©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

KVPY

Mathematics

1. Let A denote the matrix $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$, where $i^{2}=-1$, and let I denote the identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Then $I+A+A^{2}+\ldots \ldots+A^{2010}$ is -
A. $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
B. $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$
c. $\left(\begin{array}{ll}1 & i \\ i & 1\end{array}\right)$
D. $\left(\begin{array}{ll}-1 & 0 \\ 0 & -1\end{array}\right)$

- Watch Video Solution

2. Suppose the sides of a triangle form a geometric progression with common ratio r. Then r lies in the interval-
A. $\left(0, \frac{-1+\sqrt{5}}{2}\right)$
B. $\left(\frac{1+\sqrt{5}}{2}, \frac{2+\sqrt{5}}{2}\right)$
C. $\left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
D. $\left(\frac{2+\sqrt{5}}{2}, \infty\right)$

Answer: C

- Watch Video Solution

3. The number of rectangles that can be obtained by joining four of the twelve vertices of a 12 -sided regular polygon is 5 K , then the value of K
is \qquad
A. 66
B. 30
C. 24
D. 15

Answer: D

- Watch Video Solution

4. Let I, ω and ω^{2} be the cube roots of unity. The least possible degree of a polynomial, with real coefficients having $2 \omega^{2}, 3+4 \omega, 3+4 \omega^{2}$ and $5-\omega-\omega^{2}$ as roots is -
A. 4
B. 5
C. 6
D. 8

Answer: B

- Watch Video Solution

5. A circle touches the parabola $y^{2}=4 x$ at $(1,2)$ and also touches its directrix. The y-coordinates of the point of contact of the circle and the directrix is-
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: C

- Watch Video Solution

6. Let ABC be an equilateral triangle, let KLMN be a rectangle with K, L on BC, M on AC and N on AB . Suppose $A N / N B=2$ and the area of triangle $B K N$ is 6 . The area of the triangle $A B C$ is -
A. 54
B. 108
C. 48
D. not determinable with the above data

Answer: B

- Watch Video Solution

7. Let P be an arbitrary point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b>0$. Suppose F_{1} and F_{2} are the foci are the ellipse. The locus of the centroid of the triangle $P F_{1} F_{2}$ as P moves on the ellipse is- (A) a circle (B) a parabola (C) an ellipse (D) a hyperbola
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C

- Watch Video Solution

8. The number of roots of equation $\cos ^{7} \theta-\sin ^{4} \theta=1$ that lie in the interval $[0,2 \pi]$ is-
A. 2
B. 3
C. 4
D. 8

Answer: A

9. Prove that $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right) \ldots\left(1+\tan 45^{\circ}\right)=2^{23}$
A. 2^{21}
B. 2^{22}
C. 2^{23}
D. 2^{25}

Answer: C

Watch Video Solution

10. Let $f: R \rightarrow R$ be a differentiable function such that $\mathrm{f}(\mathrm{a})=0=\mathrm{f}$ (b) and $f^{\prime}(a) f^{\prime}(b)>0$ for some $a<b$. Then the minimum number of roots of $f^{\prime}(x) 0$ in the interval (a, b) is
A. 3
B. 2
C. 1
D. 0

Answer: B

- Watch Video Solution

11. The roots of $(x-41)^{49}+(x-49)^{41}+(x-2009)^{2009}=0$ are
A. All necessarily real
B. non-real except one positive real root
C. non-real except three positive real roots
D. non-real except for three real roots of which exactly one is positive

Answer: B

- Watch Video Solution

12. The figure shown below is the graph of the derivative of some function $y=f^{\prime}(x)^{\prime}$.

Then
A. f has local minima at $x=a, b$ and a local maximum at $x=c$
B. f has local minima at $x=b, c$ and a local maximum at $x=a$
C. f has local minima at $x=c, a$ and a local maximum at $x=b$
D. the given figure is insufficient to conclude any thing about the local minima and local maxima of f

Answer: C
13. The following shows the graph of a continuous function $y=f(x)$ on the interval $[1,3]$. The points A, B, C have coordinates $(1,1),(3,2),(2,3)$ respectively, and the lines L_{1} and L_{2} are parallel, with L_{1} being tangent to the curve at C . If the area under the graph of $y=f(x)$ from $x=1$ to $x=3$ is 4 square units, then the area of the shaded region is -

A. 2
B. 3
C. 4
D. 5

Answer: A

- View Text Solution

14. Let $I_{n}=\int_{0}^{1}(\log x)^{n} d x$, where n is a non-negative integer. Then $I_{2001}+2011 I_{2010}$ is equal to -
A. $I_{1000}+999 I_{998}$
B. $I_{890}+890 I_{889}$
C. $I_{100}+100 I_{99}$
D. $I_{53}+54 I_{52}$

Answer: C

D Watch Video Solution

15. Consider the regions $A=\left\{(x, y) \mid x^{2}+y^{2} \leq 100\right\}$ and $=\{(x, y) \mid \sin (x+y)>0\}$ in the plane. Then the area of the region
$A \cap B$ is -
A. 10π
B. 100
C. 100π
D. 50π

Answer: D

- View Text Solution

16. Three vertices are chosen randomly from the seven vertices of a regular 7-sided polygon. The probability that they from the vertices of an isosceles triangle is-
A. $\frac{1}{7}$
B. $\frac{1}{3}$
C. $\frac{3}{7}$
D. $\frac{3}{5}$

Answer: D

- Watch Video Solution

17. Let $\vec{u}=2 \hat{i}-\hat{j}+\hat{k}, \vec{v}=-3 \hat{j}+2 \hat{k}$ be vectors in R^{3} and \vec{w} be a unit vector in the xy-plane. Then the maximum possible value of $|(\vec{u} \times \vec{v}) \cdot \vec{w}|$ is-
A. $\sqrt{5}$
B. $\sqrt{12}$
C. $\sqrt{13}$
D. $\sqrt{17}$

Answer: D

- Watch Video Solution

18. How many six-digit numbers are there in which no digit is repeated, even digits appear at even places, odd digits appear at odd places and the number is divisible by 4 ?
A. 3600
B. 2700
C. 2160
D. 1440

Answer: D

- Watch Video Solution

19. The number of natural numbers n in the interval $[1005,2010]$ for which the polynomial $1+x+x^{2}+x^{3}+\ldots . x^{n-1}$ divides the polynomial $1+x^{2}+x^{4}+x^{6}+\ldots \ldots x^{2010}$ is -
A. 0
B. 100
C. 503
D. 1006

Answer: C

- Watch Video Solution

20. Let $a_{0}=0$ and $a_{n}=3 a_{n-1}+1$ for $n \geq 1$. Then the remainder obtained dividing a_{2010} by 11 is -
A. 0
B. 7
C. 3
D. 4

Answer: C

21. Arrange the expansion of $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^{n}$ in decreasing powers of x. Suppose the coefficient of the first three terms form an arithmetic progression. Then the number of terms in the expression having integer powers of x is -
(A) 1
(B) 2
(C) 3
(D) more than 3
A. 1
B. 2
C. 3
D. more than 3

Answer: C

22. Let r be a real number and $n \in N$ be such that the polynomial $2 x^{2}+2 x+1$ divides the polynomial $(x+1)^{n}-r$. Then (n, r) can be-
(A) $\left(4000,4^{1000}\right)$
(B) $\quad\left(4000, \frac{1}{4^{1000}}\right)$
(C) $\left(4^{1000}, \frac{1}{4^{1000}}\right)$
(D)
$\left(4000, \frac{1}{4000}\right)$
A. $\left(4000,4^{1000}\right)$
B. $\left(4000, \frac{1}{4^{1000}}\right)$
C. $\left(4^{1000}, \frac{1}{4^{1000}}\right)$
D. $\left(4000, \frac{1}{4000}\right)$

Answer: B

- View Text Solution

23. Suppose a, b are real numbers such that $a b \neq 0$. Which of the following four figures represents the curve $(y-a x-b)\left(b x^{2}+a y^{2}-a b\right)=0 ?$
A.
(A)

B.
(B)

C.
(C)

Answer: B

- Watch Video Solution

24. Among all cyclic quadrilaterals inscribed in a circle of radius R with one of its angles equal to 120°. Consider the one with maximum possible area. Its area is-
B. $\sqrt{3} R^{2}$
C. $2 R^{2}$
D. $2 \sqrt{3} R^{2}$

Answer: B

- Watch Video Solution

25. The following figure shows the graphs of a differentiable fucntion $y=f(x)$ on the interval $[a, b]$ (not contaning 0).

Let $g(x)=f(x) / x$ which of the following is a possible graph of $y=g(x) ?$
A.

B.

C.

D.

Answer: B

- Watch Video Solution

26. Let V_{1} be the volume of a given right circular cone with O as the centre of the base and A as its apex. Let V_{2} be the maximum volume of the right circular cone inscribed in the given cone whose apex is O and
whose base is parallel to the base of the given cone. then the ratio V_{2} / V_{1} is -
A. $\frac{3}{25}$
B. $\frac{4}{9}$
C. $\frac{4}{27}$
D. $\frac{8}{27}$

Answer: C

- Watch Video Solution

27. Let $f: R \rightarrow R$ be a continous function satisfying $f(x)=x+\int_{0}^{x} f(t) d t$, for all $x \in R$. Then the numbr of elements in the set $S=\{x \in R: f(x)=0\}$ is -
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

28. The value of $\int_{2 \pi}^{0} \min \left\{|x-\pi|, \cos ^{-1}(\cos x)\right\} d x$ is -
A. $\frac{\pi^{2}}{4}$
B. $\frac{\pi^{2}}{2}$
C. $\frac{\pi^{2}}{8}$
D. π^{2}

Answer: B

D Watch Video Solution

29. Let $A B C$ be a triangle and P be a point inside $A B C$ such that $\overrightarrow{P A}+2 \overrightarrow{P B}+3 \overrightarrow{P C}=\overrightarrow{0}$. The ratio of the area of triangle $A B C$ to that of APC is - (A) 2 (B) $\frac{3}{2}$ (C) $\frac{5}{3}$ (D) 3
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{3}$
D. 3

Answer: D

- Watch Video Solution

30. Suppose m, n are positive integers such that $6^{m}+2^{m+n} 3^{m}+2^{n}=332$. The value of the expression $m^{2}+n m+n^{2}$ is
A. 7
B. 13
C. 19
D. 21

Answer: C

- Watch Video Solution

31. Suppose, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are three distinct real numbers. Let $\mathrm{P}(\mathrm{x})=$ $\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}+\frac{(x-a)(x-b)}{(c-a)(c-b)}$.

When simplified, $\mathrm{P}(\mathrm{x})$ becomes
A. 1
B. x
C. $\frac{x^{2}+(a+b+c)(a b+b c+c a)}{(a-b)(b-c)(c-a)}$
D. 0
32. Let a, b, x, y be real numbers such that $a^{2}+b^{2}=81, x^{2}+y^{2}=121$ and $a x+b y=99$. Then the set of all possible values of $a y-b x$ is -
A. $\left(0, \frac{9}{11}\right]$
B. $\left(0, \frac{9}{11}\right)$
C. $\{0\}$
D. $\left[\frac{9}{11}, \infty\right)$

Answer: C

- Watch Video Solution

33. If $x+\frac{1}{x}=a, x^{2}+\frac{1}{x^{3}}=b$, then $x^{3}+\frac{1}{x^{2}}$ is-
A. $a^{3}+a^{2}-3 a-2-b$
B. $a^{3}-a^{2}-3 a+4-b$
C. $a^{3}-a^{2}+3 a-6-b$
D. $a^{3}+a^{2}+3 a-16-b$

Answer: A

- Watch Video Solution

34. Let a, b, c, d be real numbers such that $|a-b|=2,|b-c|=3,|c-d|=4$ Then the sum of all possible values of $|a-d|=$
A. 9
B. 18
C. 24
D. 30

Answer: B

35. Below are four equations in x . Assume that $0<r<4$. Which of the following has the largest solution for x ?
A. $5\left(1+\frac{r}{\pi}\right)^{x}=9$
B. $5\left(1+\frac{r}{17}\right)^{x}=9$
C. $5(1+2 r)^{x}=9$
D. $5\left(1+\frac{1}{r}\right)^{x}=9$

Answer: B

- Watch Video Solution

36. Let ABC be a triangle with $\angle B=90^{\circ}$. Let AD be the bisector of $\angle A$ with D on $B C$. Supose $A C=6 \mathrm{~cm}$ and the area of the triangle $A D C$ is $10 \mathrm{~cm}^{2}$
. Then the length of BD in cm is equal to
A. $\frac{3}{5}$
B. $\frac{3}{10}$
C. $\frac{5}{3}$
D. $\frac{10}{3}$

Answer: D

- Watch Video Solution

37. A piece of paper in the shape of a sector of a circle (see Fig. 1) is rolled up to form a right- circular cone (see Fig. 2). The value of the angle θ is.

A. $\frac{10 \pi}{13}$
B. $\frac{9 \pi}{13}$
C. $\frac{5 \pi}{13}$
D. $\frac{6 \pi}{13}$

Answer: B

- Watch Video Solution

38. In
the
adjoining
figure
$A B=12 \mathrm{~cm}, C D=8 \mathrm{~cm}, B D=20 \mathrm{~cm}, \angle A B D=\angle A E C=\angle E D C=90$
. If $B E=x$, then

A. x has two possible values whose difference is 4
B. x has two possible values whose sum is 28
C. x has only one value and $x \geq 12$
D. x cannot be determined with the given information

Answer: A

- Watch Video Solution

39. Three circles each of radius 1 , touch one another externally and they lie between two parallel lines. The minimum possible distance between the lines is
A. $2+\sqrt{3}$
B. $3+\sqrt{3}$
C. 4
D. $2+\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

40. The number of distinct prime divisors of the number $512^{3}-253^{3}-259^{3}$ is
A. 4
B. 5
C. 6
D. 7

Answer: C

- Watch Video Solution

41. Consider an incomplete pyramid of balls on a square base having 18 layers; and having 13 balls on each side of the top layer. Then the total number N of balls in that pyramid satisfies
A. $9000<N<10000$
B. $8000<N<9000$
C. $7000<N<8000$
D. $10000<N<12000$

Answer: B

- Watch Video Solution

42. A man wants to reach a centain destination. One-sixth of the total distance is muddy while half the distance is tar road. For the remaining distance he takes a boat. His speed of traveling in mud, in water, on tar road is in the ratio $3: 4: 5$. The ratio ratio of the durations he requires to cross the patch of mud, stream and tar road is
A. $\frac{1}{2}: \frac{4}{3}: \frac{5}{2}$
B. 3:8:15
C. $10: 15: 18$
D. 1:2:3

Answer: C

43. A frog is presently located at the origin $(0,0)$ in thexy-plane. It always jumps from a point with integer coordinates to a point with integer coordinates moving adistance of 5 units in each jump. What is the minimum number of jumps required for the frog to go from $(0,0)$ to $(0,1)$
A. 2
B. 3
C. 4
D. 9

Answer: B

- Watch Video Solution

44. A certain 12 - hour digital clock displays the hour and the minute of a day. Due to a defect in the clock whenever the digit 1 is supposed to be
displayed it displays 7. What fraction of the day will the clock show the correct time ?
A. $\frac{1}{2}$
B. $\frac{5}{8}$
C. $\frac{3}{4}$
D. $\frac{5}{6}$

Answer: A

- Watch Video Solution

45. There are 30 questions in a multiple - choice test. A student gets 1 mark for each unattempted question, 0 mark for each wrong answer and 4 marks for each corrent answer. A student answered x question correctly and scored 60 . Then the number of possible value of x is
A. 15
B. 10
C. 6
D. 5

Answer: C

- View Text Solution

46. Let $\mathrm{f}(x)=a x^{2}+b x+c$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are integers. Suppose $\mathrm{f}(1)=0$, $40<f(6)<50,60<f(7)<70$, and $1000 t<f(50)<1000(t+1)$ for some integer t. Then the value fo t is
A. 2
B. 3
C. 4
D. 5 or more

Answer: C

$\frac{2^{2}+1}{2^{2}-1}+\frac{3^{2}+1}{3^{2}-1}+\frac{4^{2}+1}{4^{2}-1}+\ldots \ldots .+\frac{(2011)^{2}+1}{(2011)^{2}-1}$ lies in the interval
A. $\left(2010,2010 \frac{1}{2}\right)$
B. $\left(2011-\frac{1}{2011}, 2011-\frac{1}{2012}\right)$
C. $\left(2011,2011 \frac{1}{2}\right)$
D. $\left(2012,2012 \frac{1}{2}\right)$

