51 \times 10^{-31} \mathrm{~J} \mathrm{sec}$
C. $2.11 \times 10^{-34} \mathrm{~J} \mathrm{sec}$
D.
128. The wavelength of light emitted from second orbit to first orbits in a hydrogen atom is
A. $1.215 \times 10^{-7} m$
B. $1.215 \times 10^{-5} m$
C. $1.215 \times 10^{-4} m$
D. $1.215 \times 10^{-3} m$

Answer: A

- Watch Video Solution

129. Energy of the electron in nth orbit of hydrogen atom is given by $E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$.

The amount of energy needed to transfer electron from first orbit to third orbit is
A. 13.6 eV
B. 3.4 eV
C. 12.09 eV
D. 1.51 eV

Answer: C

D Watch Video Solution

130. Whenever a hydrogen atom emits a photon in the Balmer series
A. It need not emit any more photon
B. It may emit another photon in the Paschen series
C. It must emit another photon in the

Lyman series

D. It may emit another photon in the

Balmer series

Answer: C

D Watch Video Solution

131. The de-Broglie wavelength of an electron in the first Bohr orbit is
A. Equal to one fourth the circumference of
the first orbit
B. Equal to half the circumference of the
first orbit
C. Equal to twice the circumference of the
first orbit
D. Equal to the circumference of the first
orbit

Answer: D

132. In hydrogen atom, when electron jupms
from second to first orbit, then enrgy emitted
is
A. $-13.6 e V$
B. $-27.2 e V$
C. $-6.8 e V$
D. None of these

Answer: D

D Watch Video Solution
133. Minimum energy required to takeout the only one electron from ground state of $\mathrm{He}{ }^{+}$ is
A. 13.6 eV
B. 54.4 eV
C. 27.2 eV
D. 6.8 eV

Answer: B

Watch Video Solution

134. The frequency of 1st line Balmer series in
H_{2} atom is v_{0}. The frequency of line emitted by single ionised He atom is
A. $2 v_{0}$
B. $4 v_{0}$
C. $v_{0} / 2$
D. $v_{0} / 4$
135. When the elecrton in the hydrogen atom
jupms from $2 n d$ orbit to 1 st orbit, the wavelength of radiation emitted is λ. When the electrons jupms from $3 r d$ orbit to $1 s t$ orbit, the wavelength of emitted radiation would be
A. $\frac{27}{32} \lambda$
B. $\frac{32}{27} \lambda$
C. $\frac{2}{3} \lambda$
D. $\frac{3}{2} \lambda$

Answer: A

D Watch Video Solution

136. The radius of the first (lowest) orbit of the
hydrogen atom is a_{0}. The radius of the second (next higher) orbit will be
A. $4 a_{0}$
B. $6 a_{0}$
C. $8 a_{0}$
D. $10 a_{0}$

Answer: A

- Watch Video Solution

137. Which of the following transitions will
have highest emission wavelength ?
A. $n=2$ to $n=1$
B. $n=1$ to $n=2$

$$
\begin{aligned}
& \text { C. } n=2 \text { to } n=5 \\
& \text { D. } n=5 \text { to } n=2
\end{aligned}
$$

Answer: D

D Watch Video Solution

138. When the wave of hydrogen atom comes
from infinity into the first then the value of
wave number is
A. 109700 cm
B. 1097 cm
C. 109 cm
D. None of these

Answer: A

D Watch Video Solution

139. With the increase in peinciple quantum number, the energy difference between the two successive energy levels
A. Increases
B. Decreases
C. Remains constant
D. Sometimes increases and sometimes
decreases

Answer: B
(Watch Video Solution
140. In which of the following systems will the radius of the first orbit ($n=1$) be minimum ?
A. Single ionized helium
B. Deuterium atom
C. Hydrogen atom
D. Doubly ionized lithium

Answer: D

- Watch Video Solution

141. If the binding energy of the electron in a
hydrogen atom is 13.6 eV , the energy required to remove the electron from the first excited state of $L i^{++}$is
A. 122.4 eV
B. 30.6 eV
C. 13.6 eV
D. 3.4 eV

Answer: B
142. The shortest wavelength in the Lyman series of hydrogen spectrum is $912 \AA$ correcponding to a photon energy of 13.6 eV .

