© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - UNIVERSAL BOOK DEPOT 1960 PHYSICS (HINGLISH)

WAVE OPTICS

Exercise

1. By corpuscular theory of light, the phenomenon which can be explained is
A. Refraction
B. Interference
C. Diffraction
D. Polarisation

Answer: A

D Watch Video Solution
2. According to corpuscular theory of light, the different colours of light are due to
A. Different electromagnetic waves
B. Different force of attraction among the corpuscles
C. Different size of the corpuscles
D. None of the above

Answer: C

D Watch Video Solution

3. Huygen's principle of secondary waves
A. Allow us to find the focal length of a thick lens
B. Is a geometrical method to find a
wavefront
C. Is used to determine the velocity of light
D. Is used to explain polarization

Answer: B

- Watch Video Solution

4. The idea of the quantum nature of light has emerged in an attempt to explain
A. Interference
B. Diffraction
C. Radiation spectrum of a black body

D. Polarisation

Answer: C

- Watch Video Solution

5. Two light sources are said to be coherent if they are obtained from

A. Two different lamps

B. Two different lamps but of the same
power
C. Two different lamps of same power and having the same colour
D. None of the above

Answer: D
6. By Huygen's wave theroy of light, we cannot explain the phenomenon of
A. Interference
B. Diffraction
C. Photoelectric effect
D. Polarisation

Answer: C
7. The phenomenon of interference is shown by
A. Longitudinal mechanical waves only
B. Transverse mechanical waves only
C. Electromagnetic waves only
D. All the above types of waves

Answer: D

8. Two coherent monochromatic light beams of intensities I and 4 I are superposed. The maximum and minimum possible intensities in the resulting beam are
A. 5 I and I
B. 51 and 3 I
C. 9 I and I
D. 9 I and 3 I

Answer: C

9. Light appears to travel in straight lines since

A. It is not absorbed by the atmosphere
B. It is reflected by the atmosphere
C. Its wavelength is very small
D. Its velocity is very large

Answer: C

10. The idea of secondary wavelets for the propagation of a wave was first given by
A. Newton
B. Huygen
C. Maxwell
D. Fresnel

Answer: B

11. By a monochromatic wave, we mean
A. A single ray
B. A single ray of a single colour
C. Wave having a single wavelength

D. Many rays of a single colour

Answer: C

D Watch Video Solution

12. The similarity between the sound waves and light waves is
A. Both are electromagnetic waves
B. Both are longitudinal waves
C. Both have the same speed in a medium
D. They can produce interference

Answer: D

- Watch Video Solution

13. The ratio of intensities of two waves is $9: 1$

When they superimpose, the ratio of maximum to minimum intensity will become :-
A. $10: 8$
B. $9: 1$
C. $4: 1$
D. 2:1

Answer: C

14. A wave can transmit from one place to

another

A. Energy

B. Amplitude

C. Wavelength

D. Matter

Answer: A

- Watch Video Solution

15. If the ratio of intensities of two waves is 1 :

25 , then the ratio of their amplitudes will be
A. $1: 25$
B. 5:1
C. 26: 24
D. 1:5

Answer: D

- Watch Video Solution

16. Two identical light sources S_{1} and S_{2} emit light of same wavelength λ. These light rays will exhibit interference if
A. Their phase differences remain constant
B. Their phases are distributed randomly
C. Their light intensities remain constant
D. Their light intensities change randomly

Answer: A

- Watch Video Solution

17. Wave nature of light follows because
A. Light rays travel in a straight line
B. Light exhibits the phenomena of
reflection and refraction
C. Light exhibits the phenomenon of interference
D. Light causes the phenomenon of
photoelectric effect

Answer: C
18. L is the coherence length and c the velocity of light, the coherent time is
A. cL
B. $\frac{L}{c}$
C. $\frac{c}{L}$
D. $\frac{1}{L c}$

Answer: B
19. If the amplitude ratio of two sources
producing interference is $3: 5$, the ratio of intensities at maxima and minima is
A. $25: 16$
B. 5:3
C. 16: 1
D. $25: 9$

Answer: C

D Watch Video Solution
20. Colours of thin films result from

Or

On a rainy day, a small oil film on water show brilliant colours. This is due to
A. Dispersion of light
B. Interference of light
C. Absorption of light
D. Scattering of light

Answer: B

D Watch Video Solution

21. For constructive interference to take place between two monochromatic light waves of wavelength λ, the path difference should be
A. $(2 n-1) \frac{\lambda}{2}$
B. $(2 n-1) \frac{\lambda}{2}$
C. $n \lambda$
D. $(2 n+1) \frac{\lambda}{2}$

Answer: C

- Watch Video Solution

22. Two sources of waves are called coherent if
A. Both have the same amplitude of
vibrations
B. Both produce waves of the same
wavelength
C. Both produce waves of the same wavelength having constant phase difference
D. Both produce waves having the same

velocity

Answer: C

- Watch Video Solution

23. Soap bubble appears coloured due to the phenomenon of
A. Interference
B. Diffraction
C. Dispersion
D. Reflection

Answer: B
(D) Watch Video Solution
24. Which of the following statements indicates that light waves are transverse?
A. Light waves can travel in vacuum
B. Light waves show interference
C. Light waves can be polarized
D. Light waves can be diffracted

Answer: C

- Watch Video Solution

25. If two light waves having same frequency
have intensity ratio $4: 1$ and they interfere, the
ratio of maximum to minimum intensity in the pattern will be
A. $9: 1$
B. $3: 1$
C. $25: 9$
D. $16: 25$

Answer: A
26. Evidence for the wave nature of light cannot be obtained from
A. Reflection
B. Doppler effect
C. Interference
D. Diffraction

Answer: A
27. Two light sources are said to be coherent if they are obtained from
A. Two independent point sources emitting
light of the same wavelength
B. A single point source
C. A wide source
D. Two ordinary bulbs emitting light of different wavelengths
28. Wavelength of light of frequency 100 Hz
A. $2 \times 10^{6} m$
B. $3 \times 10^{6} m$
C. $4 \times 10^{6} m$
D. $5 \times 10^{6} \mathrm{~m}$

Answer: B
29. Two waves having intensity in the ratio

25: 4 produce interference. The ratio of the maximum to the minimum intensity is
A. $5: 2$
B. 7:3
C. $49: 9$
D. 9: 49

Answer: C

D Watch Video Solution
30. Wavefront means
A. All particles in it have same phase
B. All particles have opposite phase of
vibrations
C. Few particles are in same phase, rest are in opposite phase

D. None of these

Answer: A
31. Wavefront of a wave has direction with
wave motion
A. Parallel
B. Perpendicular
C. Opposite
D. At an angle of θ

Answer: B

D Watch Video Solution
32. Which one of the following phenomena is not explained by Huygens construction of wavefront?
A. Refraction
B. Reflection
C. Diffraction
D. Origin of spectra

Answer: D

D Watch Video Solution
33. Interference was observed in interference chamber when air was present, now the chamber is evacuated and if the same light is used, a careful observer will see
A. No interference
B. Interference with bright bands
C. Interference with dark bands
D. Interference in which width of the fringe

Answer: D

D Watch Video Solution

34. The ratio of intensities of two waves are given by $4: 1$. The ratio of the amplitudes of the two waves is
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer: A

D Watch Video Solution

35. For the sustained interference of light, the necessary condition is that the two sources
should
A. Have constant phase difference
B. Be narrow
C. Be close to each other
D. Of same amplitude

Answer: A

D Watch Video Solution

36. If the ratio of amplitude of two waves is
$4: 3$, then the ratio of maximum and minimum
intensity is
A. $16: 18$
B. $18: 16$
C. $49: 1$
D. 94: 1

Answer: C

D Watch Video Solution

37. Which of the following is conserved when
light waves interfere
A. Intensity
B. Energy
C. Amplitude
D. Momentum

Answer: B

D Watch Video Solution

38. Intensity of light depends upon
A. Velocity
B. Wavelength
C. Amplitude
D. Frequency
39. Ray diverging from a point source from a wave front that is
A. Cylindrical
B. Spherical
C. Plane
D. Cubical

Answer: B
40. Ratio of amplitude of interfering waves is
$3: 4$. Now ratio of their intensities will be
A. $\frac{16}{9}$
B. $49: 1$
C. $\frac{9}{16}$
D. None of these

Answer: C

- Watch Video Solution

41. Two coherent sources have intensity in the ratio of $\frac{100}{1}$. Ratio of (intensity) max/(intensity) min is
A. $\frac{1}{100}$
B. $\frac{1}{10}$
C. $\frac{10}{1}$
D. $\frac{3}{2}$

Answer: D

42. If two waves represented by $y_{1}=4 \sin \omega t$ and $y_{2}=3 \sin \left(\omega t+\frac{\pi}{3}\right)$ interfere at a point, the amplitude of the resulting wave will be about
A. 7
B. 6
C. 5
D. 3.5

Answer: B

- Watch Video Solution

43. Two waves are given by
$y_{1}=a \sin (\omega t-k x)$ and $y_{2}=a \cos (\omega t-k x)$
. The phase difference between the two waves
A. 0
B. $\frac{\pi}{2}$
C. π
D. $\frac{\pi}{4}$

Answer: B

D Watch Video Solution

44. In a wave, the path difference corresponding to a phase difference of ϕ is
A. $\frac{\pi}{2 \lambda} \phi$
B. $\frac{\pi}{\lambda} \phi$
C. $\frac{\lambda}{2 \pi} \phi$
D. $\frac{\lambda}{\pi} \phi$

Answer: C

- Watch Video Solution

45. Two coherent sources of intensities I_{1} and
I_{2} produce an interference pattern. The maximum intensity in the interference pattern will be
A. $l_{1}+l_{2}$
B. $l_{1}^{2}+l_{2}^{2}$
C. $\left(l_{1}+l_{2}\right)^{2}$

$$
\text { D. }\left(\sqrt{l_{1}}+{\sqrt{l_{2}}}^{2}\right)
$$

Answer: D

D Watch Video Solution

46. Newton postulated his corpuscular theory
on the basis of
A. Newton's rings
B. Colours of thin films
C. Rectilinear propagation of light

D. Dispersion of white light

Answer: C

D Watch Video Solution

47. Dual nature of radiation is shown by
A. Photoelectric effect
B. Refraction and interference
C. Diffraction and reflection
D. Diffraction and photoelectric effect

Answer: D

D Watch Video Solution

48. Two beam of light having intensities I and

41 interfere to produce a fringe pattern on a
screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B . Then the difference between resultant intensities at

A and B is : $(2001,2 M)$
A. 21
B. 41
C. 51
D. 기

Answer: B

- Watch Video Solution

49. Coherent sources are those sources for which
A. Phase difference remain constant
B. Frequency remains constant
C. Both phase difference and frequency
remains constant
D. None of these

Answer: C

D Watch Video Solution

50. Two wave are represented by equation $y_{1}=a \sin \omega t$ and $y_{2}=a \cos \omega t$ the first wave
A. Leads the second by π
B. Lags the second by π
C. Leads the second by $\frac{\pi}{2}$
D. Lags the second by $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

51. Light waves producing interference have their amplitudes in the ratio $3: 2$. The intensity
ratio of maximum and minimum interference

fringes is

A. $36: 1$
B. 9: 4
C. $25: 1$
D. 6: 4

Answer: C
(Watch Video Solution
52. Laser beams are used to measure long distances because
A. They are monochromatic
B. They are highly polarised
C. They are coherent
D. They have high degree of parallelism

Answer: D

D Watch Video Solution
53. Two coherent sources of different intensities send waves which interfere. The ratio of maximum intensity to the minimum intensity is 25 . The intensities of the sources are in the ratio
A. $25: 1$
B. 5:1
C. 9: 4
D. $25: 16$

Answer: C
54. The frequency of light ray having the wavelength $3000 \AA$ is
A. 9×10^{13} cycles $/ \mathrm{sec}$
B. 10^{15} cycles $/ \mathrm{sec}$
C. 90 cycles/sec
D. 3000 cycles/sec

Answer: B
55. Two waves have their amplitudes in the
ratio $1: 9$. The maximum and minimum
intensities when they interfere are in the ratio
A. $\frac{25}{16}$
B. $\frac{16}{26}$
C. $\frac{1}{9}$
D. $\frac{9}{1}$

Answer: A
56. Huygen's priciple of secondary wavelets may be used to
A. Find the velocity of light in vacuum
B. Explain the particle behaviour of light
C. Find the new position of the wavefront
D. Explain photoelectric effect

Answer: C
57. What is the path difference of destructive interference
A. $n \lambda$
B. $n(\lambda+1)$
C. $\frac{(n+1) \lambda}{2}$
D. $\frac{(2 n+1) \lambda}{2}$

Answer: D

58. If an interference pattern have maximum
and minimum intensities in $36: 1$ ratio, then
what will be the ratio of amplitudes?
A. $5: 7$
B. 7: 4
C. $4: 7$
D. $7: 5$

Answer: D

D Watch Video Solution
59. Intensities of the two waves of light are I
and $4 I$. The maximum intensity of the resultant wave their superposition is
A. 5 I
B. 9 I
C. 16 I
D. 25 I

Answer: B

D Watch Video Solution
60. As a result of interference of two coherent sources of light, energy is
A. Increased
B. Redistributed and the distribution does
not vary with time
C. Decreased
D. Redistributed and the distribution
changes with time

Answer: B

- Watch Video Solution

61. To deminstrate the phenimenon of interference, we require two sources which emit radiation
A. Of the same frequency and having a define phase relationship
B. Of nearly the same frequency
C. Of the same frequency
D. Of different wavelengths

Answer: A

- Watch Video Solution

62. When a beam of light is used to determine
the position of an object, the maximum accuracy is achieved if the light is
A. Polarised
B. Of longer wavelength
C. Of shorter wavelength
D. Of high intensity

- Watch Video Solution

63. If the distance between a point source and
screen is doubled, then intensity of light on
the screen will become
A. Four times
B. Double
C. Half
D. One-fourth

Answer: D

- Watch Video Solution

64. Huygens wave theory allows us to know
A. The wavelength of the wave
B. The velocity of the wave
C. The propagation of wave fronts
D.
65. The wave theory of light was given by
A. Maxwell
B. Planck
C. Huygen
D. Young

Answer: C
66. The phase difference between incident wave and reflected wave is 180° when light ray
A. Enters into glass from air
B. Enters into air from glass
C. Enters into glass from diamond
D. Enters into water from glass

Answer: A

- Watch Video Solution

67. Which of the following phenomena can explain quantum nature of light?
A. Photoelectric effect
B. Interference
C. Diffraction
D. Polarisation

Answer: A

D Watch Video Solution
68. Which of the following is not a property of

light?

A. It requires a material medium for propagation
B. It can travel through vacuum
C. It involves transportation of energy
D. It has finite speed

Answer: A
69. What causes changes in the colours of the soap or oil films for the given beam of light
A. Angle of incidence
B. Angle of reflection
C. Thickness of film
D. None of these

Answer: C

70. Select the right option in the following
A. Christian Huygens a contemporary of

Newton established the wave theory of
light by assuming that light waves were transverse
B. Maxwell provided the compelling
theoretical evidence that light is
transverse wave
C. Thomas Young experimentally proved
the wave behaviour of light and Huygens

D. All the statements give above, correctly

 answers the question ,what is light'
Answer: B

- Watch Video Solution

71. Two waves of intensity I undergo interference. The maximum intensity obtained is
A. $l / 2$
B. I
C. 21
D. 41

Answer: D

D Watch Video Solution

72. Young's experiment establishes that
A. Light consists of waves
B. Light consists of particles
C. Light consists of neither particles nor waves
D. Light consists of both particles and
waves

Answer: A

- Watch Video Solution

73. In the interference pattern, energy is
A. Created at the position of maxima
B. Destroyed at the position of minima
C. Conserved but is redistributed
D. None of the above

Answer: C

- Watch Video Solution

74. Monochromatic green light of wavelength
$5 \times 10^{-7} m$ illuminates a pair of slits 1 mm
apart. The separation of bright lines on the
interference pattern formed on a screen 2 m away is
A. 0.25 mm
B. 0.1 mm
C. 1.0 mm
D. 1.5 mm

Answer: C
(Watch Video Solution

75. In Young's double slit experiment, if the slit

widths are in the ratio $1: 9$, then the ratio of
the intensity at minima to that at maxima will be
A. 1
B. $1 / 9$
C. $1 / 4$
D. $1 / 3$

Answer: C
76. In Young's double slit interference experiment, the slit separation is made 3 fold.