Answer: C

- View Text Solution

48. The diameter of one of the bases of a truncated cone is 100 mm . If the diameter of this base is increased by 21% such that it still remains a truncated cone with the height and the other base unchanged, the volume also increases by 21%. The radius the other base (in mm) is
A. 65
B. 55
C. 45
D. 35

Answer: B

- Watch Video Solution

49. Two friends A and B are 30 km apart and they start simultaneously on motorcycles to meet each other. The speed of A is 3 times that of B. The distance between them decreases at the rate of 2 km per minute. Ten minutes after they start, A's vehicle breaks down and A stops and waits for B to arrive. After how much time (in minutes) A started riding, does B meet A ?
A. 15
B. 20
C. 25
D. 30

Answer: D

- View Text Solution

50. Three taps A, B, C fill up a tank independently in $10 \mathrm{hr}, 20 \mathrm{hr}, 30 \mathrm{hr}$, respectively. Initially the tank is empty and exactly one pair of taps is open during each hour and every pair of taps is open at least for one hour. What is the minimum number of hours required to fill the tank?
A. 8
B. 9
C. 10
D. 11

Answer: A

51. Suppose $\log _{a} b+\log _{b} a=c$. The smallest possible integer value of c for all $a, b>1$ is -
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

52. Suppose n is a natural number such that $\left|i+2 i^{2}+3 i^{3}+\ldots \ldots+n i^{n}\right|=18 \sqrt{2}$ where i is the square root of -1 . Then n is
A. 9
B. 18
C. 36
D. 72

Answer: C

- Watch Video Solution

53. Let P be an $m \times m$ matrix such that $P^{2}=P$. Then $(1+P)^{n}$ equals
A. $I+P$
B. $I+n P$
C. $I+2^{n} P$
D. $I+\left(2^{n}-1\right) P$

Answer: D

54. Consider the cubic equation $x^{3}+a x^{2}+b x+c=0$, where a, b, c are real numbers, which of the following statements is correct?
A. If $a^{2}-2 b<0$, then the equation has one real and two imahinary roots
B. If $a^{2}-2 b \geq 0$, then the equation has all real roots
C. If $a^{2}-2 b>0$, then the equation has all real and distinct roots
D. If $4 a^{3}-27 b^{2}>0$, then the equation has real and distinct roots

Answer: A

- Watch Video Solution

55. All the point (a, y) in the plane satisfying the equation $x^{2}+2 x \sin (x y)+1=0$ lie on -
A. a pair of straight lines
B. a family of hyperbolas
C. a parabola
D. an ellipse

Answer: A

- View Text Solution

56. Let $A=(4,0), B=(0,12)$ be two points in the plane. The locus of a point C such that the area of triangle $A B C$ is 18 sq. units is -
A. $(y+3 x+12)^{2}=81$
B. $(y+3 x+81)^{2}=12$
C. $(y+3 x-12)^{2}=81$
D. $(y+3 x-81)^{2}=12$

Answer: C

- Watch Video Solution

57. In a recatngle $A B C D$, the coordinates of A and B are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribiling circle of ABCD has equation $2 x-y+4=0$. Then the area of the rectangle is -
A. 16
B. $2 \sqrt{10}$
C. $2 \sqrt{5}$
D. 20

Answer: A

- Watch Video Solution

58. In the xy plane three distinct lines l_{1}, l_{2}, l_{3} are concurrent at $M(\lambda, 0)$. Also the lines l_{1}, l_{2}, l_{3} are normals to the parabola $y^{2}=6 x$ at the points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ respectively. Then
A. $\lambda<-5$
B. $\lambda>3$
C. $-5<\lambda<-3$
D. $0<\lambda<3$

Answer: B

- Watch Video Solution

59.

$f(x)-\cos 5 x+A \cos 4 x+B \cos 3 x+C \cos 2 x+D \cos x E$ and $T-f(0)$ then T
A. depends on A, B, C, D, E
B. depends on A, C, E but independent of B and D
C. depends on B, D but independent of $\mathrm{A}, \mathrm{C}, \mathrm{E}$
D. is independent of A, B, C, D, E

Answer: C

60. In triangle $A B C$, we are given that $3 \sin A+4 \cos B=6$ and $4 \sin B+3 \cos A=1$. Then the measure of the angle C is -
A. 30°
B. 150°
C. 60°
D. 75°

Answer: A

- Watch Video Solution

61. Which of the following intervals is possible domain of the function
$f(x)=(\log)_{(x)}[x]+(\log)_{[x]}\{x\}$, where $[x]$ is the greatest integer not exceeding $\operatorname{xand}\{x\}=x-[x]$? $(0,1)(b)(1,2)(c)(2,3)(d)(3,5)$
A. $(0,1)$
B. $(1,2)$
C. $(2,3)$
D. $(3,5)$

Answer: C

- Watch Video Solution

62. If $f(x)=(2011+x)^{n}$, where x is a real variable and n is a positive interger, then value of $f(0)+f^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2!}+\ldots+\frac{f^{(n-1)}(0)}{(n-1)!}$ is $-f(0)+f^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2!}+\ldots+\frac{f^{(n-1)}(0)}{(n-1)!}$ is -
A. $(2011)^{n}$
B. $(2012)^{n}$
C. $(2012)^{n}-1$
D. $n(2011)^{n}$

- Watch Video Solution

63. The minimum distance between a point on the curve $y=e^{x}$ and a point on the curve $y=\log _{e} x$ is -
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. $\sqrt{3}$
D. $2 \sqrt{2}$

Answer: B

- Watch Video Solution

64. Let $\mathrm{f}:(2, \infty) \rightarrow N$ be defined by $f(x)=$ the largest prime factor of [x]. Then $\int_{2}^{8} f(x) d x$ is equal to -
A. 17
B. 22
C. 23
D. 25

Answer: B

- Watch Video Solution

65. Let $[\mathrm{x}]$ denote the largest interger not exceeding x and $\{x\}=x-[x]$
.Then $\int_{0}^{2012} \frac{e^{\cos (\pi\{x\})}}{e^{\cos (\pi\{x\})}+e^{-\cos (\pi\{x\})}} d x$ is equal to -
A. 0
B. 1006
C. 2012
D. 2012π

View Text Solution

66. The value of $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{4 n^{2}-1}}+\frac{1}{\sqrt{4 n^{2}-4}}+\ldots+\frac{1}{\sqrt{4 n^{2}-n^{2}}}\right)$ is -
A. $\frac{1}{4}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: D

- Watch Video Solution

67. Two players play the following game : A writes $3,5,6$ on three different cards, B writes $8,9,10$ on three different cards. Both draw randomly two cards from their collections. Then A computes the product of two
numbers he/she has drawn, and B computes the sum of two numbers he/she has drawn. The player getting the larger number wins. What is the probability that A wins?
A. $\frac{1}{3}$
B. $\frac{5}{9}$
C. $\frac{4}{9}$
D. $\frac{1}{9}$

Answer: C

D Watch Video Solution

68. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors in the xyz space such that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq 0$ If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are points with position vector $\vec{a}, \vec{b}, \vec{c}$ respectively, then the number of possible position of the centroid of triangle $A B C$ is -
B. 2
C. 3
D. 6

Answer: A

- View Text Solution

69.

The
sum
of
$\left(1^{2}-1+1\right)(1!)+\left(2^{2}-2+1\right)(2!)+\ldots+\left(n^{2}-n+1\right)(n!)$ is -
A. $(n+2)$!
B. $(n-1)((n+1)!)+1$
C. $(n+2)!-1$
D. $n((n+1)!)-1$

Answer: B

70. Let X be be a ninempty set and let $P(X)$ denote the collection of all subsets of X. Define
$f: X \times P(X) \rightarrow$ by
$f(x, A)=\left\{\begin{array}{lll}1, & \text { if } & x \in A \\ 0, & \text { if } & x \notin A\end{array}\right.$
Then $f(x, A \cup B)$ equals-
A. $f(x, A)+f(x, B)$
B. $f(x, A)+f(x, B)-1$
C. $f(x, A)+f(x, B)-f(x, A) f(x, B)$
D. $f(x, A)+|f(x, A)-f(x, B)|$

Answer: C

- Watch Video Solution

71. Let A and B any two $n \times n$ matrices such that the following conditions hold : $A B=B A$ and there exist positive integers k and l such that
$A^{k}=I$ (the identity matrix) and $B^{l}=0$ (the zero matrix). Then-
A. $A+B=I$
B. $\operatorname{det}(A B)=0$
C. $\operatorname{det}(A+B) \neq 0$
D. $(A+B)^{m}=0$ for some integer m

Answer: B

- Watch Video Solution

72. The minimum value of n for which
$\frac{2^{2}+4^{2}+6^{2}+\ldots+(2 n)^{2}}{1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}}<1.01$
A. is 101
B. is 121
C. is 151
D. does not exist

Answer: C

D Watch Video Solution

73. The locus of the point $P=(a, b)$ where a, b are real numbers such that the roots of $x^{3}+a x^{2}+b x+a=0$ are in arithmetic progression is -
A. an ellipse
B. a circle
C. a parabola whose vertex in on the y-axis
D. a parabola whose vertex is no the x-axis

Answer: C

D Watch Video Solution

74. The smallest possible positive slope of a line whose y-intercept is 5 and which has a common point with the ellipse $9 x^{2}+16 y^{2}=144$ is-
A. $\frac{3}{4}$
B. 1
C. $\frac{4}{3}$
D. $\frac{9}{16}$

Answer: B

- Watch Video Solution

75. Let $A=\left\{\theta \in R \mid \cos ^{2}(\sin \theta)+\sin ^{2}(\cos \theta)=1\right\} \quad$ and
$B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0\}$. Then $A \cap B$
A. is the empty set
B. has exactly one element
C. has more than one but finitely many elements
D. has infinitely many elements
76. Let $f(x)=x^{3}+a x^{2}+b x+c$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers. If $f(x)$ has a local minimum at $x=1$ and a local maximum at $x=-\frac{1}{3}$ and $f(2)=0$, then $\int_{-1}^{1} f(x) d x$ equals-
A. $\frac{14}{3}$
B. $\frac{-14}{3}$
C. $\frac{7}{3}$
D. $\frac{-7}{3}$

Answer: B

- Watch Video Solution

77. Let $f(x)=x^{12}-x^{9}+x^{4}-x+1$. Which of the following is true ?
A. f is one-one
B. f has a real root
C. f^{\prime} never vabishes
D. f take only positive values

Answer: D

- Watch Video Solution

78. For each positive interger n , define $f_{n}(x)=$ minimum $\left(\frac{x^{n}}{n!}, \frac{(1-x)^{n}}{n!}\right)$, for $0 \leq x \leq 1$. Let $I_{n}=\int_{0}^{1} f_{n}(x) d x, n \geq 1$. Then
$I_{n}=\sum_{n=1}^{\infty} I_{n}$ is equal to -
A. $2 \sqrt{e}-3$
B. $2 \sqrt{e}-2$
C. $2 \sqrt{e}-1$
D. $2 \sqrt{e}$

Watch Video Solution

79. The maximum possible value of $x^{2}+y^{2}-4 x-6 y, x, y \in \mathbb{R}$ subject to the condition $|x+y|+|x-y|=4$
A. is 12
B. is 28
C. is 72
D. does not exist

Answer: B

- Watch Video Solution

80. The arithemetic mean and the geometric mean of two distinct 2-digit numbers x and y are two integers one of which can be obtained by reserving the digits of the other (in base 10 representation). Then $x+y$ equals
A. 82
B. 116
C. 130
D. 148

Answer: C

- Watch Video Solution

81. Three children, each accompanied by a guardian, seek admission in a school. The principal want to interview all the 6 persons one after the other subject to the condition that no child is interviewed before its guradian. In how many ways can this be done-
A. 60
B. 90
C. 120
D. 180

- Watch Video Solution

82. The equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=\mathrm{hs}$
A. No solution
B. Exactly two distinct solutions
C. Exactly four distinct solutions
D. Infinitely may solutions

Answer: D

D Watch Video Solution

83. The maxinum value M of $3^{x}+5^{x}-9^{x}+15^{x}-25^{x}$, as x varies over reals, satisfies-
A. 3 It M It 5
B. 0 It M It 2
C. 9 It M It 25
D. 5 It M It 9

Answer: A::B

- Watch Video Solution

84. Suppose two perpendicular tangents can be drawn from the origin to the circle $x^{2}+y^{2}-6 x-2 p y+17=0$, for some real p . then $|p|=$
A. 0
B. 3
C. 5
D. 17

Answer: C

85. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be numbers in set $\{1,2,3,4,5,6\}$ such that the curves $y=2 x^{3}+a x+b$ and $y=2 x^{3}+c x+d$ have no point in common. The maximum possible value of $(a-c)^{2}+b-d$ is-
A. 0
B. 5
C. 30
D. 36

Answer: B

- Watch Video Solution

86. Consider the conic $e x^{2}+\pi y^{2}-2 e^{2} x-2 \pi^{2} y+e^{3}+\pi^{3}=\pi e$.

Suppose P is any point on the conic and S_{1}, S_{2} are the foci of conic, then the maximum value of $\left(P S_{1}+P S_{2}\right)$ is -
A. πe
B. $\sqrt{\pi e}$
C. $2 \sqrt{\pi}$
D. $2 \sqrt{e}$

Answer: C

- Watch Video Solution

87. Let $\mathrm{f}(\mathrm{x})=\frac{\sin (x-a)+\sin (x+a)}{\cos (x-a)-\cos (x+a)}$, then-
A. $f(x+2 \pi)=f(x)$ but $\mathrm{f}(x+\alpha) \neq f(x)$ for any $0<\alpha<2 \pi$
B. f is strictly increasing function
C. f is strictly decreasing function
D. f is constant function

Answer: D

88. the value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is equal to
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

89. The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ for real x is -
A. $1 / 4$
B. $3 / 2$
C. $2 / 3$
D. $-2 / 5$

Answer: B

- Watch Video Solution

90. Let n be a natural and let 'a' be a real number. The number of zeros of
$x^{2 n+1}-(2 n+1) x+a=0$ in the interval $[-1,1]$ is -
A. 2 if a gt 0
B. 2 if a lt 0
C. At most one for every value of a
D. At least three for every value of a

Answer: C

91. Let $f: R \rightarrow R$ be the function
$f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right)+\left(x-a_{2}\right)\left(x-a_{3}\right)+\left(x-a_{3}\right)\left(x-a_{1}\right)$ with $a_{1}, a_{2}, a_{3} \in R$. The fix $f(x) \geq 0$ if and only if -
A. At least two of a_{1}, a_{2}, a_{3} are equal
B. $a_{1}=a_{2}=a_{3}$
C. a_{1}, a_{2}, a_{3} are all distinct
D. a_{1}, a_{2}, a_{3}, are all positive and distinct

Answer: B

- Watch Video Solution

92. The value $\frac{\int_{0}^{\pi / 2}(\sin x)^{\sqrt{2}+1} d x}{\int_{0}^{\pi / 2}(\sin x)^{\sqrt{2}-1} d x}$ is -
A. $\frac{\sqrt{2}+1}{\sqrt{2}-1}$
B. $\frac{\sqrt{2}-1}{\sqrt{2}+1}$
C. $\frac{\sqrt{2}+1}{\sqrt{2}}$
D. $s-\sqrt{2}$

Answer: D

- View Text Solution

93. The value of $\int_{-2012}^{2012}\left(\sin \left(x^{3}\right)+x^{5}+1\right) d x$ is -
A. 2012
B. 2013
C. 0
D. 4024

Answer: D

94. Let $[x]$ and $\{x\}$ be the integer part and fractional part of a real number x respectively. The value of the integral $\int_{0}^{5}[x]\{x\} d x$ is -
A. $5 / 2$
B. 5
C. 34.5
D. 35.5

Answer: B

- Watch Video Solution

95. Let $S_{n}=\sum_{k=1}^{n} k$ denote the sum of the first n positive integers. The numbers $S_{1}, S_{2}, S_{3}, \ldots \ldots S_{99}$ are written on 99 cards. The probability of drawing a card with an even number written on it is -
A. $1 / 2$
B. $49 / 100$
C. $49 / 99$
D. $48 / 99$

Answer: C

- Watch Video Solution

96. A purse contains 4 copper coins, 3 silver coins and the second purse contains 6 copper coins and 2 silver coins. If a coins is taken out of any purse then what is the probability that it is a copper coin.
A. $41 / 70$
B. $31 / 70$
C. $27 / 70$
D. $1 / 3$

Answer: A

97. Let H be the orthocenter of an acute - angled triangle ABC and O be itscircumcenter. Then $\overrightarrow{H A}+\overrightarrow{H B}+\overrightarrow{H C}$
A. is equal to $\overrightarrow{H O}$
B. is equal to $\overrightarrow{3 H O}$
C. is equal to $\overrightarrow{2 H O}$
D. is not a scalar multiple of $\overrightarrow{H O}$ in general