The shortest wavelength in the Balmer series is about
A. $3648 \AA$
B. $8208 \AA$
C. $1228 \AA$
D. $6566 \AA$

Answer: A

- Watch Video Solution

143. Energy E of a hydrogen atom with principle quantum number n is given by $E=\frac{-13.6}{n^{2}} \mathrm{eV}$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.4 eV
D. 1.9 eV

Answer: D

D Watch Video Solution

144. The Bohr model of atoms
A. Assumes that the angular momentum of
electrons is quantized
B. Uses Einstein's photo-electric equation
C. Predicts continuous emission spectra for atoms
D. Predicts the same emission spectra for all types of atoms

Answer: A

- Watch Video Solution

145. Which state of triply ionised Beryllium
$\left(B e^{+++}\right)$the same orbital radius as that of
the ground state hydrogen ?
A. $n=4$
B. $n=3$
C. $n=2$
D. $n=1$

Answer: C

D Watch Video Solution
146. The ratio of areas within the elctron orbits for the first excited state to the ground sate for hydrogen atom is
A. $16: 1$
B. $18: 1$
C. $4: 1$
D. 2:1

Answer: D

- Watch Video Solution

147. Taking Rydberg's constant
$R_{H}=1.097 \times 10^{7} m \quad$ first \quad and \quad second
wavelength of Balmer series in hydrogen spectrum is
A. $2000 \AA, 3000 \AA$
B. $1575 \AA, 2960 \AA$
C. $6529 \AA$, $4280 \AA$
D. $6552 \AA, 4863 \AA$

Answer: D

148. The kinetic energy of electron in the first Bohr orbit of the hydrogen atom is
A. -6.5 eV
B. -27.2 eV
C. 13.6 eV
D. -13.6 eV

Answer: C
149. In the spectrum of hydrogen atom, the ratio of the longest wavelength in Lyman series to the longest wavelangth in the Balmer series is:
A. $5 / 27$
B. $1 / 93$
C. $4 / 9$
D. $3 / 2$
150. The energy of the highest enegry photon of Blamer series of hydrogen spectrum is close to
A. 13.6 eV
B. 3.4 eV
C. 1.5 eV
D. 0.85 eV
151. An electron changes its position from orbit $n=4$ to the orbit $n=2$ of an atom. The
wavelength of the emitted radiation's is ($R=$ Rydberg's constant)
A. $\frac{16}{R}$
B. $\frac{16}{3 R}$
C. $\frac{16}{5 R}$
D. $\frac{16}{7 R}$

Answer: B

D Watch Video Solution

152. If the energy of a hydrogen atom in $n t h$ orbit is E_{n}, then energy in the nth orbit of a singly ionised helium atom will be
A. $4 E_{n}$
B. $E_{n} / 4$
C. $2 E_{n}$
D. $E_{n} / 2$

Answer: A

- Watch Video Solution

153. What is the ratio of wavelength of radiations emitted when an electron in
hydrogen atom jump from fourth orbit to second ornti and from third orbit to second orbit?
A. $27: 25$
B. $20: 27$
C. 20: 25

D. $25: 27$

Answer: B

- Watch Video Solution

154. The energy of electron in the nth orbit of hydrogen atom is expressed as $E_{n}=\frac{-13.6}{n^{2}} e V$. The shortest and longest wavelength of Lyman series will be
A. $910 \AA, 1213 \AA$
B. $5463 \AA$, $7858 \AA$
C. $1315 \AA, 1530 \AA$
D. None of these

Answer: A

D Watch Video Solution

155. The ground state energy of hydrogen atom is -13.6 eV . What is the potential energy of the electron in this state
A. 0 eV
B. $-27.2 e V$
C. 1 eV
D. $2 e V$