The fringe width becomes
A. $1 / 3$ times
B. 1/9 times
C. 3 time
D. 9 times

Answer: A
77. In a certain double slit experimental arrangement interference fringes of width 1.0 mm each are observed when light of wavelength $5000 \AA$ is used. Keeping the set up unaltered, if the source is replaced by another source of wavelength $6000 \AA$, the fringe width will be
A. $0.5 m m$
B. 1.0 mm
C. 1.2 mm
D. 1.5 mm

Answer: C

- Watch Video Solution

78. Two coherent light sources S_{1} and $S_{2}(\lambda=6000 \AA)$ are 1 mm apart from each other. The screen is placed at a distance of 25 cm from the sources. The width of the fringes on the screen should be
A. 0.015 cm
B. 0.025 cm
C. 0.010 cm
D. 0.030 cm

Answer: A

D Watch Video Solution

79. The figure shows a double slit experiment with P and Q as the slits. The path lengths $P X$ and QX are $n \lambda$ and $(n+2) \lambda$ respectively,
where n is a whole number and λ is the wavelength. Taking the central fringe as zero, what is formed at X ?

A. First bright
B. First dark

C. Second bright

D. Second dark

Answer: C

D Watch Video Solution

80. In Young's double slit experiment, if one of
the slit is closed fully, then in the interference
pattern
A. A bright slit will be observed, no interference pattern will exist
B. The bright fringes will become more bright
C. The bright fringes will become fainter
D. None of the above

Answer: A
(Watch Video Solution
81. In Young's double slit experiment, a glass
plate is placed before a slit which absorbs half the intensity of light. Under this case
A. The brightness of fringes decreases
B. The fringe width decreases
C. No fringes will be observed
D. The bright fringes become fainter and
the dark fringes have finite light intensity

Answer: D

D Watch Video Solution

82. In Young's double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen in doubled. The fringe width is
A. Will not change
B. Will become half
C. Will be doubled

D. Will become four times

Answer: D

D Watch Video Solution

83. The maximum intensity of fringes in

Young's experiment is I. If one of the slit is
closed, then the intensity at that place becomes I_{o}. Which of the following relation is true?

$$
\text { A. } l=l_{0}
$$

B. $l=2 l_{0}$
C. $l=4_{0}$
D. There is no relation between l and l_{0}

Answer: C

D Watch Video Solution

84. In the Young's double slit experiment, the interference pattern is found to have as intensity ratio between the bright and dark fringes as 9. This implies that
A. The intensities of individual sources are

5 and 4 units respectively
B. The intensities of individual sources are

4 and 1 units respectively
C. The ratio of their amplitudes is 3
D. The ratio of their amplitudes is 2

Answer: B::D

D Watch Video Solution

85. Oil floating on water looks cloured due to
interference of light. What should be the approximate thickness of the film for such effects to be visible?
A. $100 \AA$
B. $10000 \AA$
C. 1 mm
D. 1 cm

Answer: B
86. The Young's experiment is performed with
the lights of blue $(\lambda=4360 \AA)$ and green colour $(\lambda=5460 \AA)$. If the distance of the 4 th fringe from the centre is x, then

> A. $x($ Blue $)=x$ (Green $)$
> B. $x($ Blue $)>x$ (Green $)$
> C. x (Blue $)<x$ (Green $)$
> D. $\frac{x(\text { Blue })}{x(\text { Green })}=\frac{5460}{4360}$

Answer: C

D Watch Video Solution

87. In the Young's double slit experiment, the
spacing between two slits is 0.1 mm . If the
screen is kept at a distance of 1.0 m from the
slits and the wavelength of ligth is $5000 \AA$,
then the fringe width is
A. 1.0 cm
B. 1.5 cm
C. 0.5 cm
D. 2.0 cm

Answer: C

D Watch Video Solution

88. In Young's double slit experiement, if L is
the distance between the slits and the screen
upon which interference pattern is observed, x
is the average distance between the adjacent
fringes and d being the slit separation. The wavelength of light if given by

$$
\begin{aligned}
& \text { A. } \frac{x d}{L} \\
& \text { B. } \frac{x L}{d} \\
& \text { C. } \frac{L d}{x} \\
& \text { D. } \frac{1}{L d x}
\end{aligned}
$$

Answer: A
89. In a Young's double slit experiment, the central point on the screen is
A. Bright
B. Dark
C. First bright and then dark
D. First dark and then bright

Answer: A
(Watch Video Solution
90. In a Young's double slit experiment, the fringe width is found to be 0.4 mm . If the whole apparatus is immersed in water of refractive index $4 / 3$ without disturbing the geometrical arrangement, the new fringe width will be
A. 0.30 mm
B. 0.40 mm
C. 0.53 mm
D. 450 micron

- Watch Video Solution

91. Young's experiment is performed in air and
then performed in water, the fringe width:
A. Will remain same
B. Will decrease
C. Will increase
D. Will be infinite

Answer: B

- Watch Video Solution

92. In double slits experiment, for light of which colour the fringe width will be minimum
A. Violet
B. Red
C. Green
D. Yellow

Answer: A

- Watch Video Solution

93. In a Young's expt., the width of the fringes obtained with the light of wavelength $6000 \AA$
is 2.00 mm . What will be the fringe width if the entire apparatus is immersed in a liquid of

$$
\mu=4 / 3 ?
$$

A. $0.2 m m$
B. 0.3 mm
C. $0.4 m m$
D. 1.2 mm

Answer: C

D Watch Video Solution

94. In Young's double slit experiment, the phase difference between the light waves reaching third bright fringe from the central fringe will be $(\lambda=6000 \AA)$
A. Zero
B. 2π
C. 4π
D. 6π

Answer: D

- Watch Video Solution

95. In Young's double slit experiment, if the widths of the slits are in the ratio $4: 9$, the
ratio of the intensity at maxima to the intensity at minima will be
A. 169: 25
B. $81: 16$
C. 25: 1
D. 9: 4

Answer: C
(Watch Video Solution
96. In Young's double slit experiement when
wavelength used is $6000 \AA$ and the screen is
40 cm from the slits, the fringes are 0.012 cm
wide. What is the distance between the slits?
A. 0.024 cm
B. 2.4 cm
C. 0.24 cm
D. 0.2 cm

Answer: D

97. In two separate set-ups of the Young's double slit experiment, fringes of equal width are observed when lights of wavelength in the ratio of $1: 2$ are used. If the ratio of the slit separation in the two cases is $2: 1$, the ratio of the distance between the plane of the slits and the screen in the two set-ups are
A. $4: 1$
B. 1:1
C. 1:4
D. 2:1

Answer: A

- Watch Video Solution

98. In an interference experiment, the spacing between successive maxima or minima is
(Where the symbols have their usual meanings)
A. $\frac{\lambda d}{D}$
B. $\frac{\lambda D}{d}$
C. $\frac{d D}{\lambda}$
D. $\frac{\lambda d}{4 D}$

Answer: B

D Watch Video Solution

99. If yellow light in the Young's double slit experiement is replaced by red light, the fringe width will
A. Decrease
B. Remain unaffected
C. Increase
D. First increase and then decrease

Answer: C

D Watch Video Solution

100. In Young's double slit experiment, the fringe width is $1 \times 10^{-4} m$ if the distance between the slit and screen is doubled and
the distance between the two slit is reduced to half and wavelength is changed from $6.4 \times 10^{7} \mathrm{~m}$ to $4.0 \times 10^{-7} \mathrm{~m}$, the value of new fringe width will be
A. $0.15 \times 10^{-4} m$
B. $2.0 \times 10^{-4} \mathrm{~m}$
C. $1.25 \times 10^{-4} m$
D. $2.5 \times 10^{-4} m$

Answer: D

101. In Young's experiment one slit is covered
with a blue filter and the other (slit) with a
yellow filter then the interference pattern
A. Will be blue
B. Will be yellow
C. Will be green
D. Will not be formed

Answer: D

D Watch Video Solution
102. Two sources give interference pattern which is observed on a screen, D distance apart from the sources. The fringe width is 2 w
. If the distance D is now doubled, the fringe width will
A. Become w/2
B. Remain the same
C. Become w
D. Become 4 w

Answer: D

D Watch Video Solution

103. In double slit experiment, the angular
width of the fringes is 0.20° for the sodium
light $(\lambda=5890 \AA)$. In order to increase the angular width of the fringes by 10%, the necessary change in the wavelength is
A. Increase of $589 \AA$
B. Decrease of $589 \AA$

C. Increase of $6479 \AA$

D. Zero

Answer: A

D Watch Video Solution

104. In a biprism experiement, by using light of wavelength $5000 \AA, 5 \mathrm{~mm}$ wide fringes are obtained on a screen $1.0 m$ away from the coherent sources. The separation between the two coherent sources is
A. 1.0 mm
B. 0.1 mm
C. 0.05 mm
D. 0.01 mm

Answer: B

D Watch Video Solution

105. The slits in a Young's double slit experiemnt have equal width and the source is placed symmetrically with respect to the slits.

The Intensty ast the central fringe is I_{0}. If one of the slits is closed, the intensit at this point
A. l_{0}
B. $l_{0} / 4$
C. $l_{0} / 2$
D. $4 l_{0}$

Answer: B

D Watch Video Solution
106. A thin mica sheet of thickness $2 \times 10^{-6} \mathrm{~m}$ and refractive index $(\mu=1.5)$ is introduced in the path of the first wave. The wavelength of the wave used is $5000 \AA$. The central bright maximum will shift
A. 2 fringes upward
B. 2 fringes downward
C. 10 fringes upward
D. None of these

- Watch Video Solution

107. In a Young's double slit experiment, the
fringe width will remain same, if ($D=$ distance between screen and plane of slits, $d=$ separation between two slits and $\lambda=$ wavelength of light used)
A. Both λ and D are doubled
B. Both d and D are doubled
C. D is doubled but d is halved
D. λ is doubled but d is halved

Answer: B

- Watch Video Solution

108. In Young's double slit experiment, the slits are 0.5 mm apart and interference pattern is observed on a screen placed at a distance of
1.0 m from the plane containg the slits. If wavelength of the incident light is $6000 \AA$,
then the separation between the third bright fringe and the central maxima is
A. 4.0 mm
B. 3.5 mm
C. 3.0 mm
D. 2.5 mm

Answer: B

D Watch Video Solution

109. In Young's double slit experiment, 62
fringes are seen in visible region for sodium
light of wavelength $5893 \AA$. If violet light of
wavelength $4358 \AA$, is used in place of sodium
light, then number of fringes seen will be
A. 54
B. 64
C. 74
D. 84

Answer: D
(Watch Video Solution
110. In Young's double slit experiment, angular
width of fringes is 0.20° for sodium light of wavelength $5890 \AA$. If complete system is dipped in water, then angular width of fringes becomes
A. 0.11°
B. 0.15°
C. 0.22°
D. 0.30°

Answer: B

- Watch Video Solution

111. In Young's double slit experiment, the distance between the slits is 1 mm and that between slit and screen is 1 meter and 10th fringe is 5 mm away from the central bright fringe, then wavelength of light used will be A. $5000 \AA$
B. $6000 \AA$
C. $7000 \AA$

D. $8000 \AA$

Answer: A

- Watch Video Solution

112. The Young's double slit experiment is carried out with light of wavelength $5000 \AA$.

The distance between the slits is 0.2 mm and the screen is at 200 cm from the slits. The central maximum is at $y=0$. The third maximum will be at y equal to
A. 1.67 cm
B. 1.5 cm
C. 0.5 cm
D. 5.0 cm

Answer: B

D Watch Video Solution

113. In a Young's experiment, two coherent sources are placed 0.90 mm apart and the fringes are observed one metre away. If is
produces the second dark fringe at a distance of 1 mm from the central fringe, the wavelength of monochromatic light used would be
A. $60 \times 10^{-4} \mathrm{~cm}$
B. $10 \times 10^{-4} \mathrm{~cm}$
C. $10 \times 10^{-5} \mathrm{~cm}$
D. $6 \times 10^{-5} \mathrm{~cm}$

Answer: D

114. In Young's double slit experiment, the distance between the two slits is 0.1 mm and the wavelength of light used is $4 \times 10^{-7} \mathrm{~m}$. If the width of the fringe on the screen is 4 mm , the distance between screen and slit is
A. $0.1 m m$
B. 1 cm
C. 0.1 cm
D. 1 m

Answer: D

- Watch Video Solution

115. In Young's double slit experiment, the distance between sources is 1 mm and distance between the screen and source is 1 m
. If the fringe width on the screen is 0.06 cm ,
then $\lambda=$
A. $6000 \AA$
B. $4000 \AA$

C. $1200 \AA$

D. $2400 \AA$

Answer: A

- Watch Video Solution

116. In the Young's double slit experiment, a mica slip of thickness t and refractive index μ is introduced in the ray from first source S_{1}. By how much distance fringes pattern will be
displaced ? ($\mathrm{d}=$ distance between the slits and
D is the distance between slits and screen)

$$
\begin{aligned}
& \text { A. } \frac{d}{D}(\mu-1) t \\
& \text { B. } \frac{D}{d}(\mu-1) t \\
& \text { C. } \frac{d}{(\mu-1) D} \\
& \text { D. } \frac{D}{d}(\mu-1)
\end{aligned}
$$

Answer: B

D Watch Video Solution

117. In Young's double slit experiment using sodium light ($\lambda=5898 \AA$) 92 fringes are seen if given colour $(\lambda=5461 \AA)$ is used how many fringes will be seen
A. 62
B. 67
C. 85
D. 99

Answer: D
118. If a torch is used in place of monochromatic light in Young's experiment what will happen?
A. Fringe will appear for a moment then it
will disappear

B. Fringes
 will
 occur
 as from

monochromatic light
C. Only bright fringes will appear
D. No fringes will appear

Answer: D

D Watch Video Solution

119. When a thin metal plate is placed in the path of one of the interfering beams of light
A. Fringe width increases
B. Fringes disappear
C. Fringes become brighter
D. Fringes becomes blurred

Answer: B

D Watch Video Solution

120. In Young's experiement, the distance
between slits is 0.28 mm and distance between slits and screen is $1.4 m$. Distance between central bright fringe and third bright fringe is 0.9 cm . What is the wavelength of used light?
A. $5000 \AA$
B. $6000 \AA$

C. $7000 \AA$

D. $9000 \AA$

Answer: B

D Watch Video Solution

121. Two parallel slits 0.6 mm apart are
illuminated by light source of wavelength $6000 \AA$. The distance between two consecutive
dark fringe on a screen $1 m$ away from the slits
is

A. 1 mm
B. 0.01 mm
C. 0.1 mm
D. 10 m

Answer: A

D Watch Video Solution
122. In young's double slit experiment with a source of light of wavelength $6320 \AA$, the first maxima will occur when
A. Path difference is $9480 \AA$
B. Phase difference is 2π radian
C. Path difference is $6320 \AA$
D. Phase difference is π radian

Answer: B::C

D Watch Video Solution
123. If a transparent medium of refractive index $\mu=1.5$ and thickness $t=2.5 \times 10^{-5} m$ is inserted in front of one of the slits of

Young's Double Slit experiment, how much will
be the shift in the interference patten? The distance between the slits is 0.5 mm and that between slits and screen is 100 cm
A. 5 cm
B. 2.5 cm
C. 0.25 cm

D. 0.1 cm

Answer: B

D Watch Video Solution

124. In Young's experiment, monochromatic
light is used to illuminate the two slits A and
B. Interference fringes are observed on a screen placed in front of the slits. Now if a thin glass plate is placed normally in the path of
the beam coming from the slit

A. The fringes will disappear
B. The fringe width will increase
C. The fringe width will increase
D. There will be no change in the fringe width but the pattern shifts

Answer: D

D Watch Video Solution

125. The fringe width in Young's double slit experiment increases when
A. Wavelength increases
B. Distance between the slits increases
C. Distance between the source and screen
decreases
D. The width of the slits increases

Answer: A

D Watch Video Solution

126. In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other then in the interference pattern.
A. The intensities of both the maxima and
the minima increase
B. The intensity of maxima increases and
the minima has zero intensity
C. The intensity of maxima decreases and
that of the minima increases
D. The intensity of maxima decreases and
the minima has zero intensity

Answer: A

127. Two slits, 4 mm apart, are illuminated by
light of wavelength $6000 \AA$. What will be the
fringe width on a screen placed 2 m from the slits
A. 0.12 mm
B. 0.3 mm
C. 3.0 mm
D. 4.0 mm
128. In the Young's double slit experiment, for which colour the fringe width is least
A. Red
B. Green
C. Blue
D. Yellow

Answer: C
129. In a Young's double slit experiment, the separation of the two slits is doubled. To keep
the same spacing of fringes, the distance D of the screen from the slits should be made
A. $\frac{D}{2}$
B. $\frac{D}{\sqrt{2}}$
C. 2 D
D. 4 D