Answer: C

- View Text Solution

98. The number of ordered pairs (m, n), where $m, n \in\{1,2,3, \ldots . ., 50\}$, such that $6^{m}+9^{n}$ is a multiple of 5 is -
A. 1250
B. 2500
C. 625
D. 500

Answer: A

D Watch Video Solution

99. Suppose $a_{1}, a_{2}, a_{3}, \ldots \ldots, a_{2012}$ are integers arranged on a circle. Each number is equal to the average of its two adjacent numbers. If the sum of all even indexed numbers is 3018 , what is the sum of all numbers ?
A. 0
B. 1509
C. 3018
D. 6036

Answer: D

100. Let $S=\{1,2,3, \ldots . n\}$ and $\mathrm{A}=\{a, b) \mid 1 \leq a, b \leq n\}=S \times S$. A subset B of A is said to be a good subset if $(\mathrm{x}, \mathrm{x}) \in \mathrm{B}$ for every $x \in S$. Then number of good subsets of A is -
A. 1
B. 2^{n}
C. $2^{n(n-1)}$
D. $2^{n^{2}}$

Answer: C

- Watch Video Solution

101. Two distinct polynomials $f(x)$ and $g(x)$ defined as defined as follow :
$f(x)=x^{2}+a x+2, g(x)=x^{2}+2 x+a$
if the equations $f(x)=0$ and $g(x)=0$ have a common root then the sum of roots of the equation $f(x)+g(x)=0$ is -
A. $-\frac{1}{2}$
B. 0
C. $\frac{1}{2}$
D. 1

Answer: C

- Watch Video Solution

102. if n is the smallest natural number such that $n+2 n+3 n+\cdots \cdots+99 n$ is a perfect squre , then the number of digits in n^{2} is -
A. 1
B. 2
C. 3
D. more than 3

Answer: C

D Watch Video Solution

103. Let x, y, z be positive reals, which of the which following imples $x=y=z ?$
A. $x^{3}+y^{3}+z^{3}=3 x y z$
B. $x^{3}+y^{3} z+y z^{2}=3 x y z$
C. $x^{3}+y^{3} z+z^{2} x=3 x y z$
D. $(x+y+z)^{3}=27 x y z$

Answer: B

- Watch Video Solution

104. in the figure below ,a rectangle of perimeter 763 untis is divided into

7 congruent rectangles:

what is the perimeter of each of the smaller rectangles ?
A. 38
B. 32
C. 28
D. 19

Answer: C

- Watch Video Solution

105. the largest non - negative integer K such that 24^{k} divides 13 ! Is -
A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

106. in a triangle $A B C$, points X and Y are on $A B$ And $A C$, respectively, such that $X Y$ is parallel to $B C$. Which of the two following equalities always hold? (here [PQR] denotes the area of triangle PQR).
(i) $[\mathrm{BCX}]=[\mathrm{BCY}]$
(ii) $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$
A. Neither (i) nor (ii)
B. (i) only
C. (ii) only
D. Both (i) and (ii)

- Watch Video Solution

107. Let P be an interior point of a triangle $A B C$, Let Q and R be the reflections of P in AB and AC , respectively if $\mathrm{Q} . \mathrm{A}, \mathrm{R}$ are collinear then $\angle A$ equals -
A. 30°
B. 60°
C. 90°
D. 120°

Answer: C

108. Let ABCD be a square of side length 1 , and I^{-}a circle passing through B and C, and touching AD. The readius of I^{-}is -
A. $\frac{3}{8}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{5}{8}$

Answer: D

- Watch Video Solution

109. Let $A B C D$ be a square fo side length 1 . P, Q, R, S be points in the interiors of the sides $A D, B C, A B, C D$, respectively, such that $P Q$ and $R S$ intersect at right angles.if $\mathrm{PQ}=\frac{3 \sqrt{3}}{4}$ then RS equals -
A. $\frac{2}{\sqrt{3}}$
B. $\frac{3 \sqrt{3}}{4}$
C. $\frac{\sqrt{2}+1}{2}$
D. $4-2 \sqrt{2}$

Answer: B

- Watch Video Solution

110. in the figure given below, if the areas of the regions are equal then which of the following is true ?

A. $x=y$
B. $x=2 y$
C. $2 x=y$
D. $x=3 y$

Answer: B

- Watch Video Solution

111. A man standing on a railway platform noteced that a train took 21 secods to cross the platform (this means the time elpsed from the moment the engine enthers the the platform till the last compartment leaves the platform) which is 88 meters long and that it took 9 seconds to pass him ,ASsuming that the train was moving with unform speed, what is the langth of the train in meters?
A. 55
B. 60
C. 66
D. 72

Answer: C

112. the least postitive interger n from which $\sqrt[3]{n+1}-\sqrt[3]{n}<\frac{1}{12}$ is -
A. 6
B. 7
C. 8
D. 9

Answer: C

Watch Video Solution

113. Let ngt 1 be an interger. Which of the following sets of numbers necessarily contains multiple of 3 ?
A. $n^{19}-1, n^{19}+1$
B. $n^{19}, n^{38}-1$
C. $n^{38}, n^{38}+1$
D. $n^{38}, n^{19}-1$

Answer: B

- View Text Solution

114. the number of distinct primes dividing $12!+13!+14$! is -
A. 5
B. 6
C. 7
D. 8

Answer: A

- Watch Video Solution

115. How many ways are there to arrange the letters of the word EDUCATION so that all the following three conditions hold ? - the vowels occur in the order (EUAIO) - the consonants occur in the same order (DCTN) - no two consonants are next to each other
A. 15
B. 24
C. 72
D. 120

Answer: A

- Watch Video Solution

116. A triangular corner is cut form a rectangular priece of paper an the resulting pentagon has sides $, 5,6,8,9,12$ in some order , the ratio of the area of the pentagen to the area of the rectangle is -
A. $\frac{11}{18}$
B. $\frac{13}{18}$
C. $\frac{15}{18}$
D. $\frac{17}{18}$

Answer: D

- Watch Video Solution

117. for a real number x, let $[x]$ denote the largest unteger less than or equal to x, and let $\{x\}=x-[x]$. The number of solution x to the equation $[x]$ $\{x\}=5$ with $0 \leq x \leq 2015$ is -
A. 0
B. 3
C. 2008
D. 2009

Answer: D

- Watch Video Solution

118. Let $A B C D$ be a traezium with $A D$ parallel to $B C$. Assume there is a point M in the interior of the segement $B C$ such that $A B=A M$ and $D C=D M$. Then the ratio of the area of the tapezium to the area of triabgle AMD is -
A. 2
B. 3
C. 4
D. Not determinable from data

Answer: B

119. Given area three cylindrical bukets $X, Y . Z$ whose circular bases are of radii $1,2,3$ units ,respectively. Intially Water is filled in these bukets upto the same water transferred from Z to X so that they both have the same volume of water Some water is then transferred between X and y so that they both have same volume of water if h_{z} denote the heights of water at this stage in the bukets y, z, respectively, then the ratio $\frac{h_{y}}{h_{z}}$ equals -
A. $\frac{4}{9}$
B. 1
C. $\frac{9}{4}$
D. $\frac{81}{40}$

Answer: D

- Watch Video Solution

120. the average incomes of the people in two villages are P and Q respectively .Assume that $p \neq Q$. A person moves form the first village to
the second to the second village. The new average income are P and Q respectively which of the following is not possible?
A. $P>p$ and $Q>Q$
B. $p>P$ and $Q>Q$
C. $P=P$ and $Q=Q$
D. $P<P$ and $Q<Q$

Answer: C

- Watch Video Solution

121. The number of ordered pairs (x, y) of real numbers that satisfy the simultaneous equations
$x+y^{2}=x^{2}+y=12$ is
A. 0
B. 1
C. 2
D. 4

Answer: D

- Watch Video Solution

122. If z a complex number satisfying $\left|z^{3}+z^{-3}\right| \leq 2$, then the maximum possible value of $\left|z+z^{-1}\right|$ is -
A. 2
B. $3 \sqrt{2}$
C. $2 \sqrt{2}$
D. 1

Answer: A

- Watch Video Solution

123. The largest perfect square that divides $2014^{3}-2013^{3}+2012^{3}-2011^{3}+\ldots+2^{3}-1^{3}$ is
A. 1^{2}
B. 2^{2}
C. 1007^{2}
D. 2014^{2}

Answer: C

- Watch Video Solution

124. Suppose $O A B C$ is a reatangle in the $x y$-plane where O is the origin and A, B lie on the parabola $y=x^{2}$. Then C must lie on the curve
A. $y=x^{2}+2$
B. $y=2 x^{2}+1$
C. $y=-x^{2}+2$
D. $y=-2 x^{2}+1$

Answer: A

- Watch Video Solution

125. Circles C_{1} and C_{2} of radii r and R respectively, touch each other as shown in the figure. The lime I, which is parallel to the line joining the centres of C_{2} and C_{2} is tangent to C_{1} at P and intersects C_{2} at A , B. If $R^{2}=2 r^{2}$, then equals-

A. $22 \frac{1}{2}$ 。
B. 45°
C. 60°
D. $67 \frac{1}{2} \circ$

Answer: B

- Watch Video Solution

126. The shortest distance from the origin to a variable point on the sphere $(x-2)^{2}+(y-3)^{2}+(z-6)^{2}=1$ is-
A. 5
B. 6
C. 7
D. 8

Answer: B

127. The number of real number λ for which the equality
$\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$,
holds for all real α which are not integral multiples of $\pi / 2$ is-
A. 1
B. 2
C. 3
D. Infinite

Answer: B

- Watch Video Solution

128. Suppose $A B C D E F$ is a hexagon such that $A B=B C=C D=1$ and $D E=E F=F A=2$.

If the vertices A, B, C, D, E, F, are concylic, the radius of the circle passing throught them is-
A. $\sqrt{\frac{5}{2}}$
B. $\sqrt{\frac{7}{3}}$
C. $\sqrt{\frac{11}{5}}$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

129. Let $\mathrm{P}(\mathrm{x})$ be a polynomial such that $\mathrm{p}(\mathrm{x})-\mathrm{p}^{\mathrm{p}}(\mathrm{x})=x^{n}$, where n is a positive integer. Then $P(0)$ equals-
A. $n!$
B. $(\mathrm{n}-1)$!
C. $\frac{1}{n!}$
D. $\frac{1}{(n-1)!}$
130. The value of the limit
$\lim _{x \rightarrow 0}\left(\frac{x}{\sin x}\right)^{6 / x^{2}}$ is
A.e
B. e^{-1}
C. $e^{-1 / 6}$
D. e^{6}

Answer: A

- Watch Video Solution

131. Among all sectors of fixed perimeter, choose the one with maximum area. Then the angle at the center of this sector (i.e.,the angle between the boundibg radii) is
A. $\frac{\pi}{3}$
B. $\frac{3}{2}$
C. $\sqrt{3}$
D. 2

Answer: D

- Watch Video Solution

132. Define a function $f: R \rightarrow R$ by
$f(x)=\max \{|x|,|x-1|, \ldots|x-n|\}$
where n is a fixed natural number. Then $\int_{0}^{2 n} f(x) d x$ is -
A. n
B. n^{2}
C. $3 n$
D. $3 n^{2}$

Answer: D

- Watch Video Solution

133. If $P(x)$ is a cubic polynomial with $P(1)=3, P(0)=2$ and $P(-1)=4$, then ${ }_{f}^{1} P(x) d x$ is -1
A. 2
B. 3
C. 4
D. 5

Answer: D

Watch Video Solution
 equal to -
A. $x+2 e^{-x}-1$
B. $x-2 e^{-x}+1$
C. $x+2 e^{-x}+1$
D. $-x-2 e^{-x}+1$

Answer: A

- Watch Video Solution

135. An urn contains marbles of four colours : red, white, blue and green.

When four marbles are drawn without replacement, the following events are equally likely :
(1) the selection of four red marbles the selection of one white and three red marbles
(3) the selection of one white, one blue and two red marbles
(4) the selection of one marble of each colour

The smallest total number of satisfying the given condition is
A. 19
B. 21
C. 46
D. 69

Answer: B

- Watch Video Solution

136. There are boxes labelled $B_{1}, B_{2}, \ldots, B_{6}$. In each trial, two fair dice $D_{1} D_{-}(2)$ are thrown. If D_{1} shows j and D_{2} shows k, then j balls are put into the box the $B(k)$. After n trials, what is the probability that B_{1} contains at most one ball ?
A. $\left(\frac{5^{n-1}}{6^{n-1}}\right)+\left(\frac{5^{n}}{6^{n}}\right)\left(\frac{1}{6}\right)$
B. $\left(\frac{5^{n}}{6^{n}}\right)+\left(\frac{5^{n-1}}{6^{n-1}}\right)\left(\frac{1}{6}\right)$
C. $\left(\frac{5^{n}}{6^{n}}\right)+n\left(\frac{5^{n-1}}{6^{n-1}}\right)\left(\frac{1}{6}\right)$
D. $\left(\frac{5^{n}}{6^{n}}\right)+n\left(\frac{5^{n-1}}{6^{n-1}}\right)\left(\frac{1}{6^{2}}\right)$

D Watch Video Solution

137.

$\vec{a}=6 \vec{i}-3 \vec{j}-6 \vec{k}$ and $\vec{d}=\vec{i}+\vec{j}+\vec{k}$. Suppose that $\vec{a}=\vec{b}+\vec{c}$
A. $5 \vec{i}-4 \vec{j}-\vec{k}$
B. $7 \vec{i}-2 \vec{j}-5 \vec{k}$
C. $4 \vec{i}-5 \vec{j}+\vec{k}$
D. $3 \vec{i}+6 \vec{j}-9 \vec{k}$

Answer: B

- Watch Video Solution

138. If $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^{2}-6 x+1\right)}\left(2 x^{2}-10 x-2\right)$, then x equals-
A. $9-\sqrt{15}$
B. $3+\sqrt{15}$
C. $2+\sqrt{5}$
D. $6-\sqrt{5}$

Answer: B

- Watch Video Solution

139. Suppose a, b, c are positive integers such that $2^{a}+4^{b}+8^{c}=328$ then $\frac{a+2 b+3 c}{a b c}$ is equal to
A. $\frac{1}{2}$
B. $\frac{5}{8}$
C. $\frac{17}{24}$
D. $\frac{5}{6}$

Answer: C

140. The sides of a right-angled triangle are integers. The length of one of the sides is 12 . The largest possible radius of the incircle of such a triangle is-
A. 2
B. 3
C. 4
D. 5

Answer: D

Watch Video Solution
141. Letx $=(\sqrt{50}+7)^{1 / 3}-(\sqrt{50}-7)^{1 / 3}$.Then-
A. $x=2$
B. $x=3$
C. x is a rational number, but not an integer
D. x is an irrational number

Answer: A

- Watch Video Solution

142. Let
$\left(1+x+x^{2}\right)^{2014}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{4028} x^{4028}, \quad$ and let
$A=a_{0}-a^{3}+a_{6}-\ldots+a_{4026}$
$B=a_{1}-a_{4}+a_{7}-\ldots \ldots-a_{4027}$,
$C=a_{2}-a_{5}+a_{8}-\ldots+a_{4028}$,

Then-
A. $|A|=|B|>|C|$
B. $|A|=|B|<|C|$
C. $|A|=|C|>|B|$
D. $|A|=|C|<|B|$

Answer: D

- Watch Video Solution

143. A mirror in the first quadrant is in the shape of a hyperbola whose equation is $x y=1$. A light source in the second quadrant emits a beam of light that the hits the mirror at the point $(2,1 / 2)$. If the reflected ray is parallel to the y-axis , the slope of the incident beam is
A. $\frac{13}{8}$
B. $\frac{1}{4}$
C. $\frac{15}{8}$
D. 2

Answer: C

144. Let
$C(\theta)=\sum_{n=0}^{\infty} \frac{\cos (n \theta)}{n!}$
Which of the following statements is FALSE ?
A. $C(\theta) \cdot C(\pi)=1$
B. $C(\theta)+C(\pi)>2$
C. $C(\theta)>0$ for all $\theta \in R$
D. $C^{\prime}(\theta) \neq 0$ for all $\theta \in R$

Answer: D

- Watch Video Solution

145. Let a >0 be real number. Then the limit

$$
\lim _{x \rightarrow 2} \frac{a^{x}+a^{3-x}-\left(a^{2}+a\right)}{a^{3-x}-a^{x / 2}}
$$

A. $2 \log a$
B. $-\frac{4}{3}$ a
C. $\frac{a^{2}+a}{2}$
D. $\frac{2}{3}(1-a)$

Answer: D

- Watch Video Solution

146.