Answer: B

D Watch Video Solution

156. The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the emission of photon with
the most enegy?

A. I
B. II
C. III
D. IV
157. As the electron in the Bohr orbit is
hydrogen atom passes from state $n=2$ to
$n=1$, the $K E(K)$ and $P E(U)$ change as
A. K two-fold, U four-fold
B. K four-fold, U two-fold
C. K four-fold, U also four-fold
D. K two-fold, U also two-fold
158. The magntic moment (μ) of a revolving electron around the mucleaus varies with principle quantum number n as
A. $\mu \propto n$
B. $\mu \propto 1 / n$
C. $\mu \propto n^{2}$
D. $\mu \propto 1 / n^{2}$

159. Bohr's atomic model assumes

A. The nucleus is of infinite mass and is at
res
B. Electrons in a quantized orbit will not
radiate energy
C. Mass of electron remains constant
D. All the above conditions

Answer: D

- Watch Video Solution

160. Which of the following particles are constituents of the nucleus
A. Protons and electrons
B. Protons and neutrons
C. Neutrons and electrons
D. Neutrons and positrons

Answer: B

- Watch Video Solution

161. The particles which can be added to the nucleus of an atom without changing its chemical properties are

A. Electrons

B. Protons
C. Neutrons
D. None of the above

- Watch Video Solution

162. The mass number of a nucleus is.
A. Always less than its atomic number
B. Always more than its atomic number
C. Always equal to its atomic number
D. Sometimes more than and sometimes
equal to its atomic number

Answer: D

- Watch Video Solution

163. The energy equivalent of 1 kilogram of
matter is about
A. $10^{-15} \mathrm{~J}$
B. $1 J$
C. $10^{-12} J$
D. $10^{17} \mathrm{~J}$

Answer: D

D Watch Video Solution

164. If the binding energy of the deuterium is
$2.23 M e V$. The mass defect given in a.m.u. is.
A. -0.0024
B. -0.0012
C. 0.0012
D. 0.0024

Answer: D

D Watch Video Solution

165. Which of the following has the mass
closest in value to that of the positron
(1 a.m.u. $=931 \mathrm{MeV}$)
A. Proton
B. Electron
C. Photon
D. Neutrino

Answer: B

- Watch Video Solution

166. Size of nucleus is of the order of
A. $10^{-10} m$
B. $10^{-15} m$
C. $10^{-12} m$
D. $10^{-19} m$

- Watch Video Solution

167. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life of one species is τ and that of the other is 5τ. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a
function of time. Which of the following figure best represents the form of this plot?
(a), (b), (c), (d)
B.

C.

D.

Answer: D

D Watch Video Solution
168. Radioactive element decays to form a stable nuclide, then the rate of decay of reactant $\left(\frac{d N}{d t}\right)$ will vary with time (t) as shown in figure.

Answer: C

D Watch Video Solution

169. A radioactive sample has N_{0} active at
$t=0$. If the rate of disintegration at any time
is R and the number of atoms is N, them the
ratio R / N varies with time as.

Answer: D

- Watch Video Solution

170. The count rate of $10 g$ of radioactive material was measured at different times and times has been shown in the figure. The halflife of material and the total counts (approximately) in the first half life period, respectively are.

Time (in hr)
A. $4 h, 9000$
B. $3 h, 14000$
C. $3 h, 235$
D. $3 h, 50$

Answer: B

- Watch Video Solution

171. The fraction f of radioactive material that has decayed in time t, varies with time t. The
correct variation id given by the curve.

A. A
B. B
C. C
D. D

- Watch Video Solution

172. Binding energy per nucleons vs mass curve for nucleus is shown in the figure
W, X, Y and Z are four nuclei indicated on the curve . The process that would release energy is

A. $Y \rightarrow 2 Z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$
D. $X \rightarrow Y+Z$

Answer: C

D Watch Video Solution
173. The graph between number of decayed atoms N^{\prime} of a radioactive element and time t is.

d)
D.

Answer: D

D Watch Video Solution

174. The graph between the instantaneous

concentration (N) of a radioactive element and

time (t) is.
A.

c.