Answer: C

D Watch Video Solution

130. Young's double slit experiment is performed with light of wavelength 550 nm .

The separation between the slits is 1.10 mm and screen is placed at distance of 1 m . What is the distance between the consecutive bright or dark fringes
A. 1.5 mm
B. 1.0 mm
C. 0.5 mm
D. None of these

Answer: C

D Watch Video Solution

131. In Young's experiment, the ratio of maximum to minimum intensities of the fringe system is $4: 1$. The amplitudes of the coherent sources are in the ratio
A. $4: 1$
B. $3: 1$
C. 2:1
D. $1: 1$

Answer: B

D Watch Video Solution

132. An interference pattern was made by using red light. If the red light changes with blue light, the fringes will become
A. Wider
B. Narrower
C. Fainter
D. Brighter

Answer: B

D Watch Video Solution
133. If a white light is used in Young's double
slit experiments then a very large number of
coloured fringes can be seen
A. With first order violet fringes being
closer to the central white fringes
B. First order red fringes being closer to
the central white fringes
C. With a central white fringe
D. With a central black fringe

Answer: C

- Watch Video Solution

134. In a Young's double slit experiment, 12
fringes are observed to be formed in a certain
segment of the screen when light of wavelength 600 nm is used. If the wavelength
of light is changed to 400 nm , number of
fringes observed in the same segment of the screen is given by
A. 12
B. 18
C. 24

D. 30

Answer: B

D Watch Video Solution

135. In the Young's double slit experiment with sodium light, the slits are 0.589 m apart. The angular separation of the third maximum from
the central maximum will be (given
$\lambda=589 \mathrm{~mm})$

$$
\text { A. } \sin ^{-1}\left(0.33 \times 10^{8}\right)
$$

$$
\text { B. } \sin ^{-1}\left(0.33 \times 10^{-6}\right)
$$

C. $\sin ^{-1}\left(3 \times 10^{-8}\right)$
D. $\sin ^{-1}\left(3 \times 10^{-6}\right)$

Answer: D

D Watch Video Solution

136. In Young's double slit experiment, the distance between the two slits is made half, then the fringe width will become
A. Half

B. Double

C. One fourth
D. Unchanged

Answer: B

D Watch Video Solution

137. In Young's double slit experiment, the central bright fringe can be identified
A. By using white light instead of monochromatic light
B.As it is narrower than other bright
fringes
C. As it is wider than other bright fringes
D. As it has a greater intensity than the other bright fringes

Answer: A

138. In Young's double slit experiment, the wavelength of the light used is doubled and distance between two slits is half of initial distance, the resultant fringe width becomes
A. 2 times
B. 3 times
C. 4 times
D. $1 / 2$ times

Answer: C

139. In a Young's double slit experiment, the source illuminating the slits is changed from blue to violet. The width of the fringes

A. Increases

B. Decreases
C. Becomes unequal
D. Remains constant
140. The intensity of the light coming from one of the slits in a Young's double slit experiment is double the intensity from the other slit. Find the ratio of the maximum intensity to the minimum intensity in the interference fringe pattern observed.
A. 34
B. 40
C. 25
D. 38

Answer: A

D Watch Video Solution

141. If the sodium light in Young's double slit experiment is replaced by red light, the fringe width will
A. Decrease
B. Increase

C. Remain unaffected

D. First increase, then decrease

Answer: B

D Watch Video Solution

142. In Young's double-slit experiment, the wavelength of light was changed from $7000 \AA$
to 3500 Å.. While doubling the separation between the slits, which of the following is not true for this experiment?
A. The width of the fringes changes
B. The colour of bright fringes changes
C. The separation between successive bright fringes changes
D. The separation between successive dark
fringes remains unchanged

Answer: D

D Watch Video Solution

143. When a transparent parallel plate of uniform thickness t and refractive index μ is interposed normally in the path of a beam of light, the optical path is
A. $(\mu+1) t$
B. $(\mu-1) t$
C. $\frac{(\mu+1)}{t}$
D. $\frac{(\mu-1)}{t}$

Answer: B
144. In Young's double slit experiment, an interference pattern is obtained on a screen by a light of wavelength $6000 \AA$, coming from the coherent sources S_{1} and S_{2}. At certain point P on the screen third dark fringe is
formed. Then the path difference $S_{1} P-S_{2} P$ in microns is
A. 0.75
B. 1.5
C. 3.0
D. 4.5

Answer: B

D Watch Video Solution

145. In a Young's double slit experiment, the
slit separation is $1 m m$ and the screen is $1 m$
from the slit. For a monochromatic light of wavelength 500 nm , the distance of 3rd minima from the central maxima is
A. 0.50 mm
B. 1.25 mm
C. 1.50 mm
D. 1.75 mm

Answer: B

D Watch Video Solution

146. In a Young's double-slit experment, the fringe width is β. If the entire arrangement is
now placed inside a liquid of refractive index μ
, the fringe width will become
A. $\frac{\beta}{n+1}$
B. $n \beta$
C. $\frac{\beta}{n}$
D. $\frac{\beta}{n-1}$

Answer: C
(Watch Video Solution
147. In an interference experiment, third bright fringe is obtained at a point on the screen with a light of 700 nm . What should be the wavelength of the light source in order to obtain 5th bright fringe at the same point
A. 500 nm
B. 630 nm
C. 750 nm
D. 420 nm
148. If the separation between slits in Young's double slit experiment is reduced to $\frac{1}{3} \mathrm{rd}$, the fringe width becomes n times. The value of n
A. 3
B. $\frac{1}{3}$
C. 9
D. $\frac{1}{9}$

- Watch Video Solution

149. A double slit experiment is performed with light of wavelength 500 nm . A thin film of thickness $2 \mu m$ and refractive index 1.5 is introduced in the path of the upper beam. The location of the central maximum will
A. Remain unshifted
B. Shift downward by nearly two fringes
C. Shift upward by nearly two fringes

D. Shift downward by 10 fringes

Answer: C

D Watch Video Solution

150. Two slits at a distance of 1 mm are
illuminated by a light of wavelength
$6.5 \times 10^{-7} \mathrm{~m}$. The interference fringes are observed on a screen placed at a distance of
$1 m$. The distance between third dark fringe and fifth bright fringe will be
A. 0.65 mm
B. 1.63 mm
C. 3.25 mm
D. 4.88 mm

Answer: B

D Watch Video Solution

151. In a Young's double-slit experiment the fringe width is 0.2 mm . If the wavelength of light used is increased by 10% and the
separation between the slits if also increased by 10%, the fringe width will be
A. 0.20 mm
B. 0.401 mm
C. $0.242 m m$
D. 0.165 mm

Answer: A
(Watch Video Solution
152. Two coherent sources of intensity ratio

1:4 produce an interference pattern. The
fringe visibility will be
A. 1
B. 0.8
C. 0.4
D. 0.6

Answer: B

D Watch Video Solution
153. In Young's double slit experiment the amplitudes of two sources are $3 a$ and a respectively. The ratio of intensities of bright and dark fringes will be
A. $3: 1$
B. $4: 1$
C. $2: 1$
D. $9: 1$

Answer: B
154. In Young's double slit experiment, distance between two sources is 0.1 mm . The distance of screen from the sources is 20 cm .

Wavelength of light used is $5460 \AA$. Then, angular position of first dark fringe is approximately
A. 0.08°
B. 0.16°
C. 0.20°

D. 0.313°

Answer: D

D Watch Video Solution

155. In a Young's double slit experiment, the
slit separation is 0.2 cm , the distance between
the screen and slit is 1 m . Wavelength of the
light used is $5000 \AA$. The distance between two
consecutive dark fringes (in mm) is
A. 0.25
B. 0.26
C. 0.27
D. 0.28

Answer: A

- Watch Video Solution

156. A light of wavelength $5890 \AA$ falls normally
on a thin air film. The minimum thickness of
the film such that the film appears dark in reflected light is

A. $2.945 \times 10^{-7} m$
 B. $3.945 \times 10^{-7} m$
 C. $4.95 \times 10^{-7} m$
 D. $1.945 \times 10^{-7} m$

Answer: A

D Watch Video Solution

157. In Young's double slit experiment, a minimum is obtained when the phase difference of super imposing waves is
A. Zero
B. $(2 n-1) \pi$
C. $n \pi$
D. $(n+1) \pi$

Answer: B

- Watch Video Solution

158. In Fresnel's biprism $(\mu=1.5)$ experiment
the distance between source and biprism is
$0.3 m$ and that between biprism and screen is
$0.7 m$ and angle of prism is 1°. The fringe width with light of wavelength $6000 \AA$ will be
A. 3 cm
B. 0.011 cm
C. 2 cm
D. 4 cm

Answer: B
(Watch Video Solution
159. In Young's double slit experiment, when
two light waves form third minimum, they
have
A. Phase difference of 3π
B. Phase difference of $\frac{5 \pi}{2}$
C. Path difference of 3λ
D. Path difference of $\frac{5 \lambda}{2}$

Answer: D

D Watch Video Solution
160. In Fresnel's biprism experiment, on
increasing the prism angle, the fringe width
will
A. Increase
B. Decrease
C. Remain unchanged
D. Depend on the position of object

Answer: B

D Watch Video Solution
161. If prism angle $\alpha=1^{\circ}, \mu=1.54$, distance between screen and prism $(b)=0.7 m$, distance between prism and source $a=0.3 m$,
$\lambda=180 \pi n m$ then in Fresnel biprism find the value of β (fringe width).
A. $10^{-4} m$
B. $10^{-3} \mathrm{~mm}$
C. $10^{-4} \times \pi m$
D. $\pi \times 10^{-3} m$

Answer: A
162. If Fresnel's biprism experiement as held in
water in spite of air, then what will be the effect on fringe width?
A. Decrease
B. Increase
C. No effect
D. None of these
163. What is the effect on Fresnel's biprism experiment when the use of white light is made?
A. Fringe are affected
B. Diffraction pattern is spread more
C. Central fringe is white and all are coloured
D. None of these

Answer: C

- Watch Video Solution

164. What happens to the fringe pattern when
the Young's double slit experiment is
performed in water instead of air ?
A. Shrinks
B. Disappear
C. Unchanged
D. Enlarged

Answer: A

D Watch Video Solution

165. In Young's double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen in doubled. The fringe width is
A. Increases
B. Decreases
C. Remains unchanged

D. None of these

Answer: A

- Watch Video Solution

166. In Young's double slit experiment, the aperture screen distance is $2 m$. The fringe width is 1 mm . Light of 600 nm is used. If a thin plate of glass $(\mu=1.5)$ of thickness 0.06 mm is placed over one of the slits, then there will be a lateral displacement of the fringes by
A. 0 cm
B. 5 cm
C. 10 cm
D. 15 cm

Answer: B

D Watch Video Solution

167. In which of the following is the interference due to the division of wave front
A. In which of the following is the interference due to the division of wave
front
B. Fresnel's biprism experiment
C. Lloyd's mirror experiment

D. Demonstration colours of thin film

Answer: B

D Watch Video Solution

168. Two slits are separated by a distance of
0.5 mm and illuminated with light of
$\lambda=6000 \AA$. If the screen is placed $2.5 m$ from
the slits. The distance of the third bright image from the centre will be
A. 1.5 mm
B. 3 mm
C. 6 mm
D. 9 mm

Answer: D
169. The wavelength of light coming from a distant galaxy is found to be 0.5% more than that coming from a source on earth. Calculate the velocity of galaxy.
A. Stationary with respect to the earth
B. Approaching the earth with velocity of
light
C. Receding from the earth with the

velocity of light

D. Receding from the earth with a velocity equal to $1.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

170. A star is moving away from the earth with
a velocity of $100 \mathrm{~km} / \mathrm{s}$. If the velocity of light is
$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ then the shift of its spectral line of wavelength $5700 A$ due to Doppler effect is
A. $0.1 \AA$
B. $0.05 \AA$
C. $0.2 \AA$
D. $1 \AA \AA$

Answer: A

D Watch Video Solution
171. If the shift of wavelength of light emitted
by a star is towards violet, then this shows
that star is
A. Stationary
B. Moving towards earth
C. Moving away from earth
D. Information is incomplete

Answer: B

- Watch Video Solution

172. A star is going away from the earth. An observer on the earth will see the wavelength of light coming from the star
A. There will be no change
B. The spectrum will move to infrared
region
C. The spectrum will seems to shift to
ultraviolet side
D. None of the above

Answer: B

- Watch Video Solution

173. Does the change in frequency due to

Doppler effect depend on (i) distance between source and observer? (ii) the fact that source is moving towards observer or observer is moving towards the source?
A. Einstein mass - energy relation
B. Einstein theory of relativity

C. Photoelectric effect

D. None of these

Answer: B

D Watch Video Solution

174. A rocket is moving away from the earth at a speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. The rocket has blue light in it. What will be the wavelength of light recorded by an observer on the earth (wavelength of blue light $=4600 \AA$)
A. $4600 \AA$
B. $5520 \AA$
C. $3680 \AA$
D. $3920 \AA$

Answer: B

D Watch Video Solution

175. The spectral line of wavelength
$\lambda=5000 \AA$ in the light coming from a distant
star is observed as 5200 Å.Determine the recession velocity of the star.
A. $1.15 \times 10^{7} \mathrm{~cm} / \mathrm{sec}$
B. $1.15 \times 10^{7} \mathrm{~m} / \mathrm{sec}$
C. $1.15 \times 10^{7} \mathrm{~km} / \mathrm{sec}$
D. $1.15 \mathrm{~km} / \mathrm{sec}$

Answer: B

- Watch Video Solution

176. The apparent wavelength of the light from
a star, moving away from the earth is 0.01% more than its real wavelength. The speed of the star with respect to earth is
A. $60 \mathrm{~km} / \mathrm{sec}$
B. $15 \mathrm{~km} / \mathrm{sec}$
C. $150 \mathrm{~km} / \mathrm{sec}$
D. $30 \mathrm{~km} / \mathrm{sec}$

Answer: D

177. A star emits light of $5500 \AA$ wavelength. Its

 appears blue to an observer on the earth, it meansA. Star is going away from the earth
B. Star is stationary
C. Star is coming towards earth
D. None of the above

Answer: C
178. The velocity of light emitted by a source S observed by an observer O , who is at rest with respect to S is C. If the observer moves towards S with velocity v , the velocity of light as observed will be
A. $c+v$
B. $\mathrm{c}-\mathrm{v}$
C. C
D. $\sqrt{1-\frac{v_{2}}{v_{2}}}$

Answer: C

D Watch Video Solution

179. In the context of Doppler effect in light, the term red shift signifies
A. Decrease in frequency
B. Increase in frequency
C. Decrease in intensity
D. Increase in intensity

Answer: A

D Watch Video Solution

180. The sun is rotating about its own axis. The spectral lines imitted from the two ends of its equator, for an bserver on the earth will show
A. Shift towards red end
B. Shift towards violet end
C. Shift towards red end by one line and

D. No shift

Answer: C

D Watch Video Solution

181. A star is moving away from the earth with
a velocity of $100 \mathrm{~km} / \mathrm{s}$. If the velocity of light is
$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ then the shift of its spectral line of wavelength $5700 A$ due to Doppler effect is
A. $0.63 \AA$
B. $1.90 \AA$
C. $3.80 \AA$
D. $5.70 \AA$

Answer: B

D Watch Video Solution

182. If a source of light is moving away from a stationary observer, then the frequency of light wave appears to change because of
A. Doppler's effect
B. Interference
C. Diffraction
D. None of these

Answer: A

D Watch Video Solution
183. A star which is emitting radiation at a wavelength of 5000A is approaching the earth with a velocity of $1.50 \times 10^{6} \mathrm{~m} / \mathrm{s}$ The change
in wavelegth of the radiation as received on
the earth is
A. $25 \AA$
B. Zero
C. $100 \AA$
D. $2.5 \AA$

Answer: A
(Watch Video Solution
184. star emitting light of wavelength $5896 \AA$ is
moving away from the earth with a speed of
3600 km / sec . The wavelength of light observed on earth will
(c $=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ is the speed of light)
A. Decrease by $5825.25 \AA$
B. Increase by $5966.75 \AA$
C. Decrease by $70.75 \AA$
D. Increase by $70.75 \AA$

185. A star moves away from earth at speed 0.8

c while emitting light of frequency $6 \times 10^{14} \mathrm{~Hz}$
. What frequency will be observed on the earth
(in units of $10^{14} \mathrm{~Hz}$) ($\mathrm{c}=$ speed of light)
A. 0.24
B. 1.2
C. 30
D. 3.3