$f(x)=\alpha x^{2}-a+\frac{1}{x}$ "where"alpha
isrealcons $\tan t$. Thesmal \leq stalphaf or $\mathrm{f}(\mathrm{x}) \mathrm{geO}$ "for all"xgt0` is-
A. $\frac{2^{2}}{3^{3}}$
B. $\frac{2^{3}}{3^{3}}$
C. $\frac{2^{4}}{3^{3}}$
D. $\frac{2^{5}}{3^{3}}$
147. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a continuous function satisfying
$f(x)+\underset{0}{\underset{f}{f} \mathrm{tf}}(t) \mathrm{dt}+x^{2}=0$
for all $\mathrm{x} \in R$. Then-
A. $\lim ^{\cdot x \rightarrow-\infty}$ $f(x)=2$
B. $\lim _{{ }_{x \rightarrow-\infty}} f(x)=-2$
C. $f(x)$ has more than one point in common with x-axis
D. $f(x)$ is an odd functions

Answer: B

- Watch Video Solution

148. The figure shows a portion of the graph $y=2 x-4 x^{3}$. The line $\mathrm{y}=\mathrm{c}$ is such that the areas of the regions marked I and II are equal. If a, b are the
x-coordinates of A, B respectively, then $a+b$ equals-

A. $\frac{2}{\sqrt{7}}$
B. $\frac{3}{\sqrt{7}}$
C. $\frac{4}{\sqrt{7}}$
D. $\frac{5}{\sqrt{7}}$

Answer: A

- Watch Video Solution

149. Let $X_{n}=\{1,2,3, \ldots, n\}$ and let a subset A of X_{n} be chosen so that every pair of elements of A differ by at least 3. (For example, if $n=5, A$
can be $\varnothing,\{2\}$ or $\{1,5\}$ among others). When $n=10$, let the probability that 1
$\in \mathrm{A}$ be p and let the probability that $2 \in \mathrm{~A}$ be q . Then -
A. $p>q$ and $p-q=\frac{1}{6}$
B. $p>q$ and $q-p=\frac{1}{6}$
C. $p>q$ and $p-q=\frac{1}{10}$
D. $p>q$ and $q-p=\frac{1}{10}$

Answer: C

- Watch Video Solution

150. The remainder when the determinant
$\left|\begin{array}{lll}2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022}\end{array}\right|$
is divided by 5 is-
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

151. A student notices that the roots of the equation $x^{2}+b x+a=0$ are each 1 less than the roots of the equation $x^{2}+a x+b=0$. Then $\mathrm{a}+\mathrm{b}$ is.
A. Possibly any real number
B. -2
C. -4
D. -5

Answer: C

152. If x, y are real numbers such that $3^{\frac{x}{y}+1}-3^{\frac{x}{y}-1}=24$, then the value of $(x+y) /(x-y)$ is
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

153. The number of positive integers n in the set $\{1,2,3, \ldots100\}$ for which the number $\frac{1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}}{1+2+3+\ldots \ldots+n}$ is an integer is
A. 33
B. 34
C. 50
D. 100

Answer: D

- Watch Video Solution

154. The three different face diagonals of a cuboid (rectangular parallelopiped) have lengths $39,40,41$.The length of the main diagonal of the cuboid which joins a pair of opposite corners :
A. 49
B. $49 \sqrt{2}$
C. 60
D. $60 \sqrt{2}$

Answer: A

155. The sides of a triangle $A B C$ are positive integers. The smallest side has length 1 . Which of the following statement is true ?
A. The area of $A B C$ is always a rational number
B. The area of $A B C$ is always an irrational number
C. The perimeter of $A B C$ is an even integer
D. The information provided is not sufficient to conclude any of the statement A, B or C above

Answer: B

- Watch Video Solution

156. Consider a square $A B C D$ of side 12 and let M, N be the midpoints of $A B, C D$ respectively. Take a point P on $M N$ and let $A P=r, P C=s$. Then the area of the triangle whose sides are $\mathrm{r}, \mathrm{s}, 12$ is-
A. 72
B. 36
C. $\frac{r s}{2}$
D. $\frac{r s}{7}$

Answer: B

- Watch Video Solution

157. A cow is tied to a corner (vertex) of a regular hexagonal fenced area of side a metres by a rope of length $5 \mathrm{a} / 2$ metres in a grass field. (The cow cannot graze inside the fenced area.) What is the maximum possible area of the grass field to which the cow has access to graze ?
A. $5 \pi a^{2}$
B. $\frac{5}{2} \pi a^{2}$
C. $6 \pi a^{2}$
D. $3 \pi a^{2}$

D Watch Video Solution

158. A closed conical vessel is filled with water fully and is placed with its vertex down. The water is flow out at a constant speed. After 21 minutes, it was found that the height of the water column is half of the original height. How much more time in minutes does it require to empty the vessel ?
A. 21
B. 14
C. 7
D. 3

Answer: D

159. I carried 1000 kg of watermelon in summer by train. In the beginning, the water content was 99%. By the time I reached the destination, the water content had dropped to 98%. The reduction in the weight of the watermelon was-
A. 10 kg
B. 50 kg
C. 100 kg
D. 500 kg

Answer: D

- Watch Video Solution

160. A rectangle is divided into 16 sub-rectangles as in the figure, the number in each sub rectangle represents the are of that sub-rectangle.

What is the area of the rectangle KLMS ?

A. 20
B. 30
C. 40
D. 50

Answer: D
161. In a triangle $A B C, D$ and E are points on $A B, A C$ respectively such that $D E$ is parallel to $B C$. Suppose $B E, C D$ intersect at O. If the areas of the triangles $A D E$ and ODE are 3 and 1 respectively, find the area of the triangle $A B C$, with justification

(-) Watch Video Solution

162. Leela and Madan pooled their music CD's and sold them. They got as many rupees for each CD as the total number of CD's they sold. They share the money as follows Leela first takes 10 rupees, then Madan takes 10 rupees and they continue taking 10 rupees alternately till Madan is left out with less than 10 rupees to take. Find the amount that is left out for Madan at the end, with justification.

- Watch Video Solution

163. (a) Show that for every nutural number n relatively prime to 10 , there is another natural number m all of whose digits are 1 ' s such that n
divides m .
(b) Hence or otherwise show that every positive rational number can be expressed in the form $\frac{a}{10^{b}\left(10^{c}-1\right)}$ for some natural $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

- View Text Solution

PART-I MATHEMATICS

1. Let $f(x)$ be a quadratic polynomial with $f(2)=-2$. Then the coefficient of x in $f(x)$ is-
A. 1
B. 2
C. 3
D. 4

Answer: C

2. The square root of $\frac{(0.75)^{3}}{1-(0.75)}+\left(0.75+(0.75)^{2}+1\right)$ is-
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

3. The side of a triangle are distinct integers in an arithmetic progression.

If the smallest side is 10 , the number of such triangles is-
A. 8
B. 9
C. 10
D. Infinitely many

Answer: B

- Watch Video Solution

4. If a, b, c, d are positive real numbers such that $\frac{a}{3}=\frac{a+b}{4}=\frac{a+b+c}{5}=\frac{a+b+c+d}{6}$, then $\frac{a}{b+2 c+3 d}$ is-
A. $1 / / 2$
B. 1
C. 2
D. Not determinable

Answer: A

- Watch Video Solution

5. For $\frac{2^{2}+4^{2}+6^{2}+\ldots \ldots .+(2 n)^{2}}{1^{2}+3^{2}+\ldots \ldots+(2 n-1)^{2}}$ to exceed 1.01 , the maximum value of n is-
A. 99
B. 100
C. 101
D. 150

Answer: D

- Watch Video Solution

6. In triangle $A B C$, let $A D, B E$ and $C F$ be the internal angle bisectors with D, E and F on the sides $B C, C A$ and $A B$ respectively. Suppose $A D, B E$ and $C F$ concur at I and $\mathrm{B}, \mathrm{D}, \mathrm{I}, \mathrm{F}$ are concyclic, then $\angle I F D$ has measure-
A. 15°
B. 30°
C. 45°
D. Any value $\leq 90^{\circ}$

Answer: B

- Watch Video Solution

7. A regular octagon is formed by cutting congruent isosceles rightangled triangles from the corners of a square. If the square has sidelength 1 , the side-length of the octagon is-
A. $\frac{\sqrt{2}-1}{2}$
B. $\sqrt{2}-1$
C. $\frac{\sqrt{5}-1}{4}$
D. $\frac{\sqrt{5}-1}{3}$

Answer: B

8. A circle is drawn in a sector of a larger circle of radius r, as shown in the adjacent figure. The smaller circle is tangent to the two bounding radii and the are of the sector. The radius of the small circle is-

A. $\frac{r}{2}$
B. $\frac{r}{3}$
C. $\frac{2 \sqrt{3} r}{5}$
D. $\frac{r}{\sqrt{2}}$

- Watch Video Solution

9. In the figure $A H K F$, FKDE and $H B C K$ are unit squares, $A D$ and $B F$ intersect in X. Then the ratio of the areas fo triangles AXF and ABF is-

A. $1 / / 4$
B. $1 / / 5$
C. 1//6
D. $1 / / 8$

Answer: B

- Watch Video Solution

10. Suppose Q is a point on the circle with center P and radius 1 , as shown in the figure, R is a point outside the circle such that $Q R=1$ and $\angle Q R P=2^{\circ}$. Let S be the point where the segment RP intersects the given circle. Then measure of $\angle R Q S$ equals-

A. 86°
B. 87°
C. 88°
D. 89°

Answer: D

- Watch Video Solution

11. Observe that, at any instant, the minute and hour hands of a clock make two angles between them whose sum is 360°. At 6:15 the difference between these two angles is-
A. 165°
B. 170°
C. 175°
D. 180°

Answer: A

12. Two workers A and B are engaged to do a piece of work. Working alone, A takes 8 hours more to complete the work than if both worked together. On the other hand, working alone, B would need $4 \frac{1}{2}$ hours more to complete the work than if both worked together. How much time would they take to complete the job working together?
A. 4Hours
B. 5 Hours
C. 6 Hours
D. 7 Hours

Answer: C

- Watch Video Solution

13. When a bucket is half full, the weight of the bucket and the water is 10kg. When the bucket is two-thirds full, the total weight is 11 kg . What is the total weight, in kg . when the bucket is completely full-
A. 12
B. $12 \frac{1}{2}$
C. $12 \frac{2}{3}$
D. 13

Answer: D

- Watch Video Solution

14. How many ordered pairs of (m, n) integers satisfy $\frac{m}{12}=\frac{12}{n}$?
A. 30
B. 15
C. 12
D. 10

Answer: A

- Watch Video Solution

15. Let $S=\{1,2,3, \ldots, 40\}$ and let A be a subset of S such that notwo elements in A have their sum divisible by 5 . What is themaximum number of elements possible in A ?
A. 10
B. 13
C. 17
D. 20

Answer: C

- Watch Video Solution

16. Consider the following statements :
I. $\lim _{n \rightarrow \infty} \frac{2^{n}+(-2)^{n}}{2^{n}}$ does not exist
II. $\lim _{n \rightarrow \infty} \frac{3^{n}+(-3)^{n}}{4^{n}}$ does not exist

Then
A. I is true and II is false
B. I is false and II is true
C. I and II are true
D. neither I nor II is true

- Watch Video Solution

17. Consider a regular 10-gon with its vertices on the unit circle. With one vertex fixed, draw straight lines to the other 9 vertices. Call them $L_{1}, L_{2}, \ldots . L_{9}$ and denote their lengths by $l_{1}, l_{2} \ldots l_{9}$ respectively. Then the product $l_{1} l_{2} \ldots . l_{9}$ is
A. 10
B. $10 \sqrt{3}$
C. $\frac{50}{\sqrt{3}}$
D. 20
18. The value of the integral
$\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+e^{x}} d x$
is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi^{2}}{2}$
19. Let \mathbb{R} be the set of all real numbers and
$f(x)=\sin ^{10} x\left(\cos ^{8} x+\cos ^{4} x+\cos ^{2} x+1\right)$
for $x \in \mathbb{R}$. Let
$S=\left\{\lambda \in \mathbb{R} \mid\right.$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$.
A. $S=\mathbb{R}$
B. $S=\{0\}$
C. $S=[0,2 \pi]$
D. S is a finite set having more than one element

- Watch Video Solution

20. A person standing on the top of a building of height $60 \sqrt{3}$ feel observed the top of a tower to lie at an elevation of 45°. That person descended to the bottom of the building and found that the top of the
same tower is now at an angle of elevation of 60°. The height of the tower (in feet) is
A. 30
B. $30(\sqrt{3}+3)$
C. $90(\sqrt{3}+1)$
D. $150(\sqrt{3}+1)$

- Watch Video Solution

21. Assume that $3.313 \leq \pi \leq 3.15$. The integer closest to the value of $\sin ^{-1}(\sin 1 \cos 4+\cos 1 \sin 4)$. Where 1 and 4 appearing in \sin and \cos are given in radians, is
A. -1
B. 1
C. 3
D. 5

- Watch Video Solution

22. The maximum value of the function $f(x)=e^{x}+x \ln \mathrm{x}$ on the interval $1 \leq x \leq 2$ is
A. $e^{2}+\ln 2=1$
B. $e^{2}+2 \ln 2$
C. $e^{\pi / 2}+\frac{\pi}{2} \ln \frac{\pi}{2}$
D. $e^{3 / 2}+\frac{3}{2} \ln \frac{3}{2}$

- Watch Video Solution

23. Let A be a 2×2 matrix of the form $A=\left[\begin{array}{ll}a & b \\ 1 & 1\end{array}\right]$, where a , b are integers and $-50 \leq b \leq 50$. The number of such matrices A such that
A^{-1}, the inverse of A , exists and A^{-1} contains only integer entries is
A. 101
B. 200
C. 202
D. 101^{2}

- Watch Video Solution

24. Let $A=\left(a_{i j}\right)_{1 \leq I, j \leq 3}$ be a 3×3 invertible matrix where each $a_{i j}$ is a real number. Denote the inverse of the matrix A by A^{-1}. If $\Sigma_{j=1}^{3} a_{i j}=1$ for $1 \leq i \leq 3$, then
A. sum of the diagonal entries of A is 1
B. sum of each row of A^{-1} is 1
C. sum of each row and each column of A^{-1} is 1
D. sum of the diagonal entries is A^{-1} is 1

- Watch Video Solution

25. Let x, y be real numbers such that $x>2 y>0$ and
$2 \log (x-2 y)=\log x+\log y$.
Then the possible values (s) of $\frac{x}{y}$
A. is 1 only
B. are 1 and 4
C. is 4 only
D. is 8 only

Answer: C

- Watch Video Solution

26. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(b<a)$. Be an ellipse with major axis $A B$ and minor axis CD. Let F_{1} and F_{2} be its two foci, with $\mathrm{A}, F_{1}, F_{2} \mathrm{~B}$ in that order on the
segment AB . Suppose $\angle F_{1} C B=90^{\circ}$. The eccentricity of the ellipse is
A. $\frac{\sqrt{3}-1}{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{\sqrt{5}-1}{2}$
D. $\frac{1}{\sqrt{5}}$

- Watch Video Solution

27. Let A denote the set of all real numbers x such that $x^{3}-[x]^{3}=(x-[x])^{3}$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x. Then
A. A is a discrete set of at least two points
B. A contains an interval, but is not an interval
C. A is an interval, but a proper subset of $(-\infty, \infty)$
D. $A=(-\infty, \infty)$

- Watch Video Solution

28. Define a sequence $\left\{S_{n}\right\}$ of real numbers by
$S_{n}=\sum_{k=0}^{n} \frac{1}{\sqrt{n^{2}+k}}$, for $n \geq 1$.
Then $\lim _{n \rightarrow \infty} S_{n}$
A. does not exist
B. exists and lies in the interval $(0,1)$
C. exists and lies in the interval [1, 2)
D. exists and lies in the interval $[2, \infty)$

- Watch Video Solution

29. Let

$$
f(x)= \begin{cases}\frac{x}{\sin x}, & x \in(0,1) \\ 1, & x=0\end{cases}
$$

Consider the integral
$I_{n}=\sqrt{n} \int_{0}^{1 / n} f(x) e^{-n x} d x$.
Then $\lim _{n \rightarrow \infty} I_{n}$
A. does not exist
B. exists and is 0
C. exists and is 1
D. exists and is $1-e^{-1}$

- Watch Video Solution

30. The value of the integral
$\int_{1}^{3}\left((x-2)^{4} \sin ^{3}(x-2)+(x-2)^{2019}+1\right) d x$
is
A. 0
B. 2
C. 4
D. 5