D.

Answer: D

- Watch Video Solution

175. In Fig. X represents time and Y represent activity of a radioactive sample. Then the activity of sample, varies with time according
to the curve

A. A
B. B
C. C
D. D

Answer: B

- Watch Video Solution

176. The graph which represents the correct variation of logarithm of activity $(\log A)$ versus time, in figure is.

A. A
B. B
C. C
D. D

Answer: D

D Watch Video Solution

177. The charge density in a nucleus varies with distance from the centre of the nucleus according to the curve in Fig.

Answer: C

Watch Video Solution
178. The graph between $\log R$ and $\log A$ wher R is the nuclear radius and A is the mass of is.

- Watch Video Solution

179. The curve between the activity A of a radioactive sample and the number of active atoms N is.

Answer: B

D Watch Video Solution
180. The graph between number of decayed atoms N^{\prime} of a radioactive element and time t is.

Answer: C

D Watch Video Solution

181. The figure shows a graph between $\ln \left|\frac{A_{n}}{A_{1}}\right|$ and $1 n|n|$, where A_{n} is the area enclosed by the $n^{\text {th }}$ orbit in a hydrogen like atom. The correct curve is

182. It is not possible to use.${ }^{35} \mathrm{C} 1$ as the fuel
for fusion energy.
The binding energy of ${ }^{35} C 1$ is too small.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.

D. If the assertion and reason both are

false.

Answer: C

D Watch Video Solution

183. . ${ }^{90} S r$ from the radioactive fall out from nuclear bomb ends up in the bones of human being through the milk consumed by them. It causes impairment of the production of res blood cells.

The energetics β - particles emitted in the decay of ${ }^{90} S r$ damage the bone marrow.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion B. If both assertion and reason are true but reason is not the correct explanation of the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution

184. Assertion: Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate.

Reason: According to classical physical all moving electrons radiate.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

185. Assertion: Radioactive nuclei emit β^{-} particles.

Reason: Electrons exist inside the nucleus.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

186. Staements I: ${ }_{z} X^{4}$ undergoes 2α-decays,
2β-decays (negative β) and 2γ-decays. As a result, the daughter product is $\cdot z \cdot-2 X^{A-B}$.

Staements II: In α-decay, the mass number decreases by 4 unit and atomic number decreases by 2 unit. In β-decay (negative β),
the mass number remains unchanged and atomic number increases by 1 unit. In γ-decay, mass number and atomic number remain unchanged.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution
187. Assertion-Density of all the nuclei is same.

Reason-Radius of nucleus is directly proportional to the cube root of mass number.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: A

D Watch Video Solution

188. Assertion : Isobars are the element having
same mass number but different atomic
number.

Reason : Neutrons and protons are present inside nucleus
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

189. Assertion: The force of repulsion between
atomic nucleus and α-particle varies with distance according to inverse square law.

Reason: Rutherford did α-particles scattering experiment.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

D Watch Video Solution

190. Assertion: The positively changed nucleus of an atom has a radius of almost $10^{-15} \mathrm{~m}$.

Reason: In α-particle scattering experiment the distance of closest apporach for α particles is $\approx 10^{-15} \mathrm{~m}$.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

191. Assertion: According to classical theory,
the proposed path of an electron in

Rutherford atom model will be parabolic.

Reason: According to electromagnetic theory an accelerated particel continuosly emits radiation.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.

D. If assertion is false but reason is true

Answer: D

- Watch Video Solution

192. Assertion: Electrons in the atom are held due to coulomb forces.

Reason: The atom is stable only because the centripetal force due to Coulomb's law is balanced by the centrifugal force.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

193. Assertion: The electron in the hydrogen
atom passes from energy level $n=4$ to the
$n=1$ level. The maximum and minimum
number of photon that can be emitted are six and one respectively.