Answer: B

D Watch Video Solution

186. A light source approaches the observer
with velocity $0.8 c$. The doppler shift for the light of wavelength $5500 \AA$ is
A. $4400 \AA$
B. $1833 \AA$
C. $3167 \AA$
D. $7333 \AA$

Answer: C

- Watch Video Solution

187. Light coming from a star is observed to
have a wavelength of $3737 \AA$, while its real
wavelength is $3700 \AA$. The speed of the star relative to the earth is [Speed of light $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]

$$
\text { A. } 3 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

B. $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $3.7 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $3.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

188. In the spectrum of light of a luminous
heavenly body the wavelength of a spectral
line is measured to be $4747 \AA$ while actual wavelength of the line is $4700 \AA$. The relative
velocity of the heavenly body with respect to earth will be (velocity of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
A. $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ moving towards the earth
B. $3 \times 10^{5} \mathrm{~m} / \mathrm{s}$ moving away from the
earth
C. $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ moving towards the earth
D. $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ moving away from the earth

Answer: D

189. The wavelength of light observed on the earth, from a moving star is found to decrease by 0.05%. Relative to the earth the star is
A. Moving away with a velocity of

$$
1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

B. Coming closer with a velocity of

$$
1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

C. Moving away with a velocity of

$$
1.5 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

D. Coming closer with a velocity of

$$
1.5 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

Answer: B

D Watch Video Solution

190. A star is going away from the earth. An
observer on the earth will see the wavelength
of light coming from the star
A. Decreased

B. Increased

C. Neither decreased nor increased
D. Decreased or increased depending upon
the velocity of the star

Answer: B

D Watch Video Solution

191. A star is moving towards the earth with a speed of $9 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If the wavelength of a
particular spectral line emitted by star is 600 nm , find the apparent wavelength.
A. $5890 \AA$
B. $5978 \AA$
C. $5802 \AA$
D. $5896 \AA$

Answer: C

- Watch Video Solution

192. Due to Doppler's effect, the shift in wavelength observed is $0.1 \AA$ for a star producing wavelength 6000 Å. Velocity of recession of the star will be
A. $2.5 \mathrm{~km} / \mathrm{s}$
B. $10 \mathrm{~km} / \mathrm{s}$
C. $5 \mathrm{~km} / \mathrm{s}$
D. $20 \mathrm{~km} / \mathrm{s}$

Answer: C
193. A rocket is going away from the earth at a speed 0.2 c , where $\mathrm{c}=$ speed of light. It emits a signal of frequency $4 \times 10^{7} \mathrm{~Hz}$. What will be the frequency observed by an observer on the earth
A. $4 \times 10^{6} \mathrm{~Hz}$
B. $3.2 \times 10^{7} \mathrm{~Hz}$
C. $3 \times 10^{6} \mathrm{~Hz}$
D. $5 \times 10^{7} \mathrm{~Hz}$

- Watch Video Solution

194. If a star is moving towards the earth, then
the lines are shifted towards
A. Red
B. Infrared
C. Blue
D. Green

Answer: C

D Watch Video Solution

195. When the wavelength of light coming
from a distant star is measured it is found
shifted towards red. Then the conclusion is
A. The star is approaching the observer
B. The star recedes away from earth
C. There is gravitational effect on the light
D. The star remains stationary

Answer: B

- Watch Video Solution

196. A heavenly body is receding from earth
such that the fractional change in λ is 1 , then
its velocity is
A. C
B. $\frac{3 C}{5}$
C. $\frac{C}{5}$
D. $\frac{2 C}{5}$

Answer: A

- Watch Video Solution

197. The $6563 \AA H_{2}$ line emitted by hydrogen in a star is found to be red shifted by $15 \AA$.

Estimate the speed with which the star is receding from earth.
A. $17.29 \times 10^{9} \mathrm{~m} / \mathrm{s}$
B. $4.29 \times 10^{7} \mathrm{~m} / \mathrm{s}$
C. $3.39 \times 10^{5} \mathrm{~m} / \mathrm{s}$

D. $2.29 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

198. Three observers A, B and C measure the speed of light coming from a source to be
v_{A}, v_{B} and v_{C}. The observer A moves towards
the source and C moves away from the soure
at the same speed. The observer B stays
stationary. The surrounding space is vacuum everywhere.

$$
\begin{aligned}
& \text { A. } v_{A}>v_{B}>v_{C} \\
& \text { B. } v_{A}<v_{B}<v_{C} \\
& \text { C. } v_{A}=v_{B}=v_{C} \\
& \text { D. } v_{A}=v_{B}>v_{C}
\end{aligned}
$$

Answer: C
(Watch Video Solution
199. Certain characteristic wavelength in the
light from a galaxy in the constellation virgo
are observed to be increased in wavelength, as
compared with terrestrial sources, by about
0.4%. What is the radial speed of this galaxy
with respect to earth ? Is it approacing or receding ?
A. Moving away with velocity
$1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. Coming closer with velocity

$$
1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}
$$

C. Moving away with velocity $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. Coming closer with velocity $4 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

200. It is believed that the universe is expanding and hence the distant stars are
receding from us. Light from such a star will show
A. Shift in frequency towards longer
wavelengths
B. Shift in frequency towards shorter wavelength
C. No shift in frequency but a decrease in intensity
D. A shift in frequency sometimes towards
longer and sometimes towards shorter
wavelengths

Answer: A

D Watch Video Solution

201. A slit of width is illuminated by white
light. For red light $(\lambda=6500 \AA)$, the first minima is obtained at $\theta=30^{\circ}$. Then the value of will be
A. $3250 \AA$
B. $6.5 \times 10^{-4} \mathrm{~mm}$
C. 1.24 microns
D. $2.6 \times 1^{-4} \mathrm{~cm}$

Answer: C

D Watch Video Solution

202. Light of wavelength $6328 \AA$ is incident normally on a slit of width 0.2 mm . Calculate the angular width of central maximum on a screen distance 9 m ?
A. 0.36°
B. 0.18°
C. 0.72°
D. 0.09°

Answer: A

D Watch Video Solution

203. The bending of light about corners of an
obstacle is called
A. Reflection
B. Diffraction
C. Refraction
D. Interference

Answer: B

D Watch Video Solution
204. The penetration of light into the region of geometrical shadow is called
A. Polarisation
B. Interference
C. Diffraction
D. Refraction

Answer: C

D Watch Video Solution

205. A slit of size $0.15 m$ is placed at $2.1 m$ from
a screen. On illuminated it by a light of
wavelength $5 \times 10^{-5} \mathrm{~cm}$. The width of central

maxima will be

A. 70 mm
B. 0.14 mm
C. 1.4 mm
D. 0.14 cm

Answer: C
(Watch Video Solution
206. A diffraction is obtained by using a beam of red light. What will happen if the red light is replaced by the blue light?
A. Bands will narrower and crowd full together
B. Bands become broader and further apart
C. No change will take place
D. Bands disappear

Answer: A

D Watch Video Solution

207. What will be the angle of diffracting for
the first minimum due to Fraunhofer diffraction with sources of light of wavelength 550 nm and slit of width 0.55 mm ?
A. 0.001 rad
B. 0.01 rad
C. 1 rad

D. 0.1 rad

Answer: A

D Watch Video Solution

208. Angular width (β) of central maximum of
a diffraction pattern on a single slit does not depend upon
A. Distance between slit and source
B. Wavelength of light used
C. Width of the slit
D. Frequency of light used

Answer: A

D Watch Video Solution

209. A single slit of width 0.20 mm is
illuminated with light of wavelength 500 nm .

The observing screen is placed 80 cm from the slit. The width of the central bright fringe will be
A. 1 mm
B. 2 mm
C. 4 mm
D. 5 mm

Answer: C

D Watch Video Solution

210. Yellow light is used in a single slit of diffraction experiment with slit width 0.6 mm .

If yellow light is replaced by X-rays then the observed pattern will reveal
A. That the central maxima is narrower
B. No diffraction pattern
C. More number of fringes
D. Less number of fringes

Answer: B

- Watch Video Solution

211. In Fresnel diffraction, if the distance between the disc and the screen is decreased, the intensity of central bright spot will
A. Increase
B. Decrease
C. Remain constant
D. None of these

Answer: B

D Watch Video Solution
212. A plane wavefront $\left(\lambda=6 \times 10^{-7} m\right)$ falls
on a slit $0.4 m$ wide. A convex lens of focal
length $0.8 m$ placed behind the slit focuses the
light on a screen. What is the linear diameter of second maximum?
A. 6 mm
B. 12 mm
C. 3 mm
D. 9 mm

Answer: A
213. A zone plate of focal length, 60 cm behaves as a convex lens, If wavelength of incident light is , $6000 \AA$ then radius of first half period zone will be
A. $36 \times 10^{-8} \mathrm{~m}$.
B. $6 \times 10^{-8} m$.
C. $\sqrt{6} \times 10^{-8} m$.
D. $6 \times 10^{-4} \mathrm{~m}$.

Answer: D

- Watch Video Solution

214. Red light is generally used to observe diffraction pattern from single slit. If blue light
is used instead of red light, then diffraction pattern.
A. Will be more clear
B. Will contract
C. Will expanded

D. Will not be visualized

Answer: B

D Watch Video Solution

215. Angular width of central maximum in diffraction at a single slit is
A. Increases
in
both
Fresnel
and

Fraunhofer diffraction
B. Decreases both in Fresnal and

Fraunhofer diffraction

C. Increases in Fresnel diffraction but
decreases in Fraunhofer diffraction
D. Decreases in Fresnel diffraction but increases is Fraunofer diffraction.

Answer: A

D Watch Video Solution

216. Conditions of diffraction is

$$
\begin{aligned}
& \text { A. } \frac{a}{\lambda}=1 \\
& \text { B. } \frac{a}{\lambda} \gg 1 \\
& \text { С. } \frac{a}{\lambda} \ll 1
\end{aligned}
$$

D. None of these

Answer: A
217. Light of wavelength 589.3 nm is incident normally on the slit of width 0.1 mm . What will be the angular width of the central diffraction maximum at a distance of 1 m from the slit?
A. 0.68°
B. 1.02°
C. 0.34°
D. None of these

Answer: A
218. The phenomenon of diffraction of light was discovered by-
A. Hygens
B. Newton
C. Fresnel
D. Grimaldi

Answer: D
(Watch Video Solution
219. The radius r of half period zone is proportional to
A. \sqrt{n}
B. $\frac{1}{\sqrt{n}}$
C. n^{2}
D. $\frac{1}{n}$

Answer: A

D Watch Video Solution
220. In a diffraction pattern by a wire, on
increasing diameter of wire, fringe width
A. Decreases
B. Increases
C. Remains unchanged

D. Increasing or decreasing will depend on

wavelength

Answer: A

221. What will be the angular width of central maxima in Fraunhofer diffraction when light of wavelength $6000 \AA$ is used and slit width is $12 \times 10^{-5} \mathrm{~cm}$?
A. 2 rad
B. 3 rad
C. 1 rad
D. 8 rad

Answer: C
222. When a compact disc is illuminated by a source of white light, coloured lines are observed. This is due to
A. Dispersion

B. Diffraction

C. Interference
D. Refraction
223. The diffraction effect can be observed in
A. Only sound waves
B. Only light waves
C. Only ultrasonic waves
D. Sound as well as light waves

Answer: D

224. When light is incident on a diffraction grating, the zero order principal maximum will be
A. One of the component colours
B. Absent
C. Spectrum of the colours
D. White

Answer: D

D Watch Video Solution
225. A beam of light of wavelength 600 nm
from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern
is observed on a screen 2 m away. The distance
between the first dark fringes on either side of the central bright fringe is
A. 1.2 mm
B. 1.2 cm
C. 2.4 cm
D. 2.4 mm

Answer: D

- Watch Video Solution

226. In order to see diffraction the thickness of
the film is
A. $100 \AA$
B. $10,000 \AA$
C. 1 mm
D. 1 cm

Answer: B

D Watch Video Solution

227. Diffraction effects are easier to notice in
the case of sound waves than in the case of light waves because
A. Sound waves are longitudinal
B. Sound is perceived by the ear
C. Sound waves are mechanical waves
D. Sound waves are of longer wavelength

Answer: D

D Watch Video Solution

228. Direction of the first secondary maximum
in the Fraunhofer diffraction pattern at a single slit is given by (a is the width of the slit)

> A. $a \sin \theta=\frac{\lambda}{2}$
> B. $a \cos \theta=\frac{3 \lambda}{2}$
C. $a \sin \theta=\lambda$
D. $a \sin \theta=\frac{3 \lambda}{2}$

Answer: D

- Watch Video Solution

229. A parallel monochromatic beam of light is
incident normally on a narrow slit. A diffraction pattern is formed on a screen placed perpendicular to the direction of the incident beam. At the first minimum of the diffraction pattern, the phase difference between the rays coming from the two edges of the slit is
A. 0
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: D

D Watch Video Solution
230. Distinguish between interference and
diffraction of light.
A. Nature of light is electro-magnetic
B. Wave nature
C. Nature is quantum
D. Nature of light is transverse

Answer: B

D Watch Video Solution

231. A light wave is incident normally over a slit of width $24 \times 10^{-5} \mathrm{~cm}$. The angular position
of second dark fringe from the central maxima
is 30°. What is the wavelength of light?
A. $6000 \AA$
B. $5000 \AA$
C. $3000 \AA$
D. $1500 \AA$

Answer: A

D Watch Video Solution

232. A parallel beam of monochromatic light of

 wavelength $5000 \AA$ is incident normally on a single narrow slit of width 0.001 mm . The light is focused by a convex lens on a screen placed on the focal plane. The first minimum will be formed for the angle of diffraction equal toA. 0°
B. 15°
C. 30°
D. 60°

Answer: C

D Watch Video Solution

233. The condition for observing Fraunhofer
diffraction from a single slit is that the light
wavefront incident on the slit should be
A. Spherical
B. Cylindrical
C. Plane
D. Elliptical

Answer: C

- Watch Video Solution

234. To observe diffraction, the size of the obstacle
A. Should be of the same order as
wavelength
B. Should be much larger than the
wavelength
C. Have no relation to wavelength
D. Should be exactly $\frac{\lambda}{2}$

Answer: A

D Watch Video Solution

235. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_{1} is found to be coincident with third maximum at λ_{2}. So
A. $3 \lambda_{1}=0.3 \lambda_{2}$
B. $3 \lambda_{1}=\lambda_{2}$
C. $\lambda_{1}=3.5 \lambda_{2}$
D. $0.3 \lambda_{1}=3 \lambda_{2}$

Answer: C

D Watch Video Solution

236. Light of wavelength $\lambda=5000 \AA$ falls normally on a narrow slit. A screen is placed at a distance of $1 m$ from the slit and
perpendicular to the direction of light. The first minima of the diffraction pattern is situated at 5 mm from the centre of central maximum. The width of the slit is
A. 0.1 mm
B. 1.0 mm
C. 0.5 mm
D. 0.2 mm

Answer: A

237. The width of the nth HPZ will be
A. $\sqrt{n b \lambda}$
B. $\sqrt{b \lambda}[\sqrt{n}-\sqrt{n-1}]$
C. $(\sqrt{n}-\sqrt{n-1})$
D. $\frac{\sqrt{b \lambda}}{[\sqrt{n}-\sqrt{n-1}]}$

Answer: B

- Watch Video Solution

238. A single slit of width a is illuminated by
violet light of wavelength 400 nm and the width of the diffraction pattern is measured as
y. When half of the slit width is covered and
illuminated by yellow light of wavelength 600 nm , the width of the diffraction pattern is
A. The pattern vanishes and the width is
zero
B. $y / 3$
C. $3 y$

D. None of these

Answer: C

D Watch Video Solution

239. A polariser in used to
A. Reduce intensity of light
B. Produce polarised light
C. Increase intensity of light
D. Produce unpolarised light

- Watch Video Solution

240. Light waves can be polarised as they are
A. Transverse
B. Of high frequency
C. Longitudinal
D. Reflected
241. Through which character we can distiguish the light waves from sound waves
A. Interference
B. Refraction
C. Polarisation
D. Reflection

Answer: C
242. The angle of polarisation for any medium is 60°, what will be critical angle for this

> A. $\sin ^{-1} \sqrt{3}$
> B. $\tan ^{-1} \sqrt{3}$
> C. $\cos ^{-1} \sqrt{3}$
> D. $\sin ^{-1} \cdot \frac{1}{\sqrt{3}}$

Answer: D

- Watch Video Solution

243. The angle of incidence at which reflected
light is totally polarized for reflection from air to glass (refraction index n) is
A. $\sin ^{-1}(n)$
B. $\sin ^{-1}\left(\frac{1}{n}\right)$
C. $\tan ^{-1}\left(\frac{1}{n}\right)$
D. $\tan ^{-1}(n)$