- Watch Video Solution

31. In a 15 sidead polygon a diagnol is chosen at random. Find the probability that it is neither oneof the shortest nor one of the longest
A. $\frac{2}{3}$
B. $\frac{5}{6}$
C. $\frac{8}{9}$
D. $\frac{9}{10}$
32. Let $M=2^{30}-2^{15}+1$, and M^{2} be expressed in base 2 . The number of 1 's in this base 2 representation of M^{2} is
A. 29
B. 30
C. 59
D. 60

- Watch Video Solution

33. Let $A B C$ be a triangle such that $A B=15$ and $A C=9$. The bisector of $\angle B A C$ meets BC in D . If $\angle A C B=2 \angle A B C$, then BD is
A. 8
B. 9
C. 10
D. 12

- Watch Video Solution

34. The figur in the complex plane given by

$$
10 z \bar{z}-3\left(z^{2}+\bar{z}^{2}\right)+4 i\left(z^{2}-\bar{z}^{2}\right)=0
$$

is
A. a straight line
B. a circle
C. a parabola
D. an ellipse

1. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that $\frac{a \sqrt{2}+b}{b \sqrt{2}+c}$ is a rational number, then which of the following is always an integer?
A. $\frac{2 a^{2}+b^{2}}{2 b^{2}+c^{2}}$
B. $\frac{a^{2}+2 b^{2}}{b^{2}+2 c^{2}}$
C. $\frac{a^{2}+b^{2}-c^{2}}{a+b+c}$
D. $\frac{a^{2}+b^{2}+c^{2}}{a+b-c}$

Answer: D

- Watch Video Solution

2. The number of solutions (x, y, z) to the system of equations

$$
x+2 y+4 z=9,4 y z+2 x y=13, x y z=3
$$

Such that at least two of x, y, z are integers is -
A. 3
B. 5
C. 6
D. 4

Answer: B

D Watch Video Solution

3. In a triangle $A B C$, it is known that $A B=A C$. Suppose D is the mid-point of $A C$ and $B D=B C=2$. Then the area of the triangle $A B C$ is-
A. 2
B. $2 \sqrt{2}$
C. $\sqrt{7}$
D. $2 \sqrt{7}$

Answer: C

4. A train leaves Pune at $7: 30 \mathrm{am}$ and reaches Mumbai at $11: 30 \mathrm{am}$. Another train leaves Mumbai at $9: 30$ am and reaches Pune at $1: 00 \mathrm{pm}$. Assuming that the two trains at constant speeds, at what time do the two trains cross each other-
A. 10: 20 am
B. 11: 30 am
C. 10: 26 am
D. Data not sufficinet

Answer: B

- Watch Video Solution

5. In the adjacent figures, which has the shortest path-

A. Fig 1
B. Fig 2
C. Fig 3
D. Fig 4

Answer: B

- View Text Solution

PART-2(MATHEMATICS)

1. Suppose a, b, c are real numbers, and each of the equations $x^{2}+2 a x+b^{2}=0$ and $x^{2}+2 b x+c^{2}=0$ has two distinct real roots. Then the equation $x^{2}+2 c x+a^{2}=0$ has - (A) Two distinct positive real roots (B) Two equal roots (C) One positive and one negative root (D) No real roots
A. Two distinct positive real roots
B. Two equal roots
C. One positive and one negative root
D. No real roots

Answer: D

- Watch Video Solution

2. The coefficient of x^{2012} in $\frac{1_{x}}{\left(1+x^{2}\right)(1-x)}$ is -
A. 2010
B. 2011
C. 2012
D. 2013

Answer: B

3. Let (x, y) be a variable point on the curve $4 x^{2}+9 y^{2}-8 x-36 y+15=0$.
$\left(x^{2}-2 x+y^{2}-4 y+5\right)+\max \left(x^{2}-2 x+y^{2}-4 y+5\right)$ is- (A) $\frac{325}{36}$
(B) $\frac{36}{325}$ (C) $\frac{13}{25}$ (D) $\frac{25}{13}$
A. $\frac{325}{36}$
B. $\frac{36}{325}$
C. $\frac{13}{25}$
D. $\frac{25}{13}$

Answer: A

- Watch Video Solution

4. The sum of all $x \in[0, \pi]$ which satisfy the equation \sin $x+\frac{1}{2} \cos x=\sin ^{2}\left(x+\frac{\pi}{4}\right)$ is - (A) $\frac{\pi}{6}$ (B) $\frac{5 \pi}{6}$ (C) π (D) 2π
A. $\frac{\pi}{4}$
B. $\frac{5 \pi}{6}$
C. π
D. 2π

Answer: C

- Watch Video Solution

5. A polynomial $P(x)$ with real coefficients has the property that $P^{n}(x) \neq 0$ for all x . Suppose $P(0)=1$ and $\mathrm{P}^{\prime}(0)=-1$.

What can you say about $\mathrm{P}(1)$?
A. $P(1) \geq 0$
B. $P(1) \neq 0$
C. $P(1) \leq 0$
D. $-1 / 2<P(1)<1 / 2$

Answer: C

6. Define a sequence $\left(a_{n}\right)$ by $a_{1}=5, a_{n}=a_{1} a_{2} \ldots a_{n-1}+4$ for $n>1$.

Then $\lim _{n \rightarrow \infty} \frac{\sqrt{a_{n}}}{a_{n-1}}$
A. Equals $1 / 2$
B. equals 1
C. equals $2 / 5$
D. does not exist

Answer: C

- Watch Video Solution

7. The value of the integral $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} \mathrm{dx}$, where $a>0$, is - (A) π (B) $a \pi$
(C) $\frac{\pi}{2}$ (D) 2π
A. π
B. $a \pi$
C. $\pi / 2$
D. 2π

Answer: C

- Watch Video Solution

8. Consider

$L=\sqrt[3]{2012}+\sqrt[3]{2013}+\ldots+\sqrt[3]{3011}$
$R=\sqrt[3]{2013}+\sqrt[3]{2014}+\ldots .+\sqrt[3]{3012}$
and $I=\int_{2012}^{3012} \sqrt[3]{x} \mathrm{dx}$ Then -
A. $L+R<2 I$
B. $L+R>2 I$
C. $L+R>2 I$
D. $\sqrt{L R}=2 I$

Answer: C

- Watch Video Solution

9. A man tosses a coin 10 times, scoring 1 point for each head and 2 points for each tail. Let $P(K)$ be the probability of scoring at least K points. The largest value of K such that $P(K)>1 / 2$ is -
A. 14
B. 15
C. 16
D. 17

Answer: C

10. Let $f(x)=\frac{x+1}{x-1}$ for all $x \neq 1$. Let $f^{1}(x)=f(x), f^{2}(x)=f(f(x))$ and \quad generally $\quad f^{n}(x)=f\left(f^{n-1}(x)\right)$ for $\mathrm{n}>1 \quad$ Let $P=f^{1}(2) f^{2}(3) f^{3}(4) f^{4}(5)$ Which of the following is a multiple of P - (A) 125 (B) 375 (C) 250 (D) 147
A. 125
B. 375
C. 250
D. 147

Answer: B

- Watch Video Solution

PART - I MATHEMATICS

1. Let C_{0} be circle of radius 1 . For $n \geq 1$, let C_{n} be a circle whose area equals the area of a squre inscibed in C_{n-1}. Then $\sum_{i=0}^{\infty}$ Area $\left(C_{i}\right)$

equals

A. π^{2}
B. $\frac{\pi-2}{\pi^{2}}$
C. $\frac{1}{\pi^{2}}$
D. $\frac{\pi^{2}}{\pi-2}$

Answer: D

- Watch Video Solution

2. For a real number r we denote by $[r$] the largest integer less than or equal to r . If x, y are real numbers with $x, y \geq 1$ then which of the following statements is always true? A) $[x+y] \leq[x]+[y] \quad$ B) $[x y] \leq[x][y]$ C) $\left[2^{x}\right] \leq 2^{x}$ D) $\left[\frac{x}{y}\right] \leq \frac{x}{y}$
A. $[x+y] \leq[x]+[y]$
B. $[x y] \leq[x]+[y]$
C. $\left[2^{x}\right] \leq 2^{[x]}$
D. $\left[\frac{x}{y}\right] \leq \frac{[x]}{[y]}$

Answer: D

- Watch Video Solution

3. For each positive integer n , let $A_{n}=\max \{(C(n, r) 0 \leq r \leq n\}$ then the number of elements n in $\{1,2 \ldots . .20\}$ for $1.9 \leq \frac{A_{n}}{A_{n-1}} \leq 2$ is
A. 9
B. 10
C. 11
D. 12

Answer: C

4. Let $b, d>0$. The locus of all points $P(r, \theta)$ for which the line OP (where O is the origin) cuts the line $r \sin \theta=b$ in Q such that $\mathrm{PQ}=\mathrm{d}$ is
A. $(r-d) \sin \theta=b$
B. $(r \pm d) \sin \theta=b$
C. $(r-d) \cos \theta=b$
D. $(r \pm d) \cos \theta=b$

Answer: B

- Watch Video Solution

5. Let C be the circle $x^{2}+y^{2}=1$ in the xy -plane. For each $t \geq 0$, let L_{t} be the line passing through $(0,1)$ and (t, O). Note than L_{t} interesects C in two points, one of which is (0,1). Let Q_{t} be the other point. As t varies between 1 and $1+\sqrt{2}$, the collection of points Q_{1} sweeps out an arc on C. The angle subtended by this arc at $(0,0)$ is
A. $\frac{\pi}{8}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{3 \pi}{8}$

Answer: B

- Watch Video Solution

6. In an ellipse, its foci and the ends of its major axis are equally spaced. If the length of its semi-minor is $2 \sqrt{2}$, them the length of its semi-major axis is
A. 4
B. $2 \sqrt{3}$
C. $\sqrt{10}$
D. 3

Answer: D

7. Let $A B C$ be a triangle such that $A B=B C$. Let F be midpoint of $A B$ and X be a poin on $B C$ such that $F X$ is perpendicular to $A B$. If $B X=3 X C$ then the ratio $B C / A C$ equals
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\sqrt{\frac{3}{2}}$
D. 1

Answer: C

- Watch Video Solution

8. The number of solutions to the equations $\cos ^{4} x+\frac{1}{\cos ^{2} x}=\sin ^{4} x+\frac{1}{\sin ^{2} x}$ in the interval $[0,2 \pi]$ is
A. 6
B. 4
C. 2
D. 0

Answer: B

- Watch Video Solution

9. Consider the function $f(x)=\left\{\begin{array}{cl}\frac{x+5}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{array}\right.$. Then $f(f(x))$ is discontinuous
A. at all real numbers
B. at excatly two values of x
C. at ecactly one value of x
D. at exactly three values of x

Answer: B

(D) Watch Video Solution

10. For a real number x let $[x]$ denote the largest number less than or equal to x . For $x \in R$ let $\mathrm{f}(\mathrm{x})=[\mathrm{x}] \sin \pi x$. Then
A. If is differentiable on R.
B. f is symmetric about the line $x=0$
C. $\int_{-3}^{3} f(x) d x=0$
D. For each real α, the equation $f(x)-\alpha=0$ has infinitely many roots.

Answer: D

- Watch Video Solution

11. Let : $[0, \pi] \rightarrow R$ be defined as
$f(x)= \begin{cases}\sin x & \text { if } \mathrm{x} \text { is irrational and } x \in[0, \pi] \\ \tan ^{2} x & \text { if } \mathrm{x} \text { is rational and } x \in[0, \pi]\end{cases}$

Then number of points in $[0, \pi]$ at which the fucntion f is continuous is
A. 6
B. 4
C. 2
D. 0

Answer: B

- Watch Video Solution

12. Let $f:[0,1] \rightarrow[0, \infty]$ be a continuous function such that $\int_{0}^{1} f(x) d x=10$. Which of the following statements is NOT necessarily true ?
A. $\int_{0}^{1} e^{-x} f(x) d x \leq 10$
B. $\int_{0}^{1} \frac{f(x)}{(1+x)^{2}} d x \leq 10$
C. $-10 \leq \int_{0}^{1} \sin (100 x) f x \leq 10$
D. $\int_{0}^{1} f(x)^{2} d x \leq 100$

Answer: D

- View Text Solution

13. A continuous function $f: R \rightarrow R$ satisfies the equation $f(x)=x+\int_{0}^{1} f(t) d t$. Which of the following options is true ?
A. $f(x+y)=f(x)+f(y)$
B. $f(x+y)=f(x) f(y)$
C. $f(x+y)=f(x)+f(y)+f(x) f(y)$
D. $f(x+y)=f(x y)$

Answer: C

14. For a real number x let $[\mathrm{x}]$ denote the largest integer les than or eqaul to x and $\{\mathrm{x}\}=\mathrm{x}-[\mathrm{x}]$. Let n be a positive integer. Then $\int_{0}^{1} \cos (2 \pi[x]\{x\}) d x$ is equal to
A. 0
B. 1
C. n
D. $2 \mathrm{n}-1$

Answer: B

- Watch Video Solution

15. Two persons A and B throw a (fair) die (six faced cube faces numbered from 1 to 6) alternately, starting with. A the first person to get an outcome different from the pervious one by the opponent wins. The probability than B wins is
A. $\frac{5}{6}$
B. $\frac{6}{7}$
C. $\frac{7}{8}$
D. $\frac{8}{9}$

Answer: B

- Watch Video Solution

16. Let $n \geq 3$. A list of numbers $x_{1}, x_{2}, \ldots, x_{n}$ has mean μ and standard deviation σ. A new list of numbers $y_{1},\left(y_{2}, \ldots, y_{n}\right.$ is made as follows $: y_{1}=\frac{x_{1}+x_{2}}{2}, y_{2}=\frac{x_{1}+x_{2}}{2}$ and y_{j} for $j=3,4, \ldots, n$. The mean and the standard deviation of the new list are $\widehat{\mu}$ and $\widehat{\sigma}$. Then whcih of the following is necessarily true?
A. $\mu=\widehat{\mu}$ and $\sigma \leq \widehat{\sigma}$
B. $\mu=\widehat{\mu}$ and $\sigma \geq \widehat{\sigma}$
C. $\sigma-\widehat{\sigma}$
D. $\mu \neq \widehat{\mu}$

Answer: B

- View Text Solution

17. What is the angle substended by an edge of regular tetrahedron at its centre?
A. $\cos ^{-1}\left(\frac{-1}{2}\right)$
B. $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
C. $\cos ^{-1}\left(\frac{-1}{3}\right)$
D. $\cos ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

Answer: C

18. Let $S=\{(a, b): a, b \in Z, 0 \leq a, b \leq 18\}$. The number of elements (x ,y) in Such that $3 x+4 y+5$ is divisible by 19 is
A. 38
B. 19
C. 18
D. 1

Answer: B

- Watch Video Solution

19. For a real number r let $[r]$ denote the largest integer less than or equal to r . Let $a>1$ be a real number which is not an integer and let k be the smallest positive integer positive integer such that $\left[a^{k}\right]>[a]^{k}$. Then which of the following statements is always true?
A. $k \leq 2([a]+1)^{2}$
B. $k \leq 2([a]+1)^{4}$
C. $k \leq 2^{[a]+1}$
D. $k \leq \frac{1}{a-[a]}+1$

Answer: B

- View Text Solution

20. Let X be a set of 5 elements. The number d of ordered pairs (A, B) of subsets of X such that $A \neq \phi, B \neq \phi, A \cap B=\phi$ satisfies
A. $50 \leq d \leq 100$
B. $101 \leq d \leq 150$
C. $151 \leq d \leq 200$
D. $200 \leq d$

Answer: C

PART-II MATHEMATICS

1. Let $n \geq 3$ be an integer. For a permutaion $\sigma=\left(a_{1}, a_{2}, \ldots . ., a_{n}\right)$ of $(1,2, \ldots . \ldots, \mathrm{n})$ we let $f_{\sigma}(x)=a_{n} X^{n-1}+a_{n-1} X^{x-2}+\ldots .+a_{2} x+a_{1}$. Let S_{σ} be the sum of the roots of $f_{\sigma}(x)=0$ and let S denote the sum over all permutations σ of $(1,2, \ldots . ., \mathrm{n})$ of the numbers S_{σ}. Then-
A. $S<0 n$!
B. $-n!<S<0$
C. $0<S<n$!
D. $n!\leq S$

Answer: B

- Watch Video Solution

2. If n is a positive integer and $\omega \neq 1$ is a cube of unity, the number of possible values of $\left|e^{\sum_{k=0}^{n}\left(\frac{n}{k}\right) \omega^{k}}\right|$
A. 2
B. 3
C. 4
D. 6