Reason: The photons are emitted when electron make a transtition from the higher energy state to the lower energy state.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

194. Assertion: Hydrogen atom consists of anly
one electron but its emission spectrum has may lines.

Reason: Only Lyman series is found in the absorption spectrum of hydrogen atom whereas in the emission spectrum, all the series are found.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

Answer: B

D Watch Video Solution

195. Assertion: It is essential that all the lines
available in the emission spectrum will also be available in the absorption spectrum.

Reason: The spectrum of hydrogen atom is
only absorption spectrum.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

- Watch Video Solution

196. Assertion: For the scattering of α-particles
at a large angles, only the nucleus of the atom
is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: A

D Watch Video Solution

197. All the radioactive elements are ultimately
converted in lead.

All the elements above lead are unstable.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.
198. Amongst α, β and $\gamma-$ particles, $\alpha-$ particle has maximum penetrating power.

The α - particle is heavier than β and $\gamma-$ particle.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

D Watch Video Solution
199. The ionising power of α - particle is less
compared to α-particles but their
penetrating power is more.
The mass of β - particle is less than the mass of α-particle.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

- Watch Video Solution

200. The mass of β - particles when they are emitted is higher than the mass of electrons obtained by other means
β - particle and electron, both are similar particles.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.

D. If the assertion and reason both are

 false.Answer: B

D Watch Video Solution

201. Radioactivity of 108 undecayed radioactive nuclei of half life of 50 days is equal to that of
1.2×108 number of undecayed nuclei of some material with half life of 60 days Radioactivity is proportional to half-life.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.
202. Assertion (A) : Fragments produced in the fission of U^{235} are radioactive.

Reason (R) : The fragments have abnormally high proton to neutron ratio
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D Watch Video Solution

203. Electron capture occurs more often than positron emission in heavy elements.

Heavy elements exhibit radioactivity.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: B

D Watch Video Solution

204. The mass of a nucleus can be either less
than or more than the sum of the masses of nucleons present in it.

The whole mass of the atom is considered in the nucleus.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If assertion is false but reason is true

Answer: D

205. The force acting on the electron in a
hydrogen atom depends on the principal quantum number as
A. $F \propto 1 / n^{3}$
B. $F \propto 1 / n^{4}$
C. $F \propto 1 / n^{5}$
D. Does not depend on n

Answer: B

D Watch Video Solution
206. A nucleus ${ }_{Z} X^{A}$ emits 9α - particles and $5 p$ particle. The ratio of total protons and neutrons in the final nucleus is.

$$
\begin{aligned}
& \text { A. } \frac{Z-13}{(A-Z-23)} \\
& \text { B. } \frac{(Z-18)}{(A-36)} \\
& \text { C. } \frac{(Z-13)}{(A-36)} \\
& \text { D. } \frac{(Z-13)}{(A-Z-13)}
\end{aligned}
$$

Answer: A
207. $t_{1 / 2}$ is the half of a substance then $t_{3 / 4}$ is the time in which substance
A. Decays $\frac{3}{4} t h$
B. Remains $\frac{3}{4} t h$
C. Decays $\frac{1}{2}$
D. Remains $\frac{1}{2}$

Answer: A

- Watch Video Solution

208. The enegry level diagram for an hydrogen-like atom is shown in the figure. The radius of its first Bohr orbit is

$$
\begin{aligned}
& 0 \mathrm{eV} \longrightarrow n=\infty \\
& -6.04 \mathrm{eV} \longrightarrow n=3 \\
& -13.6 \mathrm{eV} \longrightarrow n=2 \\
& -54.4 \mathrm{eV} \longrightarrow n=1
\end{aligned}
$$

A. $0.265 \AA$
B. $0.53 \AA$
C. $0.132 \AA$

D. None of these

Answer: A

D Watch Video Solution

209. How much work must be done to pull apart the electron and the proton that make
up the Hydrogen atom, if the atom is initially in the state with $n=2 ?$
A. $13.6 \times 1.6 \times 10^{-19} J$
B. $3.4 \times 1.6 \times 10^{-19} \mathrm{~J}$
C. $1.51 \times 1.6 \times 10^{-19} \mathrm{~J}$
D. 0