Answer: D
244. Which of the following cannot be polarised?
A. Radio waves
B. Ultraviolet rays
C. Infrared rays
D. Ultrasonic waves

Answer: D

- Watch Video Solution

245. A polaroid is placed at 45° to an incoming light of intensity I_{0}. Now the intensity of light passing through polaroid after polarisation would be
A. I_{0}
B. $I_{0} / 2$
C. $I_{0} / 4$
D. Zero

Answer: B

D Watch Video Solution

246. Plane polarised light is passed through a polaroid. On viewing through the polaroid we find that when the polaroid is given one complete rotation about the direction of light
A. The intensity of light gradually
decreases to zero and remains at zero
B. The intensity of light gradually increases
to a maximum and remains at maximum

C. There is no change in intensity

D. The intensity of light is twice maximum

and twice zero

Answer: D

D Watch Video Solution

247. Out of the following statements which is not correct
A. When unpolarised light passes through
a Nicol's prism, the emergent light is
elliptically polarised
B. Nicol's prism works on the principle of
double refraction and total internal reflection
C. Nicol's prism can be used to produce and analyse polarised light
D. Calcite and Quartz are both doubly refracting crystals

Answer: A

D Watch Video Solution

248. A ray of light is incident on the surface of
a glass plate at an angle of incidence equal to
Brewster's angle ϕ. If μ represents the refractive index of glass with respect to air, then the angle between reflected and refracted rays is
A. $90+\phi$

$$
\text { B. } \sin ^{-1}(\mu \cos \phi)
$$

C. 90°
D. $90^{\circ}-\sin ^{-1}(\sin \phi / \mu)$

Answer: C

D Watch Video Solution

249. Figure represents a glass plate placed vertically on a horizontal table with a beam of unpolarised light falling on its surface at the polarising angle of 57° with the normal. The
electric vector in the reflected light on screen
S will vibrate with respect to the plane of incidence in a

A. Vertical plane

B. Horizontal plane

C. Plane making an angle of 45° with the

vertical

D. Plane making an angle of 57° with the horizontal

Answer: A

D Watch Video Solution

250. A beam of light AO is incident a glass slab
($\mu=1.54$) in the direction show. The reflected ray $O B$ is passed through a Nicol
prism. On viewing through a Nicol prism, we find on rotating the prism that
A. The intensity is reduced down to zero
and remains zero
B. The intensity reduces down some what
and rises again
C. There is no change in intensity
D. The intensity gradually reduces to zero and then again increases

Answer: D

- Watch Video Solution

251. Polarised glass is used in sum glasses
because:
A. It reduces the light intensity to half an
account of polarisation
B. It is fashionable
C. It has good colour

D. It is cheaper

Answer: A

D Watch Video Solution

252. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: A

D Watch Video Solution

253. A calcite crystal is placed over a dot on a
piece of paper and rotated, on seeing through
the calcite one will be see
A. One dot

B. Two stationary dots

C. Two rotating dots
D. One dot rotating about the other

Answer: D

D Watch Video Solution

254. A light has amplitude A and angle between analyser and polariser is 60°. Light is reflected by analyser has amplitude
A. $A \sqrt{2}$
B. $A / \sqrt{2}$
C. $\sqrt{3} A / 2$
D. $A / 2$

Answer: D

D Watch Video Solution

255. When light is incident on a doubly refracting crystal, two refracted rays-ordinary
ray (O -ray) and extra ordinary ray (E -ray) are produced. Then
A. Both O -ray and E -ray are polarised perpendicular to the plane of incidence
B. Both O -ray and E -ray are polarised in
the plane of incidence
C. E -ray is polarised perpendicular to the
plane of incidence and O -ray in the
plane of incidence
D. E -ray is polarised in the plane of incidence and O -ray perpendicular to the plane of incidence

Answer: D

D Watch Video Solution

256. Light passes successively through two polarimeters tubes each of length 0.29 m . The first tube contains dextro rotatory solution of concentration $60 \mathrm{kgm}^{-3}$ and specific rotation
$0.01 \mathrm{radm}^{2} \mathrm{~kg}^{-1}$. The second tube contains laevo rotatory solution of concentration $30 \mathrm{~kg} / \mathrm{m}^{3}$ and specific rotation
$0.02 \mathrm{radm}^{2} \mathrm{~kg}^{-1}$. The net rotation produced is
A. 15°
B. 0°
C. 20°
D. 10°

Answer: B
257. V_{0} and V_{E} represent the velocities, mo and mE the refractive indices of ordinary and extraordinary rays for a doubly refracting crystal. Then
A. $V_{O} \geq V_{E}, \mu_{O} \leq \mu_{E}$ if the crystal is calcite
B. $V_{O} \leq V_{E}, \mu_{O} \leq \mu_{E}$ if the crystal is
quartz
C. $V_{O} \leq V_{E}, \mu_{O} \geq \mu_{E}$ if the crystal is
calcite
D. $V_{O} \geq V_{E}, \mu_{O} \geq \mu_{E}$ if the crystal is

quartz

Answer: C

D Watch Video Solution

258. Polarising angle for water is $53^{\circ} 4^{\prime}$. If light is incident at this angle on the surface of water and reflected, the angle of refraction is
A. $53^{\circ} 4^{\prime}$
B. $126^{\circ} 56^{\prime}$
C. $36^{\circ} 56^{\prime}$
D. $30^{\circ} 4^{\prime}$

Answer: C

D Watch Video Solution

259. When a plane polarised light is passed
through an analyser and analyser is rotated
through 90°, the intensity of the emerging light
A. Varies between a maximum and
minimum
B. Become zero
C. Does not vary

D. Varies between a maximum and zero

Answer: D

D Watch Video Solution

260. Consider the following statements A to B
and identify the correct answer
A. Polarised light can be used to study the helical surface of nucleic acids.
B. Optics axis is a direction and not any particular line in the crystal
A. A and B are correct
B. A and B are wrong
C. A is correct but B is wrong
D. A is wrong but B is correct

Answer: A

D Watch Video Solution

261. Two Nicols are oriented with their principal planes making an angle of 60°. The percentage of incident unpolarised light which passes through the system is
A. 50%
B. 100%
C. 12.5%

D. 37.5%

Answer: C

D Watch Video Solution

262. Unpolarised light falls on two polarizing sheets placed one on top of the other. What must be the angle between the characteristic directions of the sheets if the intensity of the final transmitted light is one-third the
maximum intensity of the first transmitted beam?
A. 75°
B. 55°
C. 35°
D. 15°

Answer: B

D Watch Video Solution
263. Unpolarized light of intensity $32 \mathrm{Wm}^{-3}$ passes through three polarizers such that the transmission axis of the last polarizer is crossed with the first. If the intensity of the emerging light is $3 W m^{-2}$, what is the angle between the transmission axces of the first two polarizers ? At what angle will the transmitted intensity be maximum ?
A. $32 \mathrm{Wm}^{-2}$
B. $3 W^{-2}$
C. $8 W^{-2}$

D. $4 W m^{-2}$

Answer: B

D Watch Video Solution

264. In the visible region of the spectrum the rotation of the place of polarization is given
by $\theta=a+\frac{b}{\lambda^{2}}$. The optical rotation produced by a particular material is found to be 30° per mm at $\lambda=5000 \AA$ and 50° per mm at $\lambda=4000 \AA$. The value of constant a will be
A. $+\frac{50^{\circ}}{9}$ per mm
B. $-\frac{50^{\circ}}{9}$ per mm
C. $+\frac{9^{\circ}}{50}$ per mm
D. $-\frac{9^{\circ}}{50}$ per mm

Answer: B

D Watch Video Solution

265. When an unpolarized light of intensity I_{0} is incident on a polarizing sheet, the intensity of the light which does not get transmitted is
A. Zero
B. I_{0}
C. $\frac{1}{2} I_{0}$
D. $\frac{1}{4} I_{0}$

Answer: C

- Watch Video Solution

266. Refractive index of material is equal to
tangent of polarising angle. It is called
A. Brewster's law
B. Lambert's law
C. Malus's law
D. Bragg's law

Answer: A

D Watch Video Solution
267. In case of linearly polarised light, the magnitude of the electric field vector
A. Does not change with time
B. Varies periodically with time
C. Increases and decreases linearly with
time
D. Is parallel to the direction of
propagation

Answer: B

268. When unpolarised light beam is incident
from air onto glass ($n=1.5$) at the polarising angle
A. Reflected beam is polarised 100 percent
B. Reflected and refracted beams are
partially polarised
C. The reason for (a) is that almost all the
light is reflected
D. All of the above

D Watch Video Solution

269. An optically active compound
A. Rotates the plane polarised light
B. Changing the direction of polarised light
C. Do not allow plane polarised light to
pass through
D. None of the above

Answer: A

- Watch Video Solution

270. When the angle of incidence on a material is 60°, the reflected light is completely polarized. The velocity of the refracted ray inside the material is (in $m s^{-1}$)
A. 3×10^{8}
B. $\left(\frac{3}{\sqrt{2}}\right) \times 10^{8}$
C. $\sqrt{3} \times 10^{8}$

D. 0.5×10^{8}

Answer: C

- Watch Video Solution

271. Two polaroids are placed in the path of unpolarized beam of intensity I_{0} such that no
light is emitted from the second polarid. If a third polaroid whose polarization axis makes an angle θ with the polarization axis of first polaroid, is placed between these two
polariods then the intensity of light emerging
from the last polaroid will be
A. $\left(\frac{I_{0}}{8}\right) \sin ^{2} 2 \theta$
B. $\left(\frac{I_{0}}{4}\right) \sin ^{2} 2 \theta$
C. $\left(\frac{I_{0}}{2}\right) \cos ^{4} \theta$
D. $I_{0} \cos ^{4} \theta$

Answer: A

D Watch Video Solution

272. For the study of the helical structure of
nucleic acids, the property of electromagnetic radiation generally used is
A. Reflection
B. Interference
C. Diffraction
D. Polarization

Answer: D

D Watch Video Solution
273. Which of the following statement is wrong
A. Infrared photon has more energy than
the photon of visible light
B. Photographic plates are sensitive to
ultraviolet rays
C. Photographic plates can be made sensitive to infrared rays

D. Infrared rays are invisible but can cast

shadows like visible light rays

Answer: A

D Watch Video Solution

274. Pick out the longest wavelength from the following types of radiations
A. Blue light
B. γ-rays

C. X-rays

D. Red light

Answer: D

- Watch Video Solution

275. Wave which cannot travel in vacumm is
A. X rays
B. Infrasonic
C. Ultraviolet

D. Radiowaves

Answer: B

D Watch Video Solution

276. Light is an electromagnetic wave. Its speed in vacuum is given by the expression
A. $\sqrt{\mu_{0} \varepsilon_{0}}$
B. $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$
C. $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$
D. $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

Answer: D

D Watch Video Solution

277. The range of wavelength of the visible light is
A. $10 \AA$ to $100 \AA$
B. $4,000 \AA$ to $8,000 \AA$
C. $8,000 \AA$ to $10,000 \AA$

D. $10,000 \AA$ to $15,000 \AA$

Answer: B

D Watch Video Solution

278. Which radiation in sunlight causes
heating effect?
A. Ultraviolet
B. Infrared
C. Visible light
D. All of these

Answer: B

D Watch Video Solution

279. Which of the following represents an
infrared wavelength
A. $10^{-4} \mathrm{~cm}$
B. $10^{-5} \mathrm{~cm}$
C. $10^{-6} \mathrm{~cm}$
D. $10^{-7} \mathrm{~cm}$

Answer: A

D Watch Video Solution

280. The wavelength of light visible to eye is of
the order of
A. $10^{-2} m$
B. $10^{-10} m$
C. $1 m$

$$
\text { D. } 6 \times 10^{-7} m
$$

Answer: D

D Watch Video Solution

281. The speed of electromagnetic wave in
vacuum depends upon the source of radiation.

It
A. Increases as we move from γ-rays to
radio waves
B. Decreases as we move from γ-rays to radio waves
C. Is same for all of them
D. None of these

Answer: C

D Watch Video Solution

282. Which of the following radiation has the least wavelength ?
A. γ-rays
B. β-rays
C. α-rays
D. X-rays

Answer: A

D Watch Video Solution
283. The maximum distance upto which TV transmission from a TV tower of height h can be received is proportional to
A. $h^{1 / 2}$
B. h
C. h
D. h^{2}

Answer: A

D Watch Video Solution

284. Which of the following are not electromagnetic waves?
A. Cosmic rays
B. Gamma rays
C. β-rays
D. X-rays

Answer: C

- Watch Video Solution

285. Ozone layer exist in
A. Stratosphere

B. Ionosphere

C. Mesosphere
D. Troposphere

Answer: A

- Watch Video Solution

286. The electromagnetic wave travel with a velocity
A. Equal to velocity of sound
B. Equal to velocity of light
C. Less than velocity of light
D. None of these

Answer: B

D Watch Video Solution
287. The ozone layer absorbs
A. Infrared radiations
B. Ultraviolet radiations

C. X-rays

D. γ-rays

Answer: B

D Watch Video Solution

288. Electromagnetic radiation of highest frequency is
A. Infrared radiations
B. Visible radiation

C. Radio waves

D. γ-rays

(Watch Video Solution

289. What is the cause of "Green house effect"?
A. Ultraviolet rays
B. Infrared rays
C. X -rays

D. None of these

Answer: B

D Watch Video Solution

290. Which of the following waves have the maximum wavelength?
A. X -rays
B. I.R. rays
C. UV rays

D. Radio waves

Answer: D

D Watch Video Solution

291. Electrimagnetic waves are transverse is nature is evident by
A. Polarization
B. Interference
C. Reflection

D. Diffraction

Answer: A

D Watch Video Solution

292. If \vec{E} and \vec{B} be the electric and magnetic field of E.M. wave then the direction of propogation of E.M. wave is along the direction.
A. \vec{E}
B. \vec{B}
C. $\vec{E} \times \vec{B}$
D. None of these

Answer: C

D Watch Video Solution

293. Biological importance of Ozone layer is
A. It stops ultraviolet rays
B. Ozone rays reduce green house effect
C. Ozone layer reflects radio waves

D. Ozone layer controls $\mathrm{O}_{2} / \mathrm{H}_{2}$ radio in

 atmosphere
Answer: A

D Watch Video Solution

294. What is ozone hole?
A. Hole in the ozone layer
B. Formation of ozone layer

C. Thinning of ozone layer in troposphere

D. Reduction in ozone thickness in
stratosphere

Answer: D

D Watch Video Solution

295. Which rays are not the portion of electromagnetic spectrum?
A. X-rays
B. Microwaves
C. α-rays
D. Radio waves

Answer: C

D Watch Video Solution

296. Radio wave diffract around building although light waves do not. The reason is that radio waves
A. Travel with speed larger than c
B. Have much larger wavelength than light
C. Carry news
D. Are not electromagnetic waves

Answer: B

D Watch Video Solution

297. The frequencies of X-rays, γ-rays and ultraviolet rays are respectively a, b and c
.Then
A. $a<b, b>c$
B. $a>b, b>c$
C. $a>b, b<c$
D. $a<b, b<c$

Answer: A

D Watch Video Solution

298. Radio waves and visible light in vacuum
A. Same velocity but different wavelength
B. Continuous emission spectrum
C. Band absorption spectrum
D. Line emission spectrum

Answer: A

D Watch Video Solution
299. Energy stored in electromagnetic osicllations is in the form of
A. Electrical energy
B. Magnetic energy
C. Both (a) and (b)
D. None of these

Answer: C

- Watch Video Solution

300. Heat radiations propagate with the speed
of
A. α-rays
B. β-rays
C. Light waves
D. Sound waves

Answer: C

D Watch Video Solution
301. If a source is transmiting electric wave of frequency $8.2 \times 10^{6} \mathrm{~Hz}$, then wavelength of
the electromagnetic waves transmitted from
the source will be
A. $36.6 m$
B. 40.5 m
C. 42.3 m
D. 50.9 m

Answer: A
(Watch Video Solution
302. In an apparatus the electric field was
found to oscillate with an amplitude of 18
V / m. The magnitude of the oscillating magnrtic field will be
A. $4 \times 10^{-6} T$
B. $6 \times 10^{-8} T$
C. $9 \times 10^{-9} T$
D. $11 \times 10^{-11} T$

Answer: B
303. According to Maxwell's hypothesis, a changing electrio field gives rise to
A. An e.m.f.
B. Electric current
C. Magnetic field
D. Pressure radiant