Answer: C

- Watch Video Solution

3. Suppose a parabola $y=a x^{2}+b x+c$ has two x intercepts, one positive and one negative, and its vertex is (2,-2). Then which of the following is true ? (A) ab>0 (B) $b c>0$ (C) ca >0 (D) $a+b+c>0$
A. $a b>0$
B. $b c>0$
C. $c a>0$
D. $a+b+c>0$

Answer: B

D Watch Video Solution

4. Let $n \geq 3$ and let $C_{1}, C_{2}, \ldots, C_{n}$ be circles witht radii, $r_{1}, . r_{2}, \ldots, r_{n}$, respectively. Assume that C_{1} and C_{i+1} touch external for $2 \leq i \leq n-1$. It is also given that the x -axis and the line $y=2 \sqrt{2} x+10$ are tangential to each of the ci rcles. Then $r_{1}, r_{2}, \ldots, r_{n}$, are in-
A. ana arithmetic progeression with common difference $3+\sqrt{3}$
B. a geometric progeression with common ratio $3+\sqrt{3}$
C. an arithmetic progeression with common difference $2+\sqrt{3}$
D. a geometric progeression with common ratio $2+\sqrt{3}$

Answer: D

5. The number of integers n for which $3 x^{3}-25 x+n=0$ has three real roots is-
A. 1
B. 25
C. 55
D. infinite

Answer: C

- Watch Video Solution

6. An ellips inscribed in a semi-cicle touches the cicular are at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum passible area, its eccentricity is -
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{\frac{2}{3}}$

Answer: D

- Watch Video Solution

7. Let $I_{n}=\int_{0}^{\pi / 2} x^{n} \cos x d x$, where in is a non-negative integer Then $\sum_{n=2}^{\infty}\left(\frac{I_{n}}{n!}+\frac{I_{n-2}}{(n-2)!}\right)$ equals-
A. $e^{\pi / 2}-1-\frac{\pi}{2}$
B. $e^{\pi / 2}-1$
C. $e^{\pi / 2}-\frac{\pi}{2}$
D. $e^{\pi / 2}$

Watch Video Solution

8. For a real number x let $[x]$ denote the largest intger less than or equal to x . The smalleset positive integer n for which the integer $\int_{1}^{n}[x][\sqrt{x}] d x$ exceeds 60 is-
A. 8
B. 9
C. 10
D. $\left[60^{2 / 3}\right]$

Answer: B

- View Text Solution

9. Choose a number n uniformly at random from the set $\{, 2, \ldots, \ldots, 100\}$. Choose one of the first seven days of the year 2014 at random and consider n consecutive days starting from the chosen day what is the
probability that among the chosen n days, the number of Sundays is different from the number of Mondays?
A. $\frac{1}{2}$
B. $\frac{2}{7}$
C. $\frac{12}{49}$
D. $\frac{43}{175}$

Answer: A

- View Text Solution

10. Let $\mathrm{S}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}, \mathrm{b} \in Z, 0 \leq a, b \leq 18\}$. The number of lines in R^{2} passing though $(0,0)$ and exactlu one other points in S is-
A. 16
B. 22
C. 28
D. 32

Answer: A

- View Text Solution

Part A - Mathematics

1. Let $B C$ be a fixed line segment in the plane. The locus of a point A such that the triangle $A B C$ is isosceles, is (with finitely many possible exceptional points)
A. a line
B. a circle
C. the union of a circle and a line
D. the union of two circles and a line

Answer: D

2. The number of solution pairs (x, y) of the simultaneous equations $\log _{1 / 3}(x+y)+\log _{3}(x-y)=2$ and $2^{y^{2}}=512^{x+1}$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

3. The value of the limit $\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}-x}+2 x\right)$ is
A. $-\infty$
B. $-\frac{1}{4}$
C. 0
D. $\frac{1}{4}$

Answer: D

D Watch Video Solution

4. Let R be a relation on the set of all natural numbers given by a $R \Leftrightarrow a$ divides b^{2}.

Which of the following properties does R satisfy?
I. Reflexivity
II. Symmetry
III. Transitivity
A. I only
B. III only
C. I and III only
D. I and II only

- Watch Video Solution

5. The fractional part of a real number x is $\mathrm{x}-[x]$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x . Let F_{1} and F_{2} be the fractional parts of $(44-\sqrt{2017})^{2017}$ and $(44+\sqrt{2017})^{2017}$ respectively . Then $F_{1}+F_{2}$ lies between the numbers
A. 0 and 0.45
B. 0.45 and 0.9
C. 0.9 and 1.35
D. 1.35 and 1.8

Answer: C

- View Text Solution

6. The number of real solutions of the equation $2 \sin 3 x+\sin 7 x-3=0$ which lie in the interval $[-2 \pi, 2 \pi]$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

7. Suppose p,q,r and real number such that $q=p(4-p), r=q(4-q), p=r(4-r)$. The maximum possible value of $p+q+r$ is
A. 0
B. 3
C. 9
D. 27

Answer: C

- Watch Video Solution

8. The parabola $y^{2}=4 x+1$ divides the disc $x^{2}+y^{2} \leq 1$ into two regions with areas A_{1} and A_{2}. Then $\left|A_{1}-A_{2}\right|$ equal
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: B

- Watch Video Solution

9. A shooter can hit a given target with probability $\frac{1}{4}$. She keeps firing a bullet at the target until she hits ig successfully three times and then she stops firing. The probability that she fires exactly six bullets lies in the interval.
A. $(0.5272,0.5274)$
B. $(0.2636,0.2638)$
C. ($0.1317,0.1319)$
D. (0.0658,0.0660)

Answer: D

- Watch Video Solution

10. Consider the following events: E_{1} : Six fair dices are rolled and at least one die shows six. E_{2} : Twelve fair dice are rolled and at least two dice show six. Let p_{1} be the probability of E_{1} and p_{2} be the probaility of E_{2}.

Which of the following is true? (A) p1>p2 (B) p1 $=\mathrm{p} 2=0.6651$ (C) $\mathrm{p} 1<\mathrm{p} 2$
(D) $\mathrm{p} 1=\mathrm{p} 2=0.3349$
A. $p_{1}>p_{2}$
B. $p_{1}=p_{2}=0.06651$
C. $p_{1}<p_{2}$
D. $p_{1}-p_{2}=0.3349$

Answer: A

- Watch Video Solution

11. For how many different values of a does the following system have at least two distinct solution ?

$$
\begin{aligned}
& a x+y=0 \\
& x+(a+10) y=0
\end{aligned}
$$

A. 0
B. 1
C. 2
D. Infinitely many

Answer: C

- Watch Video Solution

12. Let R be the set of real number and $f: R \rightarrow R$ be defined by $f(x)=\frac{\{x\}}{1+[x]^{2}}$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x, and $\{x\}=x-[x]$. Which of the following statement are true?
I. The range of f is a closed interval
II. f is continuous on R.
III. f is one - one on R.
A. I only
B. II only
C. III only
D. None of I, II and III

D Watch Video Solution

13. Let $x_{n}=\left(2^{n}+3^{n}\right)^{1 / 2 n}$ for all natural number n. Then
A. $\lim _{n \rightarrow \infty} x_{n}=\infty$
B. $\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}$
C. $\lim _{n \rightarrow \infty} x_{n}=\sqrt{3}+\sqrt{2}$
D. $\lim _{n \rightarrow \infty} x_{n}=\sqrt{5}$

Answer: B

- Watch Video Solution

14. One of the solution of the equation $8 \sin ^{3} \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
A. $\left(0,10^{\circ}\right]$
B. $\left(10^{\circ}, 20^{\circ}\right]$
C. $\left(20^{\circ}, 30^{\circ}\right]$
D. $\left(30^{\circ}, 40^{\circ}\right]$

Answer: B

- Watch Video Solution

15. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, be real numbers such that $a+b<c+d, b+c<d+e, c+d<e+a, d+e<a+b$. Then
A. The largest is a and the smallest is b
B. The largest is a and the smallest is C
C. The largest is c and the smallest is e
D. The largest is c and the smallest is b
16. If a fair coin is tossed 5 times, the porbability that heads does not occur two or more times in a row is
A. $\frac{12}{2^{5}}$
B. $\frac{13}{2^{5}}$
C. $\frac{14}{2^{5}}$
D. $\frac{15}{2^{5}}$

Answer: B

- Watch Video Solution

17. Consider the following parametric equation of a curve :
$x(\theta)=|\cos 4 \theta| \cos \theta$
$y(\theta)|\cos 4 \theta| \sin \theta$
for $0 \leq \theta \leq 2 \pi$

Which of the following graphs represents the curve?
A.

B.
(B)

C.
(D)

D.

Answer: A

18. Let $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ be two points in the plane with integer coordinates. Which one of the following is not a possible value of the distance between A an B ?
A. $\sqrt{65}$
B. $\sqrt{74}$
C. $\sqrt{83}$
D. $\sqrt{97}$

Answer: C

- Watch Video Solution

19. Let $f(x)=\max \left\{3, x^{2}, \frac{1}{x^{2}}\right\}$ for $\frac{1}{2} \leq x \leq 2$. Then the value of integral $\int_{1 / 2}^{2} f(x) d x$ is
A. $\frac{11}{3}$
B. $\frac{13}{3}$
C. $\frac{14}{3}$
D. $\frac{16}{3}$

Answer: C

- Watch Video Solution

20. Let $a_{i}=i+\frac{1}{i}$ for $\mathrm{i}=1,2 \ldots \ldots \ldots . .$. , 20. Put
$p=\frac{1}{20}\left(a_{1}+a_{2}+\ldots \ldots \ldots+a_{20}\right)$
$q=\frac{1}{20}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots \ldots \ldots+\frac{1}{a_{20}}\right)$. Then
A. $q \in\left(0, \frac{22-p}{21}\right)$
B. $q \in\left(\frac{22-p}{21}, \frac{2(22-p)}{21}\right)$
C. $q \in\left(\frac{2(22-p)}{21}, \frac{22-p}{7}\right)$
D. $q \in\left(\frac{22-p}{7}, \frac{4(22-p)}{21}\right)$

Answer: A

Part B- Mathematics

1. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}$ be positive integers such that $\operatorname{HCF}(\mathrm{x}, \mathrm{y}, \mathrm{z})=1$ and $x^{2}+y^{2}=2 z^{2}$.

Which of the following statements are true ?
I. 4 divides x or 4 divides y .
II. 3 divides $x+y$ or 3 divides $x-y$
III. 5 divides $z\left(x^{2-y^{2}}\right)$
A. I and II only
B. II and III only
C. II only
D. III only

Answer: B

2. How many different (mutually noncongruent) trapeziums can be constructed using four distinct side lengths from the set $\{1,3,4,5,6\}$?
A. 5
B. 11
C. 15
D. 30

Answer: B

- Watch Video Solution

3. A solid hemisphsere is mounted on a solid cylinder, both having equla radii. If the whole solid is to have a fixed surface are and the maximum possible volume, then the ratio of the height of the cylinder to the common radius is
A. $1: 1$
B. $1: 2$
C. 2:1
D. $\sqrt{2}: 1$

Answer: A

- Watch Video Solution

4. Let $A B C$ be an acute scalene triangle, and O and H be its circumcentre and orthocentre respectively. Further let N be the midpoint of OH . The value of the vector sum $\overrightarrow{N A}+\overrightarrow{N B}+\overrightarrow{N C}$ is
A. \vec{O} (zero vector)
B. $\overrightarrow{H O}$
c. $\frac{1}{2} \overrightarrow{\mathrm{HO}}$
D. $\frac{1}{2} \overrightarrow{O H}$

Answer: C

5. The quotient when $1+x^{2}+x^{4}+x^{6}+\ldots .+x^{34}$ is divided by $1+x+x^{2}+x^{3}+\ldots \ldots+x^{17}$ is
A. $x^{17}-x^{15}+x^{13}-x^{11} \ldots .+x$
B. $x^{17}+x^{15}+x^{13}+x^{11} \ldots .+x$
C. $x^{17}+x^{16}+x^{15}+x^{14} \ldots . .+1$
D. $x^{17}-x^{16}+x^{15}-x^{14} \ldots . .-1$

Answer: D

- Watch Video Solution

6. Let R be the region of the disc $x^{2}+y^{2} \leq 1$ in the first quadrant. The the area of the largest possible circile contained in R is
A. $\pi(3-2 \sqrt{2})$
B. $\pi(4-3 \sqrt{2})$
C. $\frac{\pi}{6}$
D. $\pi(2 \sqrt{2}-2)$

Answer: A

- Watch Video Solution

7. Let R be the set of real number and $f: R \rightarrow R$ be given by $f(x)=\sqrt{|x|}-\log (1+|x|)$. We now make the following assertions :
I. There exists a real number A such that $f(x) \leq A$ for all x.
II. There exists a real number B such that $f(x) \geq B$ for all x .
A. I is true and II is false
B. I is false and II is true
C. I and II both are true
D. I and II both are false

Answer: B

- View Text Solution

8. Define $g(x)=\int_{-3}^{3} f(x-y) f(y) d y$, for all real x ,
where $f(t)=\left\{\begin{array}{l}1,0 \leq t \leq 1 \\ 0, \text { elsewhere } .\end{array}\right.$
Then
A. $g(x)$ is not continuous everywhere
B. $g(x)$ is continuous everywhere but differentiable nowhere
C. $g(x)$ is continuous everywhere and differentiable everywhere except
at $x=0,1$
D. $g(x)$ is continuous everywhere and differentiable everywhere except at $x=0,1,2$

Answer: D

9. The integer part of the number
$\sum_{k=0}^{44} \frac{1}{\cos (k)^{\circ} \cos (k+1)^{\circ}}$ is
A. 50
B. 52
C. 57
D. 59

Answer: C

Watch Video Solution
10. The number of continuouss function $f:[0,1] \rightarrow R$ that satisfy
A. 0
B. 1
C. 2
D. infinity

Answer: B

- View Text Solution

Part 1 Mathematics

1. The number of pairs (a, b) of positive real numbers satisfying $a^{4}+b^{4}<1$ and $a^{2}+b^{2}>1$ is
A. 0
B. 1
C. 2
D. more than 2

Answer: D

2. The number of real roots of the polynomial equation $x^{4}-x^{2}+2 x-1=0$ is
A. 0
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

3. Suppose the sum of the first m teams of a arithmetic progression is n and the sum of its first n terms is m , where $m \neq n$. Then the sum of the first $(m+n)$ terms of the arithmetic progression is
A. 1-mn
B. $m n-5$
C. $-(m=n)$
D. $m+n$

Answer: C

D Watch Video Solution

4. Consider the following two statement:
I. Any pair of consistent linear equations in two variables must have unique solutions.
II. There do not exist two consecutive integers, the sum of whose squares is 365 .

Then
A. Both I and II are true
B. both I and II are false
C. I is true and II false
D. I is false and II is true.