Answer: B

D Watch Video Solution

210. The nuclide.${ }^{131} I$ is radioactive, with a half-life of 8.04 days. At noon on January 1 , the activity of a certain sample is 60089 . The activity at noon on January 24 will be
A. 75 Bq
B. Less than 75 Bq
C. More than 75 Bq
D. 150 Bq

Answer: C

D Watch Video Solution

211. U^{238} decays into $T h^{234}$ by the emission of an a-particle. There follows a chain of further radioactive decays, either by α-decay or by
β - decay. Eventually a stable nuclide is
reached and after that, no further radioactive decay is possible. which of the following stable nuclides is the end product of the U^{238} radioactive decay chain ?
A. $P b^{206}$
B. $P b^{207}$
C. $P b^{208}$
D. $P b^{209}$

Answer: A
212. If the mass of a radioactive sample is doubled, the activity of the sample and the disintegration constant of the sample are respectively
A. Increases, remains the same
B. Decreases, increases
C. Decreases, remains same
D. Increases, decreases

Answer: A

D Watch Video Solution

213. When a sample of solid lithium is placed
in a flask of hydrogen gas then following reaction happened
$\cdot{ }_{1}^{1} H+{ }_{\cdot 3} L i^{7} \rightarrow{ }_{\cdot 2} H e^{4}+{ }_{\cdot 2} H e^{4}$.
This
statement is.
A. 1
B.
C. May be true at a particular pressure
D. None of these

Answer: B

D Watch Video Solution

214. Consider an initially pure $M g m$ sample of
X, an isotope that has a half-life of T hour, what is its initial decay rate $\left(N_{A}=\right.$ Avogadro

No, atomic weight of X is A)

> A. $\frac{M N_{A}}{T}$
> B. $\frac{0.693 M N_{A}}{T}$
> C. $\frac{0.693 M N_{A}}{A T}$
D. $\frac{2.303 M N_{A}}{A T}$

Answer: C

D Watch Video Solution

215. At a given instant there are 25%
undecayed radioactive nuclei in a same. After 10 sec the number of undecayed nuclei reduces to 6.25%, the mean life of the nuclei is.
A. 14.43 sec
B. 7.21 sec
C. 5 sec
D. 10 sec

Answer: B

D Watch Video Solution
216. Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that
of Helium nucleus is $141 / 3$. The atomic number of nucleus will be.
A. 25
B. 26
C. 56
D. 30

Answer: B
(Watch Video Solution
217. The ratio of ionization energy of Bohr's
hydrogen atom and Bohr's hydrogen-like
lithium atom is
A. 1:1
B. 1:3
C. 1:9
D. None of these

Answer: C

- Watch Video Solution

218. What is the angular momentum of an
electron in Bohr's hydrogen atom whose energy is -0.544 eV ?

> A. $\frac{h}{\pi}$
> B. $\frac{2 h}{\pi}$
> C. $\frac{5 h}{2 \pi}$
> D. $\frac{7 h}{2 \pi}$

Answer: C

D Watch Video Solution
219. Consider a hypothetical annihilation of a stationary electron with a stationary positron.

What is the wavelength of the resulting radiation?

$$
\begin{aligned}
& \text { A. } \frac{h}{2 m_{0} c} \\
& \text { B. } \frac{h}{m_{0} c} \\
& \text { C. } \frac{2 h}{m_{0} c} \\
& \text { D. } \frac{h}{m_{0} c^{2}}
\end{aligned}
$$

Answer: B
220. In a sample of hydrogen-like atom all of which are in ground state, a photon beam containing photos of various energies is passed. In absorption spectrum, five dark lines, are observed. The number of bright lines in the emission spectrum will be (assume that all transitions takes place).
A. 5
B. 10
C. 15
D. None of these