Answer: C

D Watch Video Solution
304. In an electromagnetic wave, the electric and magnetising fields are $100 \mathrm{Vm}^{-1}$ and $0.265 \mathrm{Am}^{-1}$. The maximum energy flow is
A. $26.5 W / m^{2}$
B. $36.5 W / m^{2}$
C. $46.7 W / m^{2}$
D. $765 \mathrm{~W} / \mathrm{m}^{2}$

Answer: A

305. The 21 cm radio wave emitted by hydrogen in interstellar space is due to the interaction called the hyperfine interaction is atomic hydrogen. the energy of the emitted wave is nearly
A. 10^{-17} Joule
B. 1joule
C. 7×10^{-8} Joule
D. 10^{-24} Joule

Answer: D

D Watch Video Solution

306. TV waves have a wavelength range of
$1-10$ meter. Their frequency range in MHz is
A. $30-300$
B. $3-30$
C. $300-3000$
D. $3-3000$

D Watch Video Solution

307. Maxwell's equations describe the fundamental laws of
A. Electricity only
B. Magnetism only
C. Mechanics only
D. Both (a) and (b)

Answer: D

D Watch Video Solution

308. The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along
A. The same direction but differ in phase by
90°
B. The same direction and are in phase
C. Mutually perpendicular directions and are in phase
D. Mutually perpendicular directions and differ in phase by 90°

Answer: C

D Watch Video Solution

309. In which one of the following regions of
the electromagnetic spectrum will the
vibrational motion of molecules give rise to

absorption

A. Ultraviolet
B. Microwaves
C. Infrared
D. Radio waves

Answer: B
(Watch Video Solution
310. An electromagnetic wave travels along z axis. Which of the following pairs of space and time varying fields would generate such a wave
A. E_{x}, B_{y}
B. E_{y}, B_{x}
C. E_{z}, B_{x}
D. E_{y}, B_{z}

Answer: A
311. Which of the following rays has the maximum frequency?
A. Gamma rays
B. Blue light
C. Infrared rays
D. Ultraviolet rays

Answer: A

- Watch Video Solution

312. A signal emitted by an antenna from a certain point can be received at another point of the surface in the form of
A. Sky wave
B. Ground wave
C. Sea wave
D. Both (a) and (b)

Answer: D

313. Ozone layer is atmosphere exist at the height of
A. 60 to 70 km
B. 59 km to 80 km
C. 70 km to 100 km

D. 100 km to 200 km

Answer: A

314. The electromagnetic waves do not transport
A. Energy
B. Charge
C. Momentum

D. Information

Answer: B

D Watch Video Solution
315. A plane electromagnetic wave is incident on a material surface. The wave delivers momentum p and energy E .
A. $p=0, E=0$
B. $p \neq 0, E \neq 0$
C. $P \neq 0, E=0$
D. $p=0, E \neq 0$

Answer: B
316. An electromagnetic wave going through
vacuum is described by
$E=E_{0} \sin (k x-\omega t)$. Which of the following is/are independent of the wavelength?
A. k
B. ω
C. k / ω
D. $k \omega$

Answer: C

317. An electromagnetic wave going through

vacuum is described by
$E=E_{0} \sin (k x-\omega t), B=B_{0} \sin (k x-\omega t)$.

Then
A. $E_{0} k=B_{0} \omega$
B. $E_{0} \omega=B_{0} k$
C. $E_{0} B_{0}=\omega k$
D. None of these
318. An $L C$ resonant circuit a $400 p F$ capacitor and a $100 \mu H$ inductor. It is set into oscillation coupled to an antenna. The wavelength of the radiated electormagetic wave is
A. 377 mm
B. 377 metre
C. 377 cm
D. 3.77 cm

Answer: B

D Watch Video Solution

319. A radio receiver antenna that is $2 m$ long is oriented along the direction of the electromagnetic wave and receives a signal of intensity $5 \times 10^{-16} W / m^{2}$. The maximum instaneous potential difference across the two ends of the antenna is
A. $1.23 \mu V$
B. $1.23 m V$
C. 1.23 V
D. $12.3 m \mathrm{~V}$

Answer: A

D Watch Video Solution

320. Television signals broadcast from the moon can be received on the earth while the

TV broadcast from Delhi cannot be received at
places about 100 km distant from Delhi. This is because
A. There is no atmosphere around the moon
B. Of strong gravity effect on TV signals
C. TV signals travel straight and cannot
follow the curvature of the earth
D. There is atmosphere around the earth

Answer: C

321. A TV tower has a height of 100 m . How much population is covered by TV broadcast?

Given radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$ and average density of population $=10^{3} \mathrm{~km}^{-2}$.
A. 2×10^{6}
B. 3×10^{6}
C. 4×10^{6}
D. 6×10^{6}
322. The wavelength 21 cm emitted by atomic hydrogen in interstellar space belongs to
A. Radio waves
B. Infrared waves
C. Microwaves
D. γ-rays

Answer: A
323. Which of the following are electromagnetic waves?
A. Sir J.C. Bose
B. Maxwell
C. Marconi
D. Hertz

Answer: C

- Watch Video Solution

324. An electromagnetic wave of frequency
$v=3.0 M H z$ passes from vacuum into a dielectric medium with permittivity $\varepsilon=4.0$.

Then
A. Wavelength is doubled and the
frequency remains unchanged
B. Wavelength is doubled and frequency
becomes half
C. Wavelength is halved and frequency
remains unchanged
D. Wavelength and frequency both remain
unchanged

Answer: C

D Watch Video Solution

325. Frequency of a wave is $6 \times 10^{15} \mathrm{~Hz}$. The wave is
A. Radiowave
B. Microwave
C. X-rays
D. None of these

Answer: D

D Watch Video Solution

326. The region of the atmosphere above

A. Lithosphere
B. Uppersphere
C. Ionosphere
D. Stratosphere

Answer: D

D Watch Video Solution

327. Which of the following electromagnetic

 waves has minimum frequency?A. Microwaves
B. Audible waves
C. Ultrasonic waves
D. Radiowaves

Answer: B

D Watch Video Solution

328. Which one of the following have minimum

wavelength
A. Ultraviolet rays
B. Cosmic rays
C. X -rays
D. γ-rays

Answer: B

D Watch Video Solution

329. Radiations of intensity $0.5 W / m^{2}$ are striking a metal plate. The pressure on the plate is
A. $0.166 \times 10^{-8} N / m^{2}$
B. $0.332 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
C. $0.111 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
D. $0.083 \times 10^{-8} N / m^{2}$

Answer: A

D Watch Video Solution

330. Electromagnetic waves travel in a medium
which has relative permeability 1.3 and
relative permittivity 2.14 . Then the speed of
the electromagnetic wave in the medium will be

A. $13.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $1.8 \times 10^{2} \mathrm{~m} / \mathrm{s}$
C. $3.6 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution
331. The intensity of gamma radiation from a given source is I. On passing through 27 mm of lead, it is reduced to $I / 8$. The thickness of lead which will reduce the intensity to $I / 2$ will be:
A. 18 mm
B. 12 mm
C. 6 mm
D. 9 mm
332. if λ_{v}, λ_{x} and λ_{m} represent the wavelengths of visible light X -rays and microwaves respectively then:
A. $\lambda_{m}>\lambda_{x}>\lambda_{v}$
B. $\lambda_{v}>\lambda_{m}>\lambda_{y}$
C. $\lambda_{m}>\lambda_{v}>\lambda_{v}$
D. $\lambda_{v}>\lambda_{x}>\lambda_{m}$
333. For sky wave propagation of a 10 MHz signal, what should be the minimum electron density in ionosphere?

$$
\begin{aligned}
& \text { A. } \sim 1.2 \times 10^{12} \mathrm{~m}^{-3} \\
& \text { B. } \sim 10^{6} \mathrm{~m}^{-3} \\
& \text { C. } \sim 10^{14} \mathrm{~m}^{-3} \\
& \text { D. } \sim 10^{22} \mathrm{~m}^{-3}
\end{aligned}
$$

334. Show that the radiation pressure exerted
by an EM wave of intensity I on a surface kept in vacuum is I / c.
A. $I c$
B. $I c^{2}$
C. I / c
D. I / c^{2}
335. Which of the following is correct regarding electromagnetic wave?
A. X rays and light waves
B. Cosmic rays and sound waves
C. Beta rays and sound waves
D. Alpha rays and sound waves

Answer: A
336. which of the following in not true for electromagnetic waves ?
A. X-rays
B. Gamma rays
C. Cathode rays
D. Infrared rays

Answer: C

- Watch Video Solution

337. Light wave is travelling along y-direction. If the corresponding \vec{E} vector at any time is along the x-axis, the direction of \vec{B} vector at that time is along

A. y-axis
B. x-axis
C. $+z$-axis
D. $-z$-axis

Answer: D

D Watch Video Solution

338. If c is the speed of electromagnetic waves
in vacuum, its speed in a medium of dielectric
K and relative permeability μ_{r} is

> A. $v=\frac{1}{\sqrt{\mu_{r} K}}$
> B. $v=c \sqrt{\mu_{r} K}$
> C. $v=\frac{c}{\sqrt{\mu_{r} K}}$
> D. $v=\frac{K}{\sqrt{\mu_{r} C}}$

Answer: C

- Watch Video Solution

339. A ray of light intensity I is incident on a parallel glass-slab at a point A as shown in
figure. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays $A B$ and $A^{\prime} B^{\prime}$ undergo interference. The ratio $I_{\max } / I_{\min }$ is

A. $4: 1$
B. $8: 1$
C. $7: 1$

D. $49: 1$

Answer: D

D Watch Video Solution

340. A thin slice is cut out of a glass cylinder along a plane parallel to its axis. The slice is placed on a flat glass plate as shown in Figure.

The observed interference fringes from this

combination shall be

A. Straight
B. Circular
C. Equally spaced
D. Having fringe spacing which increases as
we go outwards

Answer: A

D Watch Video Solution

341. In the adjacent diagram, CP represents a wavefront and $A O \& B P$, the corresponding two rays. Find the condition on θ for constructive interference at P between the ray

BP and reflected ray OP.

A. $\cos \theta=3 \lambda / 2 d$
B. $\cos \theta=\lambda / 4 d$
C. $\sec \theta-\cos \theta=\lambda / d$
D. $\sec \theta-\cos \theta=4 \lambda / d$

Answer: B

- Watch Video Solution

342. In Young's double slit experiment if monochromatic light is replaced by white light
A. All bright fringes become white
B. All bright fringes have colours between
violet and red
C. only the central fringe is white, all other
fringes are coloured
D. No fringes are observed

Answer: C

D Watch Video Solution

343. In Young's double slit experiment, if the two slits are illuminated with separate sources, no interference pattern is observed because
A. There will be no constant phase difference between the two waves
B. The wavelengths are not equal
C. The amplitudes are not equal
D. None of the above

Answer: A

D Watch Video Solution

344. White light is used to illuminate the two
slits in a Young's double slit experiment. The separation between the slits is b and the screen is at a distance $d^{\prime}(g t b)$ from the slits. At a point on the screen directly in front of one
of the slits, certain wavelength are missing.

Some of these missing wavelength are

$$
\begin{aligned}
& \text { A. } \lambda=\frac{b^{2}}{d} \\
& \text { B. } \lambda=\frac{2 b^{2}}{d} \\
& \text { C. } \lambda=\frac{b^{2}}{3 d} \\
& \text { D. } \lambda=\frac{2 b^{2}}{3 d}
\end{aligned}
$$

Answer: A::C

D Watch Video Solution

345. In a Young's double-silt experiment the source slit S and the two slits A and B are horizontal with slit A above slit B. The fringe are observed on a vertical screen. The optical path length from S to B is increased slightly by introducing a tranparent slab. As a result the fringe pattern on the screen moves
A. Vertically downwards slightly
B. Vertically upwards slightly
C. Horizontally, slightly to the left

D. Horizontally, slightly to the right

Answer: A

- Watch Video Solution

346.

In an interference arrangement similar to
young's double slit experiment the slits S_{1} and
S_{2} are illuminated with coherent microwave sources each of frequency $10^{6} \mathrm{~Hz}$ the sources
are synchronized to have zero phase difference. the slits are separated by a
distance $\mathrm{d}=150.0 \mathrm{~m}$. The intensity $I(\theta)$ is measured as a funtion of θ, where θ is defined as shown. if I_{0} is the maximum intensity then $I(\theta)$ for $0 \leq \theta \leq 90^{\circ}$ is given by:
A. $I(\theta)=I_{0}$ for $\theta=0^{\circ}$
B. $I(\theta)=I_{0} / 2$ for $\theta=30^{\circ}$
C. $I(\theta)=I_{0} / 4$ for $\theta=90^{\circ}$
D. $I(\theta)$ is constant for all values of θ

Answer: A::B

347. In the Young's double slit experiment, if the phase difference between the two waves interfering at a point is ϕ, the intensity at that point can be expressed by the expression

$$
\begin{aligned}
& \text { A. } I=\sqrt{A^{2}+B^{2} \cos ^{2} \phi} \\
& \text { B. } I=\frac{A}{B} \cos \phi \\
& \text { C. } I=A+B \cos \cdot \frac{\phi}{2} \\
& \text { D. } I=A+B \cos \phi
\end{aligned}
$$

- Watch Video Solution

348. Figure here shown P and Q as two equally intense coherent sources emitting radiations of wavelength 20 m . The separation PQ is 5.0 m and phase of Q is ahead of the phase of P by $90^{\circ} . A, B$ and C are three distant points of observation equidistant from the mid-point of $P Q$. The intensity of radiations at A, B and C will
bear the ratio

A. $0: 1: 4$
B. $4: 1: 0$
C. 0:1:2
D. 2:1:0

Answer: D

D Watch Video Solution
349. In Young's double slit experiment, the intensity on the screen at a point where path difference is λ is K. What will be the intensity at the point where path difference is $\lambda / 4$?
A. $\frac{K}{4}$
B. $\frac{K}{2}$
C. K
D. Zero

Answer: B

- Watch Video Solution

350. When one of the slits of Young's experiment is covered with a transparent sheet of thickness 4.8 mm , the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe?
A. 3.8 mm
B. 1.6 mm
C. 7.6 mm
D. 3.2 mm

Answer: D

D Watch Video Solution

351. In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the
interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is
A. 2λ
B. $\frac{2 \lambda}{3}$
C. $\frac{\lambda}{3}$
D. λ

Answer: A
352. The time period of rotation of the sun is 25 days and its radius is $7 \times 10 \&(8) m$. The Doppler shift for the light of wavelength $6000 \AA$ emitted from the surface of the sun will be
A. $0.04 \AA$
B. $0.40 \AA$
C. $4.00 \AA$
D. $40.0 \AA$

Answer: A

D Watch Video Solution

353. In hydrogen spectrum the wavelength of
H_{a} line is 656 nm , where in the spectrum of a distance galaxy H_{a} line wavelength is 706 nm .

Estimated speed of the galaxy with respect to earth is,

$$
\text { A. } 2 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

B. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$

C. $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$

D. $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

354. A rocket is going towards moon with a speed v. The astronaut in the rocket sends signals of frequency v towards the moon and receives them back on reflection from the
moon. What will be the frequency of the signal
received by the astronaut (Take $v \ll c$)

$$
\begin{aligned}
& \text { A. } \frac{c}{c-v} v \\
& \text { B. } \frac{c}{c-2 v} v \\
& \text { C. } \frac{2 v}{c} v \\
& \text { D. } \frac{2 c}{v} v
\end{aligned}
$$

Answer: B

D Watch Video Solution

355. The periodic time of rotation of a certain star is 22 days and its radius is 7×10^{8} metres
. If the wavelength of light emitted by its
surface be $4320 \AA$, the Doppler shift will be (1

$$
\text { day = } 86400 \mathrm{sec} \text {) }
$$

A. $0.033 \AA$
B. $0.33 \AA$
C. $3000 \AA$
D. $4500 \AA$

- Watch Video Solution

356. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the sits.