D Watch Video Solution

5. The number of polynomials $p(x)$ with integer coefficients such that the curve $y=p(x)$ passes through $(2,2)$ and $(4,5)$ is
A. 0
B. 1
C. more than 1 but finite
D. infinite

Answer: A

D Watch Video Solution

6. find the sum of all three digit natural numbers which are divisible by 7
A. 5497
B. 5498.5
C. 5499.5
D. 5490

Answer: B

- Watch Video Solution

7. A solid hemisphere is attached to the top of a cylinder, having the same radius as that of the cylinder. If the height of the cylinder were doubled (keeping both radii fixed), the volume of the entire system would have increased by 50%. By what percentage would the volue have increased if the radii of the hemisphere and the cylinder were doubled (keeping the height fixed)?
A. 3
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

8. Consider a triangle PQR in which the relation $Q R^{2}+P R^{2}=5 P Q^{2}$ holds. Let G be the point of intersection of medians $P M$ and QN . Then $\angle Q G M$ is always
A. less than 45°
B. obtuse
C. a right angle
D. acute and larger than 45°

Answer: C

9. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the side-lengths of a triangle, and $\mathrm{I}, \mathrm{m}, \mathrm{n}$ be the lengths of its medians. Put $K=\left(\frac{l+m+n}{a+b+c}\right)$ Then, as $\mathrm{a}, \mathrm{b}, \mathrm{c}$ vary, K can assume every value in the interval
A. $\left(\frac{1}{4}, \frac{4}{5}\right)$
B. $\left(\frac{1}{2}, \frac{4}{5}\right)$
c. $\left(\frac{3}{4}, 1\right)$
D. $\left(\frac{4}{5}, \frac{5}{4}\right)$

Answer: C

- Watch Video Solution

10. Let x_{0}, y_{0} be fixed real numbers such that $x_{0}^{2}+y_{0}^{2}>1$. If x, y are arbitrary real numbers such that $x^{2}+y^{2} \leq 1$, then the minimum value of $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}$ is
A. $\left(\sqrt{x_{0}^{2}}+\left(y_{0}^{2}\right)-1\right)^{2}$
B. $x_{0}^{2}+y_{0}^{2}-1$
C. $\left(\left|X_{0}\right|+\left|Y_{0}\right|-1\right)^{2}$
D. $\left(\left|X_{0}\right|+\left|Y_{0}\right|\right)^{2}-1$

Answer: A

- Watch Video Solution

11. Let $P Q R$ be a triangle which $P Q=3$. Form the vertex R, draw the altitude RS to meet PQ at S . Assume that $R S=\sqrt{3}$ and $P s=Q R$. Then PR equals
A. $\sqrt{5}$
B. $\sqrt{6}$
C. $\sqrt{7}$
D. $\sqrt{8}$

Answer: C

12. A 100 mark examination was administered to a class of 50 students.

Despite only integer marks being given, the everge score of the class was 47.5. Then , the maximum number of students who could get marks more than the class average is
A. 25
B. 35
C. 45
D. 49

Answer: D

- Watch Video Solution

13. Lets be the sum of the digits of the number $15^{2} \times 5^{18}$ in base 10 . Then
A. s It 6
B. $6 \in s<140$
C. $140 \in s<148$
D. $\sin 148$

Answer: B

- Watch Video Solution

14. Let $P Q R$ be am acute-angled triangle in which $P Q$ It $Q R$. From the vertex Q draw altitude \mathbb{Q}_{1}, the angle bisector $Q Q_{2}$ and the median $Q Q_{3}$ With Q_{1}, Q_{2}, Q_{3} lying on PR. Then

A. $P Q_{1}<P Q_{2}<P Q_{3}$
B. $P Q_{2}<P Q_{1}<P Q_{3}$
C. $P Q_{1}<P Q_{3}<P Q_{2}$
D. $P Q_{3}<P Q_{1}<P Q_{2}$

Answer: A

- Watch Video Solution

15. All the vertices of a rectangle are of the form (a, b) with a, b integers satisfying the equation $(a-8)^{2}-(b-7)^{2}=5$. Then the perimeter of the rectangle is
A. 20
B. 22
C. 24
D. 26
16. Let r be a root of the equation $x^{2}+2 x+6=0$. The value of $(r+2)(r+3)(r+4)(r+5)$ is equal to-
A. 51
B. -51
C. -126
D. 126

Answer: C

- Watch Video Solution

17. Let R be the set of all real numbers and let f be a function from R to R such that
$f(X)+\left(X+\frac{1}{2}\right) f(l-X)=1$,
for all $\xi n R$. Then $2 f(0)+3 f(1)$ is equal to-
A. 2
B. 0
C. -2
D. -4

Answer: C

- Watch Video Solution

18. The sum of all positive integers n for which $\frac{1^{3}+2^{3}+\ldots(2 n)^{3}}{1^{2}+2^{2}+\ldots .+n^{2}}$ is also an integer is
A. 8
B. 9
C. 15
D. Infinite

Watch Video Solution

19. Let x and y be two 2 -digit numbers such that y is obtained by recersing the digits of x . Suppose they also satisfy $x^{2}-y^{2}=m^{2}$ for same positive integer m. The value of $x+y+m$ is-
A. 88
B. 112
C. 144
D. 154

Answer: D

- Watch Video Solution

20. Let $p(x)=x^{2}-5 x$ and $q(x)-3 x+b$, where a and b are positive integers.
$(p(x), q((x))=x-1$ and $k(x)=1 c m(p(x), q(x))$. If the coefficient
of the highest degree term of $k(x)$ is 1 , the sum of the roots of $(x-1)+k(x)$ is-
A. 4
B. 5
C. 6
D. 7

Answer: D

- Watch Video Solution

21. In a quadrilateral $A B C D$, which is not a trapezium, it is known that
$\angle D A B=\angle A B C=60^{2}$. Moreover $\angle C A B=\angle C B D$. Then
A. $A B=B C+C D$
B. $A B=A D+C D$
C. $A B=B C+A D$
D. $A B=A C+A D$

Answer: C

D Watch Video Solution

22. A semi-circle of diameter 1 unit sits at the top of a semi-circle of diameter2 units. The shaded region inside the smaller semi-cricle but outside the larger semi-circle a lune. The area of the lune is-

2 units

A. $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
B. $\frac{\sqrt{3}}{4}-\pi 24$
C. $\frac{\sqrt{3}}{4}-\frac{\pi}{12}$
D. $\frac{\sqrt{3}}{4}-\frac{\pi}{8}$

Answer: B

- Watch Video Solution

23. The angle biosectors $B D$ and CE of a triangle $A B C$ are divied by the incentre 1 in the rartios $3: 2$ and $2: 1$ respecticely. Then the ratio in which I divides the bisector through A is-
A. 3:1
B. 11:4
C. 6:5
D. 7:4

Answer: B

24. Suppose S_{1} and S_{2} are two unequal circles, AB and CD are the direct common tangents to these circles. A transverse common tangent PQ cuts $A B$ in R and $C D$ in S. If $A B=10$, then $R S$ is -

A. 8
B. 9
C. 10
D. 11

Answer: C

25. On the circle with centre O, points A, B are such that $O A=A B$. A point C is located on the tangent at B to the circle such that A and C are on the opposite sides of the line $O B$ and $A B=B C$. The line segment $A C$ intersects the circle again at F . Then the ratio $\angle B O F: \angle B O C$ is equal to-

A. 1:2
B. 2: 3
C. 3:4
D. $4: 5$

Answer: B

- Watch Video Solution

26. In a cinema hall, the charge per person is RS. 200. On the first day, only 60% of the seats were filled. The owner decided to reduce the price by 20% abd there was an increasesof 50% in the number of spectators on the next day. The percentage increase in the revenue on the second day was-
A. 50
B. 40
C. 30
D. 20

Answer: D

27. The population of cattle in a farm increases so that the difference between the populationin year $\mathrm{n}+2$ and that in year n is proportional to the population in year $n+1$. If the populations in years 2010, 2011 and 2013 were 39,60 and 123 , respectively, then the population in 2012 was-
A. 81
B. 84
C. 87
D. 90

Answer: B

- Watch Video Solution

28. Find the number of 6 -digit numbers of the form ababab (in base 10) each of which is a product of exactly 6distinct primes.
A. 8
B. 10
C. 13
D. 15

Answer: C

- Watch Video Solution

29. The houses on one side of a road are numbered using consecutive even numbers. The sum of the numbers of all the houses in that row is 170. If there are at least 6 houses in that row and a is the number of the sixth house then
A. $2 \leq a \leq 6$
B. $8 \leq a \leq 12$
C. $14 \leq a \leq 20$
D. $22 \leq a \leq 30$

- Watch Video Solution

30. Suppose $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}$ are integers such that
$\frac{5}{7}=\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\frac{a_{4}}{4!}+\frac{a_{5}}{5!}+\frac{a_{6}}{6!}+\frac{a_{7}}{7!}$,
where
$0 \leq a_{j}<j$ for $j=2,3,4,5,6,7$.
The
sum
$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}$ is-
A. 8
B. 9
C. 10
D. 11

Answer: B

31. Suppose $B C$ is a given line segment in the plane and T is a scalene triangle. The number of points A in the plane such that the triangle with vertices A, B, C (in some order) is similar to triangle T is
A. 4
B. 6
C. 12
D. 24

Answer: C

- Watch Video Solution

32. The number of positive integers n in the set $\{2,3, \ldots, 200\}$ such that $\frac{1}{n}$ has a terminating decimal expansion is
A. 16
B. 18
C. 40
D. 100

Answer: B

- Watch Video Solution

33. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real numbers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$ and $a^{2}+b^{2}+c^{2}=1$, then
$(3 a+5 b-8 c)^{2}+(-8 a+3 b+5 c)^{2}+(5 a-8 b+3 c)^{2}$ is equal to
A. 49
B. 98
C. 147
D. 294

Answer: C
34. Let $A B C$ be a triangle and M be a point on side $A C$ closer to vertex C than A. Let N be a point on side $A B$ such that $M N$ is parallel to $B C$ and let P be a point on side $B C$ such that MP is parallel to $A B$. If the area of the quadrilateral $B N M P$ is equal to $\frac{5}{18}$ th of the area of triangle $A B C$, then the ratio $\mathrm{AM} / \mathrm{MC}$ equals.
A. 5
B. 6
C. $\frac{18}{5}$
D. $\frac{15}{2}$

Answer: A

- View Text Solution

35. Let $n \geq 4$ be a positive integer and let $l_{1}, l_{2}, \ldots ., l_{n}$ be the lengths of the sides of arbitrary n-sided non-degenerate polygon P. Suppose
$\frac{l_{1}}{l_{2}}+\frac{l_{2}}{l_{3}}+\ldots . \frac{l_{n-1}}{l_{n}}+\frac{l_{n}}{l_{1}}=n$. Consider the following statements: I. The lengths of the sides of P are equal. II. The angles of P are equal. III. P is a regular polygon if it is cyclic. Then
A. I is true and I implies II
B. II is true
C. III is false
D. I and III are true

Answer: D

- Watch Video Solution

36. Consider the following statements. For any integer n,
I. $n^{2}+3$ is never divisible by 17 .
II. $n^{2}+4$ is never divisible by 17 .

Then
A. both I and II are true
B. both I and II are false
C. I is false and II is true
D. I is true and II is false

Answer: D

- Watch Video Solution

37. Let S be the set of all ordered pairs (x, y) of positive intergers, with HCF
$(x, y)=16$ and $\operatorname{LCM}(x, y)=48000$. The number of elements in S is
A. 4
B. 8
C. 16
D. 32

Answer: B

38. Consider the set A of natural numbers n whose units digit is nonzero, such that if this units digit is erased, then the resulting number divides n . If K is the number of elements in the set A, then
A. K is infinite
B. K is finite but $K>100$
C. $25 \leq K \leq 100$
D. $K<25$

Answer: D

- View Text Solution

39. There are exactly twelve sundays in the period from january 1 to march

31 in a certain year. Then the day corresponding to february 15 in that year is
A. Tuesday
B. Wednesday
C. Thursday
D. not possible to determine from the given data

Answer: C

- Watch Video Solution

40. Consider a three-digit number with the following properties:
I. If its digits in units place and tens place are interchanged, the number increases by 36,
II. If its digits in units place and hundreds place are interchanged, the number decreases by 198. Now suppose that the digits in tens place and hundreds place are interchanged. Then the number.
A. increases by 180
B. decreases by 270
C. increases by 360
D. decreases by 540

Answer: D

- Watch Video Solution

41. Consider four triangles having sides $(5,12,9)$, $(5,12,11)$, $(5,12,13)$ and
($5,12,15$). Among these, the triangle having maximum area has sides
A. $(5,12,9)$
B. $(5,12,11)$
C. $(5,12,13)$
D. $(5,12,15)$

Answer: C

- Watch Video Solution

42. In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further 44 girls leave the class, the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
A. 16
B. 24
C. 30
D. 36

Answer: B

- Watch Video Solution

43. Let X, Y, Z be respectively the areas of regular pentagon, regular hexagon and regular heptagon which are inscribed in a circle of radius 1. Then

$$
\text { A. } \frac{X}{5}<\frac{Y}{6}<\frac{Z}{7} \text { and } X<Y<Z
$$

B. $\frac{X}{5}<\frac{Y}{6}<\frac{Z}{7}$ and $X>Y>Z$
c. $\frac{X}{5}>\frac{Y}{6}>\frac{Z}{7}$ and $X>Y>Z$
D. $\frac{X}{5}>\frac{Y}{6}>\frac{Z}{7}$ and $X<Y<Z$

Answer: D

D Watch Video Solution

44. The least value of natural number n such that
$\binom{n-1}{5}+\binom{n-1}{6}<\binom{n}{r}, \quad$ where $\binom{n}{r}=\frac{n!}{(n-r)!r!}, i s$
A. 12
B. 13
C. 14
D. 15

Answer: C

45. In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$ the ration of the number of girls to the total number of students is
A. $\frac{z-x}{y-x}$
B. $\frac{z-y}{y-x}$
C. $\frac{z+y}{y-x}$
D. $\frac{z+x}{y-x}$

Answer: A

- Watch Video Solution

Part 2 Mathematics

1. Let $g: N \rightarrow N$ with $g(n)$ being the product of the digits of n.(a) Prove that $g(n) \leq n$ for all $n \in N$.(b) Find all $n \in N$, for which $n^{2}-12 n+36=g(n)$.
A. 12
B. 13
C. 124
D. 2612

Answer: B

- Watch Video Solution

2. Let m (respectively, n) be the number of 5 -digit integers obtained by using the digits 1,2,3,4 ,5 with repetitions (respectively, without repetitions) such that the sum of any two adjacent digits is odd. Then $\frac{m}{n}$ is equal to
A. 9
B. 12
C. 15
D. 18

Answer: C

D Watch Video Solution

3. The number of solid cones with integer radius and integer height each having its volume numerically equal to its total surface area is
A. 0
B. 1
C. 2
D. infinite vuar

Answer: B

4. Let $A B C D$ be a square. $A n$ arc of a circle with A as centre and $A B$ as radius is drawn inside the square joining the points B and D. Points P on $A B, S$ on $A D, Q$ and R on are taken such that $P Q R S$ is a square. Further suppose that $P Q$ and RS are parallel to $A C$. Then $\frac{\operatorname{areaPQRS}}{\operatorname{area} A B C D}$ is
A. $\frac{1}{8}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{2}{5}$

Answer: D

- Watch Video Solution

5. Suppose ABCD is a trapezium whose sides and height are integers and $A B$ is parallel to $C D$. If the area of $A B C D$ is 12 and the sides are distinct,
then $|A B-C D|$
A. 2
B. 4
C. 8
D. connot be determined from the data

Answer: B

- Watch Video Solution

6. Let a, b, c be non-zero real numbers such that $a+b+c=0, \quad$ let $q=a^{2}+b^{2}+c^{2}$ and $r=a^{4}+b^{4}+c^{4}$. Then-
A. $q^{2}<2 r$ always
B. $q^{2}=2 r$ always
C. $q^{2}>2 r$ always
D. $q^{2}-2 r$ can take both positive and negative values

Answer: B

- View Text Solution

7. The value of

$$
\sum_{n=0}^{1947} \frac{1}{2^{n}+\sqrt{2^{1947}}}
$$

is equal to
A. $\frac{487}{\sqrt{2^{1945}}}$
B. $\frac{1946}{\sqrt{2^{1947}}}$
C. $\frac{1947}{\sqrt{2^{1947}}}$
D. $\frac{1948}{\sqrt{2^{1947}}}$

Answer: A

- Watch Video Solution

8. The number of integers a in the interval $[1,2014]$ for which the system of equations
$x+y=a, \frac{x^{2}}{x-1}+\frac{y^{2}}{y-1}=4$
has finitely many solutions is-
A. 0
B. 1007
C. 2013
D. 2014

Answer: C

- Watch Video Solution

9. In a triangle ABC with $\angle A=90^{\circ}, \mathrm{P}$ is a point on BC such that $\mathrm{PA}: \mathrm{PB}=$ $3: 4$ If $A B=\sqrt{7}$ and $A C=\sqrt{5}$ then $\mathrm{BP}: \mathrm{PC}$ is-
B. $: 3$
C. $4: 5$
D. 8:7

Answer: A

- Watch Video Solution

10. The number of all 3 -digit numbers abc (in base 10)for which
$(a \times b \times c)+(a \times b)+(b \times c)+(c \times a)+a+b+c=29$ is
A. 6
B. 10
C. 14
D. 18

Answer: C

11. Let $A B C D$ be a trapezium with parallel sides $A B$ and $C D$ such that the circle S with $A B$ as its diameter touches $C D$. Further, the circle S passes through the midpoints of the diagonals $A C$ and $B D$ of the trapezium. The smallest angle of the trapezium is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{5}$
D. $\frac{\pi}{6}$

Answer: D

- View Text Solution

12. Let S be the set of all points $\left(\frac{a}{b}, \frac{c}{d}\right)$ on the circle with radius 1 centred at $(0,0)$ where a and b are relatively prime integers, c and d are
relatively prime integers (that is $\operatorname{HCF}(a, b)=\operatorname{HCF}(c, d)=1)$, and the integers b and d are even. Then the set S
A. is empty
B. has four elements
C. has eight elements
D. is infinite

Answer: A

- Watch Video Solution

13. Suppose we have two circles of radius 2 each in the plane such that the distance between their centres is $2 \sqrt{3}$. The area of the region common to both circles lies between
A. 0.5 and 0.6
B. 0.65 and 0.7
C. 0.7 and 0.75
D. 0.8 and 0.9