Answer: C

D Watch Video Solution

221. A hydrogen atom emits a photon corresponding to an electron transition from $n=5$ to $n=1$. The recoil speed of hydrogen atom is almost (mass of proton

$$
\left.\approx 1.6 \times 10^{-27} \mathrm{~kg}\right)
$$

A. 10 ms
B. $2 \times 10 \mathrm{~ms}$
C. $4 m s$
D. $8 \times 10 \mathrm{~ms}$

Answer: C

D Watch Video Solution
222. Number of nuclei of a radioactive substance are 1000 and 900 at times $t=0$
and time $t=2 s$. Then, number of nuclei at time $t=4 s$ will be
A. 800
B. 810
C. 790
D. 700

Answer: B
(Watch Video Solution
223. The ratio between total acceleration of
the electron in singly ionized helium atom and
hydrogen atom (both in ground state) is
A. 1
B. 8
C. 4
D. 16

Answer: B

D Watch Video Solution
224. If the series limit of Lyman series for

Hydrogen atom is equal to the series limit Balmer series for a hydorgen like atom, then atomic number of this hydrogen-like atom will be
A. 1
B. 2
C. 3
D. 4

Answer: B
225. Which sample contains greater number of nuclei ?
a $5.00-\mu C i$ sample of.${ }^{240} P u$ (half-life $6560 y$)
or $a 4.45-\mu C i$ sample of.${ }^{243} A m$ (half-life $7370 y$).
A. ${ }_{240} \mathrm{Pu}$
B. ${ }_{243} A m$
C. Equal in both

D. None of these

Answer: C

D Watch Video Solution

226. The fission of U^{235} can be triggered by
the absorption of a slow neutrons by a nucleus. Similarly a slow protons can also be used. This statement is.
A. Correct

B. Wrong

C. Information is insufficient
D. None of these

Answer: B

D Watch Video Solution

227. The radioactivity of a given sample of whisky due to tritium (half life 12.3 years) was
found to be only 3% of that measured in a recently purchased bottle marked ''7 years
old". The sample must have been prepared about.
A. 220 years back
B. 300 years back
C. 400 years back
D. 70 years back

Answer: D
(Watch Video Solution
228. The following diagram indicates the energy levels of a certain atom when the system moves from $4 E$ level to E. A photon of wavelength λ_{1} is emitted. The wavelength of photon produced during its transition from $\frac{7}{3} E$ level to E is λ_{2}. the ratio $\frac{\lambda_{1}}{\lambda_{2}}$ will be

1. In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change
A. From $n=2$ to $n=1$
B. From $n=3$ to $n=1$
C. From $n=4$ to $n=2$
D. From $n=3$ to $n=2$

- View Text Solution

2. Which one of these is non-divisibl

A. Nucleus

B. Photon

C. Proton
D. Atom

Answer: B
3. The concept of stationary orbits was proposed by
A. Neil Bohr
B. J.J. Thomson
C. Ruther ford

D. I. Newton

Answer: A

- View Text Solution

4. Who discovered spin quantum number

A. Unlenbeck and Goudsmit
B. Nell's Bohr
C. Zeeman
D. Sommerfield

Answer: A

D View Text Solution
5. The order of the size of nucleus and Bohr radius of an atom respectively are

$$
\begin{aligned}
& \text { A. } 10^{-14} m, 10^{-10} m \\
& \text { B. } 10^{-10} m, 10^{-8} m \\
& \text { C. } 10^{-20} m, 10^{-16} m \\
& \text { D. } 10^{-8} m, 10^{-6} m
\end{aligned}
$$

Answer: A

D View Text Solution
6. The ratio of the wavelengths for $2 \rightarrow 1$ transition in $L i, H e$, and H is
A. $1: 2: 3$
B. $1: 4: 9$
C. $4: 9: 36$
D. 3:2:1

Answer: C

- View Text Solution

7. The ratio of speed of an electron in ground

 state in Bohrs first orbit of hydrogen atom tovelocity of light in air is

$$
\begin{aligned}
& \text { A. } \frac{e^{2}}{2 \varepsilon_{0} h c} \\
& \text { B. } \frac{2 e^{2} \varepsilon_{0}}{h c} \\
& \text { C. } \frac{e^{3}}{2 \varepsilon_{0} h c} \\
& \text { D. } \frac{2 \varepsilon_{0} h c}{e^{2}}
\end{aligned}
$$