If the screen is moved by $\mathrm{m} 5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is $\mathrm{m} 3 \times 10^{-5} \mathrm{~m}$. If separation between the slits
is $10^{-3} \mathrm{~m}$, the wavelength of light used is
A. $6000 \AA$
B. $5000 \AA$

C. $3000 \AA$

D. $4500 \AA$

Answer: A

D Watch Video Solution

357. In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the right side of $\mathrm{O} . \mathrm{P}$ is the $11^{t h}$ bright fringe on the other side, as measured from Q. If the wavelength of the light used is

600 nm . Then $S_{1} B$ will be equal to

A. $6 \times 10^{-6} m$
B. $6.6 \times 10^{-6} m$
C. $3.138 \times 10^{-7} m$
D. $3.144 \times 10^{-7} m$

Answer: A

D Watch Video Solution

358. In Young's double slit experiment, the two
slits acts as coherent sources of equal amplitude A and wavelength λ. In another experiment with the same set up the two slits are of equal amplitude A and wavelength λ
but are incoherent. The ratio of the intensity
of light at the mid-point of the screen in the first case to that in the second case is
A. $1: 2$
B. 2:1
C. $4: 1$
D. 1:1

Answer: B

D Watch Video Solution

359. Four light waves are represented by
(i) $y=a_{1} \sin \omega t$
(ii) $y=a_{2} \sin (\omega t+\varphi)$
(iii) $y=a_{1} \sin 2 \Omega t$
(iv) $y=a_{2} \sin 2(\omega t+\varphi)$

Interference fringes may be observed due to
superposition of
A. (i) and (ii)
B. (i) and (iii)
C. (ii) and (iv)
D. (iii) and (iv)

Answer: A::D
360. In Young's double-slit experiment, the y coordinate of central maxima and 10th maxima are 2 cm and 5 cm , respectively, When
the YDSE apparatus is immersed in a liquid of refreactive index 1.5 , the corresponding y coordinates will be
A. $2 \mathrm{~cm}, 7.5 \mathrm{~cm}$
B. $3 \mathrm{~cm}, 6 \mathrm{~cm}$
C. $2 \mathrm{~cm}, 4 \mathrm{~cm}$
D. $4 / 3 \mathrm{~cm}, 10 / 3 \mathrm{~cm}$

Answer: C

D Watch Video Solution

361. The maximum intensity in young's doubleslit experiment is I_{0}. Distance between the slit is $d=5 \lambda$, where λ is the wavelength of monochromatic light used in the experiment.

What will be the intensity of light in front of one of the slits on a screen at a distance $D=10 d ?$
A. $\frac{I_{0}}{2}$
B. $\frac{3}{4} I_{0}$
C. I_{0}
D. $\frac{I_{0}}{4}$

Answer: A

D Watch Video Solution

362. A monochromatic beam of light fall on

YDSE apparatus at some angle (say θ) as
shown in figure. A thin sheet of glass is
inserted in front of the lower slit s_{2}. The
central bright fringe (path difference $=0$)
will be obtained

A. At O
B. Above 0
C. Below O
D. Anywhere depending on angle θ, thickness of plate t and refractive index of glass μ

Answer: D

D Watch Video Solution

363. In Young's double slit experiment, how many maximas can be obtained on a screen
(including the central maximum) on both sides
of the central fringe if $\lambda=2000 \AA$ and $d=7000 \AA ?$
A. 12
B. 7
C. 18
D. 4

Answer: B
(Watch Video Solution
364. In a Young's double slit experiment, the slits are $2 m m$ apart and are illuminated with a mixture of two wavelength $\lambda_{0}=750 \mathrm{~nm}$ and
$\lambda=900 \mathrm{~nm}$. The minimum distance from the common central bright fringe on a screen $2 m$
from the slits where a bright fringe from one interference pattern coincides with a bright fringe from the other is
A. 1.5 mm
B. 3 mm
C. 4.5 mm

D. 6 mm

Answer: C

D Watch Video Solution

365. A flake of glass (refractive index 1.5) is placed over one of the openings of a double slit apparatus. The interference pattern displaces itself through seven succesive maxima towards the side where the flake is
placed. If wavelength of the diffracted light is
$\lambda=600 \mathrm{~nm}$, then the thickness of
A. 2100 nm
B. 4200 nm
C. 8400 nm
D. None of these

Answer: C

- Watch Video Solution

366. Two ideal slits S_{1} and S_{2} are at a distance d apart, and illuninated by light of wavelength
λ passing through an ideal source slit S placed on the line through S_{2} as shown. The distance between the planes of slits and the source slit is D. A screen is held at a distance
D from the plane of the slits. The minimum value of d for which there is darkness at O is
$(d \ll D)$

A. $\sqrt{\frac{3 \lambda D}{2}}$
B. $\sqrt{\lambda D}$
c. $\sqrt{\frac{\lambda D}{2}}$

D. $\sqrt{3 \lambda D}$

Answer: C

D Watch Video Solution

367. In double slit experiment fringes are obtained using light of wavelength $4800 \AA$ One
slit is covered with a thin glass film of refractive index. 1.4 and another slit is covered by a film of same thickness but refractive index 1.7. By doing so, the central fringe is shifted to
fifth bright fringe in the original pattern. The
thickness of glass film is
A. $8 \mu m$
B. $6 \mu m$
C. $4 \mu m$
D. $10 \mu \mathrm{~m}$

Answer: A
(Watch Video Solution
368. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by 2π / radian. If there is a maximum in direction D the distance $X O$ using n as an integer is given by

A. $\frac{\lambda}{2}(n-1)$
B. $\lambda(n+1)$
C. $\frac{\lambda}{2}(n+1)$
D. $\lambda(n-1)$

Answer: B

D Watch Video Solution

369. A beam with wavelength λ falls on a stack of partially reflecting planes with separation d.

The angle θ that the beam should make with planes so that the beams reflected from successive planes may interfere constructively
is (where $\mathrm{n}=1,2, \ldots$)

A. $\sin ^{-1}\left(\frac{n \lambda}{d}\right)$
B. $\tan ^{-1}\left(\frac{n \lambda}{d}\right)$
C. $\sin ^{-1}\left(\frac{n \lambda}{2 d}\right)$
D. $\cos ^{-1}\left(\frac{n \lambda}{2 d}\right)$

Answer: C

D Watch Video Solution

370. Two coherent sources separated by distance d are radiating in phase having wavelength λ. A detector moves in a big circle around the two sources in the plane of the two sources. The angular position of $n=4$
interference maxima is given as

A. $\sin ^{-1} \cdot \frac{n \lambda}{d}$
B. $\cos ^{-1} \cdot \frac{4 \lambda}{d}$
C. $\tan ^{-1} \cdot \frac{d}{4 \lambda}$
D. $\cos ^{-1} \cdot \frac{\lambda}{4 d}$

Answer: B

- Watch Video Solution

371. Two coherent sources S_{1} and S_{2} area separated by a distance four times the wavelength λ of the source. The sources lie along y axis whereas a detector moves along $+x$ axis. Leaving the origin and far off points the number of points where maxima are observed is
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution
372. In Young's double slit experiment the amplitudes of two sources are $3 a$ and a
respectively. The ratio of intensities of bright and dark fringes will be
A. $169: 16: 256$
B. $256: 16: 169$
C. $256: 16: 196$
D. $256: 196: 16$

Answer: B

D Watch Video Solution
373. In a single slit diffraction of light of wavelength λ by a slit of width e, the size of the central maximum on a screen at a distance b is
A. $2 b \lambda+e$
B. $\frac{2 b \lambda}{e}$
C. $\frac{2 b \lambda}{e}+e$
D. $\frac{2 b \lambda}{e}-e$

Answer: C

374. Angular width of central maxima in the

Fraunhofer diffraction pattern of a slit is measured. The slit is illuminated by light of wavelength $6000 \AA$. When the slit is
illuminated by light of another wavelength, the angular width decreases by 30%. The wavelength of this light will be
A. $6000 \AA$
B. $4200 \AA$

C. $3000 \AA$

D. $1800 \AA$

Answer: B

D Watch Video Solution

375. In a single slit different experiment fist minimum for red light (660 nm) coincides with
first maximum of some other wavelength λ.

The value of λ is
A. $4400 \AA$
B. $6600 \AA$
C. $2000 \AA$
D. $3500 \AA$

Answer: A

D Watch Video Solution
376. The ratio of intensities of consecutive maxima in the diffraction pattern due to a single slit is
А. $1: 4: 9$
B. 1:2:3
C. $1: \frac{4}{9 \pi^{2}}: \frac{4}{25 \pi^{2}}$
D. $1: \frac{1}{\pi^{2}}: \frac{9}{\pi^{2}}$

Answer: C

D Watch Video Solution

377. Light is incident normally on a diffraction grating through which the first order
diffraction is seen at 32°. The second order

diffraction will be seen at

A. 48°
B. 64°
C. 80°
D. There is no second order diffraction in
this case

Answer: D
(Watch Video Solution
378. White light may be considered to be mixture of waves of λ ranging between $3900 \AA$ and $7800 \AA$. An oil film of thickness $10,000 \AA$ is examined normally by the reflected light. If $\mu=1.4$, then the film appears bright for
A. $4308 \AA, 5091 \AA, 6222 \AA$
B. $4000 \AA, 5091 \AA, 5600 \AA$
C. $4667 \AA, 6222 \AA, 7000 \AA$
D. $4000 \AA, 4667 \AA, 5600 \AA, 7000 \AA$

- Watch Video Solution

379. Among the two interfering monochromatic sources A and B, A is ahead of B in phase by 66°. If the observation be taken from point P , such that $P B-P A=\lambda / 4$. Then the phase difference between the waves from A and B reaching P is
A. 156°
B. 140°
C. 136°

D. 126°

Answer: A

D Watch Video Solution

380. The ratio of the intensity at the centre of
a bright fringe to the intensity at a point onequarter of the distance between two fringe from the centre is
A. 2
B. $1 / 2$
C. 4
D. 16

Answer: A

D Watch Video Solution

381. A parallel plate capacitor of plate separation 2 mm is connected in an electric circuit having source voltage 400 V . if the
plate area is $60 \mathrm{~cm}^{2}$, then the value of displacement current for $10^{-6} \mathrm{sec}$ will be
A. $1.062 a m p$
B. $1.062 \times 10^{-2} a m p$
C. $1.062 \times 10^{-3} a m p$
D. $1.062 \times 10^{-4} a m p$

Answer: B

- Watch Video Solution

382. A long straigth wire of resistance R, radius a and length l carries a constant current I.The poynting vector for the wire will be

$$
\begin{aligned}
& \text { A. } \frac{I R}{2 \pi a l} \\
& \text { B. } \frac{I R^{2}}{a l} \\
& \text { C. } \frac{I^{2} R}{a l} \\
& \text { D. } \frac{I^{2} R}{2 \pi a l}
\end{aligned}
$$

Answer: D

383. In an electromagnetic wave, the amplitude of electric firld is $1 \frac{V}{m}$. The frequency of wave is $5 \times 10^{14} \mathrm{~Hz}$. The wave is propagating along z-axis. The average energy density of electric field, in joule $/ m^{3}$, will be
A. 1.1×10^{-11}
B. 2.2×10^{-12}
C. 3.3×10^{-13}
D. 4.4×10^{-14}

Answer: B

- Watch Video Solution

384. A lamp emits monochromatic green light
uniformly in all directions. The lamp is 3% efficient in converting electrical power to electromagnetic waves and consumes 100 W of power. The amplitude of the electric field associated with the electromagnetic. radiation at a distance of 10 m from the lamp will be
A. $1.34 \mathrm{~V} / \mathrm{m}$
B. $2.68 \mathrm{~V} / \mathrm{m}$
C. $5.36 \mathrm{~V} / \mathrm{m}$
D. $9.37 \mathrm{~V} / \mathrm{m}$

Answer: A

D Watch Video Solution
385. A point source, of electromagnetic radiation has average power output of 800 W .

The maximum value electric at a distance 4.0 m from the source is:
A. $64.7 \mathrm{~V} / \mathrm{m}$
B. $57.8 \mathrm{~V} / \mathrm{m}$
C. $56.72 \mathrm{~V} / \mathrm{m}$
D. $54.77 \mathrm{~V} / \mathrm{m}$

Answer: D
(Watch Video Solution
386. A wave is propagating in a medium of electric dielectric constant 2 and relative magnetic permeability 50. The wave impeldance of such a medium is
A. 5Ω
B. 376.6Ω
C. 1883Ω
D. 3776Ω

Answer: C

387. A plane electromagnetic wave of wave intensity $6 \mathrm{~W} / \mathrm{m}^{2}$ strikes a small mirror of area $40 \mathrm{~cm}(2)$, held perpendicular to the approaching wave. The momentum transferred by the wave to the mirror each second will be

> A. $6.4 \times 10^{-7} \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
> B. $4.8 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
> C. $3.2 \times 10^{-9} \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$

$$
\text { D. } 1.6 \times 10^{-10} \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}
$$

Answer: D

D Watch Video Solution

388. Specific rotation of sugar solution is
$0.01 S I$ units. $200 \mathrm{~kg}-\mathrm{m}^{-3}$ of impure sugar
solution is taken in a polarimeter tube of length $0.25 m$ and an optical rotation of 0.4
rad is observed. The percentage of purity of
sugar in the sample is
A. 80%
B. 89%
C. 11%
D. 20%

Answer: A

D Watch Video Solution

389. A 20 cm length of a certain solution causes right-handed rotation of 38°. A 30 cm
length of another solution causes left-handed
rotation of 24°. The optical rotation caused by

30 cm length of a mixture of the above solutions in the volume ratio $1: 2$ is
A. Left handed rotation of 14°
B. Right handed rotation of 14°
C. Left handed rotation of 3°
D. Right handed rotation of 3°

Answer: D

D Watch Video Solution
390. A beam of natural light falls on a system of 6 polaroids, which are arranged in succession such that each polaroid is turned through 30° with respect to the preceding one. The percentage of incident intensity that passes through the system will be
A. 100%
B. 50%
C. 30%
D. 12%

Answer: D

D Watch Video Solution

391. A beam of plane polarized light falls normally on a polarizer of cross sectional area
$3 \times 10^{-4} \mathrm{~m}^{2}$. Flux of energy of incident ray in
$10^{-3} W$. The polarizer rotates with an angular frequency of $31.4 \mathrm{rad} / \mathrm{sec}$. The energy of light passing through the polarizer per revolution will be
A. 10^{-4} Joule
B. 10^{-3} Joule
C. 10^{-2} Joule
D. 10^{-1} Joule

Answer: A

D Watch Video Solution
392. In YDSE, bichromatic light of wavelengths

400 nm and 560 nm
are used. The distance between the slits is 0.1
mm and the distance between the
plane of the slits and the screen is 1 m . The minimum distance between two
successive regions of complete darkness is
A. 4 mm
B. 5.6 mm
C. 14 mm
D. 28 mm

Answer: D

393. The maximum number of possible interference maxima for slit-separation equal to twice the wavelength in Young's double-slit experiment is
A. Infinite
B. Five
C. Three
D. Zero
394. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. Straight line
B. Parabola
C. Hyperbola
D. Circle
395. If I_{0} is the intensity of the principal maximum in the single slit diffraction pattern.

Then what will be its intensity when the slit width is doubled?
A. I_{0}
B. $\frac{I_{0}}{2}$
C. $2 I_{0}$
D. $4 I_{0}$

Answer: D

- Watch Video Solution

396. In Young's double slit experiment intensity at a point is $\left(\frac{1}{4}\right)$ of the maximum intersity. Angular position of this point is
A. $\sin (\lambda / d)$
B. $\sin (\lambda / 2 d)$
C. $\sin (\lambda / 3 d)$

D. $\sin (\lambda / 4 d)$

Answer: C

D Watch Video Solution

397. A beam of electron is used $Y D S E$ experiment . The slit width is d when the velocity of electron is increased ,then
A. No interference is observed
B. Fringe width increases

C. Fringe width decreases

D. Fringe width remains same

Answer: B

D Watch Video Solution

398. Assertion: When a light wave travels from
a rarer to a denser medium, it loses speed. The
reduction in speed imply a reduction in energy
carried by the light wave.

Reason: The energy of a wave is proportional to velocity of wave.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If the assertion and reason both are

false.

Answer: D

D Watch Video Solution

399. Assertion: A narrow pulse of light is sent through a medium. The pulse will retain its shape as it travels through the medium.

Reason: A narrow pulse is made of harmonic waves with a large range of wavelengths.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

400. Assertion (A) : No interfrence pattern is detected when two coherent sources are very closer to each other. (i.e separation almost zero)

Reason (R) : The fringe width is inversely proportional to the distance between the two slits
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

D Watch Video Solution

401. Assertion : Newton's rings are formed in
the reflected system. When the space between
the lens and the glass plate is filled with a
liquid of refractive index greater than that of glass, the central spot of the pattern is bright.

Reason : This is because the reflections in
these cases will be from a denser to a rarer medium and the two interfering rays are reflected under similar conditions.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

Answer: A

D Watch Video Solution

402. Assertion (A) : The flim which appears bright in reflected system will appear dark in the transmitted system and vice-versa.

Reason (R) : The conditions for film to appear bright of dark in the reflected light are just revese to those in the transmitted light
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution

403. Assertion (A) : For best contrast between maxima and minima in the interference pattern of Young's double slit experiment the intensity of light emerging out of the two slits should be equal.

Reasson (R) : The intensity of interference pattern is proportional to the square of the amplitude.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

D Watch Video Solution

404. Statement-1 : In Young's double slit experiment, the fringes become indistinct if one of the slits is covered with cellophane paper. Statement-2 : The cellophane paper decreases the wavelength of light.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

405. Assertion (A) : The unpolarised light and polarized light can be distinguished from each other by using Polaroid.

Reason (R) : A Polaroid is capable of producing plane polarized beams of light.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: A

D Watch Video Solution

406. Assertion: Nicol prism is used to produce and analyse plane polarised light.

Reason: Nicol prism reduces the intensity of light to zero.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

407. Assertion: In everyday life to Doppler's effect is observed readily for sound waves than light waves.

Reason: Velocity of light is greater than that of sound.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

D Watch Video Solution

408. Statement-1 : In Young's experiment, the fringe width for dark fringes is same as that for white fringes. Statement-2 : In Young's double slit experiment performed with a source of white light, only black and bright fringes are observed.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

D Watch Video Solution
409. Assertion: Coloured spectrum is seen when we look through a muslim cloth.

Reason: It is due to the diffraction of white light on passing through fine slits.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution

410. Assertion (A) : When tiny circular obstacle
is placed in the path of light from some distance, a bright spot is seen at the center of the shadow of the obstacle.

Reason (R) : Destructive interference occurs at the centre of the shadow.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

- Watch Video Solution

411. Statement I: Thin films such as soap bubble or a thin layer of oit on watar show beautiful colors when illuminated by white light.

Statement II: It happens due to the
interference of light reflected form the upper surface of thin film.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If the assertion and reason both are

 false.
Answer: C

D Watch Video Solution

412. Assertion: Microwave communication is
preferred to optical communication
Reason: Microwaves provide large number of channels and bandwidths as compared to optical signals.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

413. Assertion : Corpuscular theory fails to explain the velocities of light in air and water.

Reason : According to corpuscular theory, light should travel faster in denser media than in rarer media.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution

414. Assertion (A) : Interference pattern is made by using blue light instead of red light, the fringes becomes narrower.

Reason (R) : In Young's double slit experiment,
fringe width is given by the relation $\beta=\frac{\lambda D}{d}$
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution
415. Assertion : The clouds in the sky generally appear to be whitish.

Reason : Diffraction due to clouds is efficient in equal measures its all wavelengths.
A. If both assertion and reason are true and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D Watch Video Solution

416. Statement-I : Television signals are received through sky-wave propagation

Statement-II : The ionosphere reflects electromagnetic waves of frequencies greater than a certain critical frequency.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

417. Statemet-1: the electrical conductivity of earth's atmosphere increases with altitude.

Statement -2: The high energy particles (i.e., γ rays and cosmic rays) coming from outer space while entering our earth's atmosphere cause ionization of the atoms of the gases present in the atmosphere and their energy decreases as they approach to earth.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

418. Assertion: Only microwaves are used in radar.

Reason: Because microwaves have very small wavelength.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D Watch Video Solution
419. Assertion: X-ray astronomy is possible only from satellites orbiting the earth.

Reasion: Efficiency of X-rays telescope is large as compared to any other telescope.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: C

D Watch Video Solution

420. Statement-1: Short wave band are used for transmission fo radiowaves to a large distance.

Statement-2: Short waves are reflected from ionosphere.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

- Watch Video Solution

421. Assertion: Ultraviolet radiation are of higher frequency waves are dangerous to huhman beaing.

Reasion: Ultraviolet radiation are absorbed by
the atmosphere
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: B

D Watch Video Solution

422. Assertion: Environment damage has
increased the amount of ozone in the atmosphere.

Reason: Increase of ozone increases the amount of ultraviolet radiation on earth.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: D

D Watch Video Solution
423. Assertion: Radio waves can be polarised.

Reason: Sound waves in air are longitudinal in
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

wave Nature and Interference of Light

1. Wave nature of light is verified by
A. Interference
B. Photoelectric effect
C. Reflection
D. Refraction

Answer: A

- View Text Solution

Doppler s Effect of Light

1. A rocket is going away from the earth at a speed of $10^{6} \mathrm{~m} / \mathrm{s}$. If the wavelength of the light wave emitted by it be $5700 \AA$, what will be its Doppler's shift
A. $200 \AA$
B. $19 \AA$
C. $20 \AA$
D. $0.2 \AA$

Answer: B

D View Text Solution

Diffraction of Light

1. Which statement is correct for a zone plate and a lens
A. Zone plate has multi focii whereas lens
has one
B. Zone plate has one focus whereas lens
has multiple focii
C. Both are correct

D. Zone plate has one focus whereas a lens

has infinite

Answer: A

D View Text Solution
2. Radius of central zone of circular zone plate is . 2.3 mm Wavelength of incident light is . $5893 \AA$ Aource is at a distance of .6 m Then the distance of first image will be
A. 9 m
B. 12 m
C. 24 m
D. 36 m

Answer: A

- View Text Solution

3. If we observe the single slit Fraunhofer diffraction with wavelength λ and slit width e , the width of the central maxima is 2θ. On decreasing the slit width for the same λ
A. θ increases
B. θ remains unchanged
C. θ decreases
D. θ increases or decreases depending on
the intensity of light

Answer: A

D View Text Solution

Polarization of Light

1. The transverse nature of light is shown by

A. Interference of light
B. Refraction of light
C. Polarisation of light

D. Dispersion of light

Answer: C

- View Text Solution

EM Waves

1. Infrared radiation was discovered in 1800 by
A. William Wollaston
B. William Herschel
C. Wilhelm Roentgen
D. Thomas Young

Answer: B

D View Text Solution

Critical Thinking Question

1. A circular disc is placed in front of a narrow
source. When the point of observation is at a
distance of 1 meter from the disc, then the
disc covers first HPZ. The intensity at this point
is I_{0}. The intensity at a point distance 25 cm
from the disc will be

$$
\text { A. } I_{1}=0.531 I_{0}
$$

B. $I_{1}=0.053 I_{0}$
C. $I_{1}=53 I_{0}$
D. $I_{1}=5.03 I_{0}$

Answer: A

D View Text Solution
2. A circular disc is placed in front of a narrow source. When the point of observation is 2 m from the disc, then it covers first HPZ. The intensity at this point is 1 . When the point of observation is 25 cm from the disc then intensity will be
A. $\left(\frac{R_{6}}{R_{2}}\right)^{2} I$
B. $\left(\frac{R_{7}}{R_{2}}\right)^{2} I$
C. $\left(\frac{R_{8}}{R_{2}}\right)^{2} I$
D. $\left(\frac{R_{9}}{R_{2}}\right)^{2} I$

Answer: D

D View Text Solution

3. A laser beam can be focussed on an area equal to the square of its wavelength A He -

Ne laser radiates energy at the rate of 1 mW and its wavelength is 632.8 nm . The intensity of focussed beam will be

$$
\text { A. } 1.5 \times 10^{13} W / m^{2}
$$

B. $2.5 \times 10^{9} \mathrm{~W} / \mathrm{m}^{2}$

C. $3.5 \times 10^{17} W / m^{2} W / m^{2}$

D. None of these

Answer: B

D View Text Solution

4. The k line of singly ionised calcium has a wavelength of 393.3 nm as measured on earth.

In the spectrum of one of the observed galaxies, this spectral line is located at 401.8
nm . The speed with which the galaxy is moving away from us, will be
A. $6480 \mathrm{~km} / \mathrm{s}$
B. $3240 \mathrm{~km} / \mathrm{s}$
C. $4240 \mathrm{~km} / \mathrm{sec}$
D. None of these

Answer: A

- View Text Solution

1. Assertion : It is necessary to use satellites
for long distance T.V. transmission.

Reason : The television signals are low frequency signals.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: C

D View Text Solution

2. Assertion : In Hertz experiment, the electric vector of radiation produced by the source gap is parallel to the gap.

Reason : Production of sparks between the detector gap is maximum when it is placed perpendicular to the source gap.
A. If both assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

Answer: C

D View Text Solution

3. Assertion : For cooking in a microwave oven, food is always kept in metal containers.

Reason : The energy of microwave is easily transferred to the food in metal container.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.
4. Assertion : The earth without atmosphere would be inhospitably cold.

Reason : All heat would escape in the absence of atmosphere.
A. If both assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

D View Text Solution

1. Following figures shows sources S_{1} and S_{2} that emits light of wavelength λ in all directions. The sources are exactly in phase and are separated by a distance equal to 1.5λ.

If we start at the indicated start point and travel along path 1 and 2, the interference produce a maxima all along

A. Path 1
B. Path 2
C. Any path
D. None of these

Answer: A

D Watch Video Solution
2. In a Young's double slit experimental arrangement shown here, if a mica sheet of
thickness t and refractive indec μ is placed in
front of the slit S_{1}, then the path difference $\left(S_{1} P-S_{2} P\right)$ is

A. Decreases by $(\mu-1) t$
B. Increases by $(\mu-1) t$
C. Does not change
D. Increases by μt

Answer: B

D Watch Video Solution

3. In the set up shown in figure, the two slits
S_{1} and S_{2} are not equidistant from the slit S.

The central fringe at O is then

A. Always bright
B. Always dark
C. Either dark or bright depending on the position of S
D. Neither dark nor bright.

Answer: C

D Watch Video Solution

4. The intensity ratio of two coherent sources of light is p . They are interfering in some region and produce interference patten. Then the fringe visibility is

$$
\begin{aligned}
& \text { A. } \frac{1+p}{2 \sqrt{p}} \\
& \text { B. } \frac{2 \sqrt{p}}{1+p} \\
& \text { C. } \frac{p}{1+p} \\
& \text { D. } \frac{2 p}{1+p}
\end{aligned}
$$

Answer: B
5. Three waves of equal frequency having amplitudes $10 \mu m, 4 \mu m, 7 \mu m$ arrive at a given point with successive phase difference of $\pi / 2$, the amplitude of the resulting wave in μm is given by
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

6. Four different independent waves are represented by
(i) $y_{1}=a_{1} \sin \omega t$, (ii) $y_{2}=a_{2} \sin 2 \omega t$
(iii) $y_{3}=a_{3} \cos \omega t$, (iv) $y_{4}=a_{4} \sin \left(\omega t+\frac{\pi}{3}\right)$

With which two waves interference is possible
A. In (i) and (iii)
B. In (i) and (iv)

C. In (iii) and (iv)

D. Insufficient data to predict.

Answer: D

D View Text Solution

7. A beam of light consisting of two wavelength 650 nm and 520 nm is used to
illuminate the slit of a Young's double slit experiment. Then the order of the bright firnge of the longer wavelength that coincide
with a bright fringe of the shorter wavelength
at the least distance from the central maximum is
A. 1
B. 2
C. 3
D. 4

Answer: D

D Watch Video Solution
8. Two identical radiators have a separation of
$d=\lambda / 4$ where λ is the wavelength of the
waves emitted by either source. The initial
phase difference between the sources is $\lambda / 4$.
Then the intensity on the screen at a distant point situated at angle $\theta=30^{\circ}$ from the radiators is (here I_{0} is intensity at that point due to one radiator alone)
A. I_{0}
B. $2 I_{0}$
C. $3 I_{0}$

D. $4 I_{0}$

Answer: B

D Watch Video Solution

9. In Young's double slit experiment, the 8 th
maximum with wavelength λ_{1} is at a distance
d_{1} from the central maximum and the 6 th maximum with a wavelength λ_{2} is at a distance d_{2}. Then $\left(d_{1} / d_{2}\right)$ is equal to

$$
\text { A. } \frac{4}{3}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)
$$

B. $\frac{4}{3}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$
C. $\frac{3}{4}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)$
D. $\frac{3}{4}\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$

Answer: B

D View Text Solution

10. Light of wavelength 500 nm is used to form interference pattern in Young's double slit experiment. A uniform glass plate of refractive index 1.5 and thickness 0.1 mm is introduced
in the path of one of the interfering beams.

The number of fringes which will shift the cross wire due to this is
A. 100
B. 200
C. 300
D. 400

Answer: A

D Watch Video Solution
11. Two coherent sources of equal intensity produce maximum intensity of 100 units at a point. If the intensity of one of the sources is reduced by 36% reducing its width, then the intensity of light at the same point will be
A. 90
B. 89
C. 67
D. 81
12. The path difference between two interfering waves of equal intensities at a point on the screen is $\lambda / 4$. The ratio of intensity at this point and that at the central fringe will be
A. 1:1
B. 1:2
C. 2:1
D. 1:4

Answer: B

D Watch Video Solution

13. In a Young's double slit experiment, I_{0} is
the intensity at the central maximum and β is
the fringe width. The intensity at a point P distant x from the centre will be

$$
\begin{aligned}
& \text { A. } I_{0} \frac{\cos (\pi x)}{\beta} \\
& \text { B. } 4 I_{0} \frac{\cos ^{2}(\pi x)}{\beta} \\
& \text { C. } I_{0} \frac{\cos ^{2}(\pi x)}{\beta}
\end{aligned}
$$

D. $\frac{I_{0}}{4} \frac{\cos ^{2}(\pi x)}{\beta}$

Answer: C

- Watch Video Solution

14. In a Fresnel's diffraction arrangement, the screen is at a distance of 2 meter from a circular aperture. It is found that for light of wavelengths λ_{1} and λ_{2} the radius of 4 th zone for λ_{1} coincides with the radius of 5 th zone for λ_{2}. Then the ratio $\lambda_{1}: \lambda_{2}$ is
A. $\sqrt{4 / 5}$
B. $\sqrt{5 / 4}$
C. $5 / 4$
D. $4 / 5$

Answer: C

D View Text Solution

15. If n represents the order of a half period zone, the area of this zone is approximately proportional to n^{m} where m is equal to
A. Zero
B. Half
C. One
D. Two

Answer: A

D View Text Solution

16. A screen is placed 50 cm from a single slit, which is illuminated with $6000 \AA$ light. If the distance between the first and third minima in
the diffraction pattern is 3.00 mm , what is the width of the slit?
A. 0.1 mm
B. 0.2 mm
C. 0.3 mm
D. $0.4 m m$

Answer: B
(Watch Video Solution
17. In Young's double slit experiment, the fringes are displaced index 1.5 is introduced in the path of one of the beams. When this plate in replaced by another plate of the same thickness, the shift of fringes is $(3 / 2) x$. The refractive index of the second plate is
A. 1.75
B. 1.50
C. 1.25
D. 1.00

Answer: B

- Watch Video Solution

18. Two waves of equal amplitude and
frequency interfere each other. The ratio of intensity when the two waves arrive in phase to that when they arrive 90° out of phase is
A. 1:1
B. $\sqrt{2}: 1$
C. 2:1

D. $4: 1$

Answer: C

D Watch Video Solution

19. In Young's double-slit experiment, we get

60 fringes in the field of view if we use light of wavelength $4000 \AA$. The number of fringes we
will get in the same field of view if we use light of wavelength $6000 \AA$ is
A. 60
B. 90
C. 40
D. 1.5

Answer: C

D Watch Video Solution

20. A parallel- plate capacitor with plate area A
and separation between the plates d, is charged by a constant current i. Consider a plane surface of area $A / 2$ parallel to the plates
and drawn summetrically between the plates.

Find the displacement current through this area.
A. i
B. $\frac{i}{2}$
C. $\frac{i}{4}$
D. None of these

Answer: B

D Watch Video Solution
21. The figure here gives the electric field of an

EM wave at a certain point and a certain. The wave is transporting energy in the negative z direction. What is the direction of the magnetic field of the wave at the point and instant?

A. Towards + X direction
B. Towards - X direction
C. Towards + Z direction
D. Towards - Z direction

Answer: A

- Watch Video Solution

22. The figure shows four pairs of polarizing sheets, seen face-on. Each pair is mounted in the path of initially unpolarized light. The
polarizing direction of each sheet (indicated by the dashed line) is referenced to either a horizontal x-axis or a vertical y axis. Rank the pair according to the fraction of the initial intensity that they pass, greatest first

A. $(i)>(i i)>(i i i)>(i v)$
B. $(i)>(i v)>(i i)>(i i i)$
C. $(i)>(i i i)>(i i)>(i v)$
D. $(i v)>(i i i)>(i i)>(i)$

Answer: B

DRew Text Solution

23. An astronaut floating freely in space decides to use his flash light as a rocket. He
shines a 10 watt light beam in a fixed direction
so that he acquires momentum in the opposite direction. If his mass is 80 kg , how long must he need to reach a velocity of $1 m s^{-1}$
A. 9 sec

B. $2.4 \times 10^{3} \mathrm{sec}$
C. $2.4 \times 10^{6} \mathrm{sec}$
D. $2.4 \times 10^{9} \mathrm{sec}$

Answer: D

- View Text Solution