Answer: A

- View Text Solution

8. The possible quantum number for 3 d electron are

$$
\begin{aligned}
& \text { A. } n=3, l=1, m_{1}=+1, m_{s}=-\frac{1}{2} \\
& \text { B. } n=3, l=2, m_{1}=+2, m_{s}=-\frac{1}{2} \\
& \text { C. } n=3, l=1, m_{1}=-1, m_{s}=+\frac{1}{2} \\
& \text { D. } n=3, l=0, m_{1}=+1, m_{s}=-\frac{1}{2}
\end{aligned}
$$

Answer: B

D View Text Solution

9. Which of the following is quantised according to Bohr's theory of hydrogen atom
A. Linear momentum of electron
B. Angular momentum of electron
C. Linear velocity of electro
D. Angular velocity of electron

Answer: B

D View Text Solution
10. The colour of the second line of Balmer series is
A. Blue
B. Yellow
C. Red
D. Violet

Answer: A

- View Text Solution

11. The kinetic energy of an electron revolving around a nucleus will be
A. Four times of P.E.
B. Double of P.E.
C. Equal to P.E.
D. Half of its P.E.

Answer: D

D View Text Solution
12. In Bohr's model of hydrogen atom, which of
the following pairs of quantities are quantized
A. Energy and linear momentum
B. Linear and angular momentum
C. Energy and angular momentum
D. None of the above

Answer: C

- View Text Solution

13. Energy of an electron in nth orbit of
hydrogen atom is $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$

$$
\begin{aligned}
& \text { A. }-\frac{2 \pi^{2} k^{2} m e^{4}}{n^{2} h^{2}} \\
& \text { B. }-\frac{4 \pi^{2} m k e^{2}}{n^{2} h^{2}} \\
& \text { C. }-\frac{n^{2} h^{2}}{2 \pi k m e^{4}} \\
& \text { D. }-\frac{n^{2} h^{2}}{4 \pi^{2} k m e^{2}}
\end{aligned}
$$

Answer: A

D View Text Solution
14. Which one of the relation is correct between time period and number of orbits while an electron is revolving in a orbit
A. n^{2}
B. $\frac{1}{n^{2}}$
C. n^{3}
D. $\frac{1}{n}$

Answer: C

- View Text Solution

15. Radius of first Bohr orbit is r. What is the

 radius of $2^{\text {nd }}$ Bohr orbit?A. $8 r$
B. $2 r$
C. $4 r$
D. $2 \sqrt{2 r}$

Answer: C
(D) View Text Solution

1. The neutron was discovered by
A. Marie Curie
B. Pierre Curie
C. James Chadwick
D. Rutherford

Answer: C
2. Nuclear binding energy is equivalent to
A. Mass of proton

B. Mass of neutron

C. Mass of nucleus
D. Mass defect of nucleus

Answer: D

D View Text Solution

Graphical Questions

1. If in hydrogen atom, radius of $n^{\text {th }}$ Bohr orbit is, n_{r} frequency of revolution of electron in $n^{t h}$ orbit is f_{n} choose the correct option
A.

B.
(b) $\log \left(\frac{r_{11}}{r_{i}}\right)$ logn
C.

D. Both (a) and (b)

Answer: D

D View Text Solution

Assertion And Reason

1. Assertion : Neutrons penetrate matter more
readily as compared to protons.

Reason : Neutrons are slightly more massive
than protons
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- View Text Solution

S Et

1. Nuclear reactions are given as
(i) $\square(n, p)_{15} p^{32}$
(ii) $\square(p, \alpha){ }_{8} O^{16}$
(iii) ${ }_{7} \square^{4}(p){ }_{6} C^{14}$
missing particle or nuclide (in box \square) in
these reactions are respectively
A. $S^{32}, F^{19},{ }_{\cdot 0} n^{1}$
B. $F^{19}, S^{32},{ }_{0} n^{1}$
C. $B e, F^{19},{ }_{0} n^{1}$
D. None of these

Answer: A

- View Text Solution