Answer: C

- Watch Video Solution

14. Let C_{1}, C_{2} be two circles touching each other externally at the point A and let AB be the diameter of circle C_{1}. Draw a secant $B A_{3}$ to circle C_{2}, intersecting circle C_{1} at a point $A_{1}(\neq A)$, and circle C_{2} at points A_{2} and A_{3}. If $B A_{1}=2, B A_{2}=3$ and $B A_{3}=4$, then the radii of circles C_{1} and C_{2} are respectively
A. $\frac{\sqrt{30}}{5}, \frac{3 \sqrt{30}}{10}$
B. $\frac{\sqrt{5}}{2}, \frac{7 \sqrt{5}}{10}$
C. $\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{10}}{3}, \frac{17 \sqrt{10}}{30}$

Answer: A

15. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be real numbers between -5 and 5 such that
$|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}}$,
$|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+d}},$.
Then the product abcd is
A. 11
B. -11
C. 121
D. -121

Answer: A

- Watch Video Solution

1. Suppose $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is real matrix with nonzero entries, ad-bc=0, and $A^{2}=\mathrm{A}$. Then a+d equals
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

2. On any given are of positive length on the unit circle $|z|=1$ in the complex plane,
A. there need not be any root of unity
B. there lies exactly one root of unity
C. there are more than one but finitely many roots of unity
D. there are infinitely many roots of unity

Answer: D

- Watch Video Solution

3. For $0<\theta<\frac{\pi}{2}$, four tangents are drawn at the four points $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. If $\mathrm{A}(\theta)$ denote the area of the quadrilateral formed by these four tangents, the minimum value of $A(\theta)$ is
A. 21
B. 24
C. 27
D. 30

Answer: B

4. Let $\mathrm{S}=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$. Then
A. $S=\phi$
B. S is a non-empty finite set
C. S is an infinite proper subset of $\mathrm{R} \backslash\{0\}$
D. $S=R \backslash\{0\}$

Answer: D

- Watch Video Solution

5. On a rectangular hyperbola $x^{2}-y^{2}=a^{2}, a>0$, three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are taken as follows : $\mathrm{A}=(-\mathrm{a}, 0)$: B and C are placed symmetrically with respect to the x-axis on the branch of the hyperbola not containing A suppose that the triangle $A B C$ is equilateral. If the side-length of the triangle $A B C$ is ka,then k lies in the interval
A. $(0,2]$
B. $(2,4]$
C. $(4,6]$
D. $(6,8]$

Answer: B

- Watch Video Solution

6. The number of real solution x of the equation
$\cos ^{2}(x \sin (2 x))+\frac{1}{1+x^{2}}=\cos ^{2} x+\sec ^{2} x$ is
A. 0
B. 1
C. 2
D. infinite

Answer: B

7. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be an ellipse with foci F_{1} and F_{2}. Let AO be its semi-minor axis. Where O is the centre of the ellipse. The lines $A F_{1}$ and $A F_{2}$, when extended, cut the ellipse again at point B and C respectively. Suppose that the triangle $A B C$ is equilateral. Then the eccentricity of the ellipse is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

8. Let $a=\cos 1^{\circ}$ and $b=\sin 1^{\circ}$. We say that a real number is algebraic if is a root of a polynomial with integer coefficients. Then
A. a is algebraic but b is not algebraic
B. b is algebraic but a is not algebraic
C. both a and b are algebraic
D. neither a nor b is algebraic

Answer: C

- Watch Video Solution

9. A rectangle with its sides parallel to the x-axis and y-axis is inscibed in the region bounded by the curves $y=x^{2}-4$ and $2 y=4-x^{2}$. The maximum possible area of such a rectangle is closest to the integer
A. 10
B. 9
C. 8
D. 7

D Watch Video Solution

10. Let $f(x)=x|\sin x|, x \in R$. Then
A. f is differentiable for all x , except at $x=\eta \pi, \eta=1,2,3, \ldots$
B.f is differentiable for all x, except at

$$
x=\eta \pi, \eta= \pm 1, \pm 2, \pm 3, \ldots
$$

C. f is differentiable for all x , except at $x=\eta \pi, \eta=0,1,2,3, \ldots$
D. f is differentiable for all x, except at

$$
x=\eta \pi, \eta=0, \pm 1, \pm, 2, \pm 3, \ldots
$$

Answer: B

- Watch Video Solution

11. Let $f:[-1,1] \rightarrow R$ be a function defined by $f(x)=\left\{x^{2}\left|\cos \left(\frac{\pi}{x}\right)\right|\right.$ for $x \neq 0$, for $x=0$, The set of points where f is not differentiable is
A. $\{x \in[-1,1], x \neq 0\}$
B. $[x \in 0-1,1]: x=0$ or $\left.x=\frac{2}{2 n+1}, n \in Z\right\}$
C. $\left\{x \in[-1,1]: x=\frac{2}{2 n+1}, n \in Z\right\}$
D. $[-1,1]$

Answer: C

- Watch Video Solution

12. The value of the integral $\int_{0}^{\pi}(1-|\sin 8 x|) d x$ is
A. 0
B. $\pi-1$
C. $\pi-2$
D. $\pi-3$

Answer: C

- Watch Video Solution

13. Let in x denote the logarithm of x with respect to the base e. Let $S \subset R$ be the set all points where the function $\ln \left(x^{2}-1\right)$ is welldefined. Then the number of function $f: S \rightarrow R$ that are differentiable, satisfy
$f^{\prime}(x)-\operatorname{In}\left(x^{2}-1\right)$ for all $x \in S$ and $f(2)=0$, is
A. 0
B. 1
C. 2
D. infinite

Answer: D

14. Let S be the set of real numbers p such that there is no nonzero continuous function $f: R \rightarrow R$ satisfying $\int_{0}^{x} f(t) d t=p f(x)$ for all $x \in R$. Then S is
A. the empty set
B. the set of all rational numbers
C. the set of all irrational numbers
D. the whole set R

Answer: D

- Watch Video Solution

15. The porbability of men getting a certain disease is $\frac{1}{2}$ and that of women getting the same disease is $\frac{1}{5}$. The blood test that identifies the disease gives the correct result with probability $\frac{4}{5}$. Suppose a person is chosen at randon from a group of 30 males and 20 females, and the
blood test of the person is found to be positive. What is the probability that the chosen person is a man ?
A. $\frac{75}{107}$
B. $\frac{3}{5}$
C. $\frac{15}{19}$
D. $\frac{3}{10}$

Answer: A

- Watch Video Solution

16. $\begin{aligned} & \text { The } \\ & \text { number }\end{aligned}$ of
$f:[0,1] \rightarrow[0,1]$ satisfying $|f(x)-f(x)|=|x-y|$
for all
x, y in $[0$,
A. exactly 1
B. exactly 2
C. more than 2 but finite
D. inifinite

Answer: B

- Watch Video Solution

17. Suppose A is a 3×3 matrix consisting of integer entries that are chosen at random from the set $\{-1000,999, \ldots ., 999,1000\}$. Let P be the probability that either $A^{2}=-I$ or A is diagonal, where I is the 3×3 identity matrix. Then
A. $P<\frac{1}{10^{18}}$
B. $P=\frac{1}{10^{18}}$
C. $\frac{5^{2}}{10^{18}} \leq P \leq \frac{5^{3}}{10^{18}}$
D. $P>\frac{5^{4}}{10^{18}}$

Answer: A

18. Let X_{k} be real number such that $X_{k}>k^{4}+k^{2}+1$ for $1 \leq k \leq 2018$. Denot $N=\sum_{k=1}^{2018} k$. Consider the following inequalities:
I.

$$
\left(\sum_{k=1}^{2018} k x_{k}\right)^{2} \leq N\left(\sum_{k=1}^{2018} k x_{k}^{2}\right) \quad I I .\left(\sum_{k=1}^{2018} k x_{k}\right)^{2} \leq N\left(\sum_{k=1}^{2018} k^{2} x_{k}^{2}\right)
$$

A. both I and II are true
B. I is true and II is false
C. I is false and II is true
D. both I and II are false

Answer: A

- Watch Video Solution

19. Let $x^{2}=4 k y, k>0$ be a parabola with vertex A . Let BC be its latus rectum. An ellipse with center on BC touches the parabola at A, and cuts
$B C$ at point D and E such that $B D=D E=E C$ (B, D, E, C in that order). The eccentricity of the ellipse is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{3}}{2}$

Answer: C

- Watch Video Solution

20. Let $f:[0$ '1] $\rightarrow[-1,1]$ and $g:[-1,1] \rightarrow[0,2]$ be two functions such that g is injective and $g^{\circ} f:[0,1] \rightarrow[0,2]$ is surjective. Then
A. f must be injective but need not be surjective
B. f must be surjective but need not be injective
C. f must be bijective
D. f must be a constant functions.

Answer: B

- Watch Video Solution

PART-2 MATHMATICS

1. Let R be a rectangle, C be a circle, and T be a triangle in the plane. The maximum number of points common to the perimeter of R, C, and T is
A. 3
B. 4
C. 5
D. 6

Answer: D

2. The number of different possible values for the sum $x+y+z$, where x, y, z are real numbers such that $x^{4}+4 y^{4}+16 z^{4}+64=32 x y z$ is (A) 1 (B) 2 (C) 4 (D) 8
A. 1
B. 2
C. 4
D. 8

Answer: C

- Watch Video Solution

3. Let Γ be a circle with diameter AB and centre O.Let I be the tangent to Γ at B.For each point M on Γ different from A,consider the tangent t at M and let it interest I at P.Draw a line parallel to $A B$ through P intersecting $O M$ at Q. The locus of Q as M varies over Гis
A. an arc of a circle
B. a parabola
C. an arc of an ellipse
D. a branch of a hyperbola

Answer: B

- Watch Video Solution

4. The number of solution x of the equation $\sin \left(x+x^{2}\right)-\sin \left(x^{2}\right)=\sin x$ in the interval $[2,3]$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

5. The number of polynomials $p: R \rightarrow R$ satisfying $p(0)=0, p(x)>x^{2}$ for all $x \neq 0$, and $p^{\prime}(0)=\frac{1}{2}$ is
A. 0
B. 1
C. more than 1, but finite
D. infinite

Answer: A

- Watch Video Solution

6. Suppose the limit $L=\lim _{n \rightarrow \infty} \sqrt{n} \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{n}} d x$ exist and is larger than $\frac{1}{2}$. Then
A. $\frac{1}{2}<L<2$
B. $2<L<4$
C. $3<L<4$
D. $L \geq 4$

Answer: A

- View Text Solution

7. Consider the set A_{n} of point (x, y) such that $0 \leq x \leq n, 0 \leq y \leq n$ where $\mathrm{n}, \mathrm{x}, \mathrm{y}$ are integers. Let S_{n} be the set of all lines passing through at least two distinct points from A_{n}. Suppose we choose a line I at random from S_{n}. Let P_{n} be the probability that I is tangent to the circle $x^{2}+y^{2}=n^{2}\left(1+\left(1-\frac{1}{\sqrt{n}}\right)^{2}\right)$. Then the limit $\lim _{n \rightarrow \infty} P_{n}$ is
A. 0
B. 1
C. $1 / \pi$
D. $1 / \sqrt{2}$

Answer: A

- Watch Video Solution

8. Let $f:[0,1] \rightarrow R$ be an injective continuous function that satisfies the condition $-1<f(0)<f(1)<1$

Then the number of functions $g:[-1,1] \rightarrow[0,1]$ such that $(g o f) x=x$ for all $x \in[0,1]$ is
A. 0
B. 1
C. more than 1 , but finite
D. infinite

Answer: D

9. The maximum possible area bounded by the parabola $y=x^{2}+x+10$ and a chord of the parabola of length 1 is
A. $\frac{1}{12}$
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: B

- View Text Solution

10. Suppose z is any root of $11 z^{8}+20 i z^{7}+10 i z-22=0$, where $i=\sqrt{-1}$. Then $s=|z|^{2}+|z|+1$ satisfies
A. $S \leq 3$
B. $3<S<7$
C. $7 \leq S<13$
D. $S \geq 13$

Answer: B

- View Text Solution

Matematics

1. Suppose the quadratic polynomial $p(x)=a x^{2}+b x+c$ has positive coefficient a, b, c such that $b-a=c-b$. If $p(x)=0$ has integer roots α and β then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$
A. 3
B. 5
C. 7
D. 14
2. The number of digits in the decimal expansion of $16^{5} 5^{16}$ is
A. 16
B. 17
C. 18
D. 19

Answer: c

- Watch Video Solution

3. Let t be real number such that $t^{2}=a t+b$ for some positive integers a and b. Then forany choice of positive integers a and $b . t^{3}$ is never equal to
A. $4 \mathrm{t}+3$
B. $8 \mathrm{t}+5$
C. $10 t+3$
D. $6 t+5$

Answer: b

- Watch Video Solution

4. Consider the equation $(1+a+b)^{2}=3\left(1+a^{2}+b^{2}\right)$. where a, b are real numbers.then
A. There is no solution pair (a, b)
B. there are infinitely many solution pairs (a, b)
C. there are exactly two solution pairs (a,b)
D. there is exactly one solution pair (a, b)

Answer: d

- Watch Video Solution

5. Let a_{1}, a_{2}, a_{100} be non-zero real numbers such that $a_{1}+a_{2}++a_{100}=0$. Then

B. $\sum \underset{i=l}{\stackrel{100}{a} 2^{a_{i}}} \geq$ and $\sum \underset{i=l}{\stackrel{100}{a_{i}} 2^{-a_{i}}} \geq 0$
C. $\sum \underset{i=l}{ } \underset{i=1}{100} 2^{a_{i}} \leq$ and $\sum \underset{i=l}{\stackrel{100}{a_{i}} 2^{-a_{i}}} \leq 0$
D. the sign of $\sum \underset{i=l}{a_{i} 2^{a_{i}}}$ or $\sum \underset{i=l}{ } a_{i} 2^{-a_{i}}$ depends on the choice of a_{i} 's

Answer: a

- Watch Video Solution

6. Let $A B C D$ be a trapezium ,in which $A B$ is parallel to $C D, A B=11, B C=4, C D=6$ and $D A=3$. the distance between $A B$ and $C D$ is
A. 2
B. 2.4
C. 2.8
D. not determinable with the data

Answer: b

- Watch Video Solution

7. The points A, B, C, D, E are marked on the circumference of a circle in clockwishdirection such that $\angle A B C=130^{\circ}$ and $\angle C D E=110^{\circ}$. The measure of $\angle A C E$ degress is
A. 50°
B. 60°
C. 70°
D. 80°

Answer: b

- Watch Video Solution

8. Circles of radii $2,2,1$ touch each other externally. If a circle of radius r touches all the three circles externally,then r is
A. 1.5
B. 2
C. 2.5
D. 3

Answer: c

- Watch Video Solution

9. Let P be a point inside a triangle ABC with $\angle A B C=90^{\circ}$. Let P_{1} and P_{2} be the images of P under reflection in AB and BC respectively. The distance between the circumcenters of triangles ABC and $P_{1} P_{2}$ is
A. $\frac{A B}{2}$
B. $\frac{A P+B P+C P}{3}$
C. $\frac{A C}{2}$
D. $\frac{A B+B C+A C}{2}$

Answer: c

- Watch Video Solution

10. Let a and b be two positive real numbers such that $a+2 b \leq 1$. Let A_{1} and A_{2} be, respectively, the areas of circles with radii $a b^{3}$ and b^{2}. Then the maximum possible value of $\frac{A_{1}}{A_{2}}$ is:
A. $\frac{1}{16}$
B. $\frac{1}{64}$
C. $\frac{1}{16 \sqrt{2}}$
D. $\frac{1}{32}$

Answer: b
11. There are two candles of same length and same size.both of them burn at uniform rate. The frist one burns in 5 hours and the second one the second one burns in 3 hours. Both the candles are lit together. After many minutes the length of the first candle is 3 times is 3 times that of the other?
A. 90
B. 120
C. 135
D. 150

Answer: d

- Watch Video Solution

12. Consider a cuboid all of whose edges are integers and whose base is square. Suppose the sum of all its edges is numerically equal to the sum
of the areas of alll its six faces. Then the sum of all its edges is.
A. 12
B. 18
C. 24
D. 36

Answer: c

- Watch Video Solution

13. Let $A_{1}, A_{2} \ldots A_{m}$ be non -empty subsets of $\{1,2,3 \ldots .100\}$, satisfying the following conditions.
(1) the numbers $\left|A_{1}\right|,\left|A_{2}\right| \ldots,\left|A_{m}\right|$ are disjoint.
(2) $A_{1}, A_{2}, \ldots, A_{m}$ are pairwise disjoint.
(Here|A| denotes the number fo elements in the set A.) Then the maximum possible value of m is
A. 13
B. 14
C. 15
D. 16

Answer: a

- Watch Video Solution

14. The number of all 2 -digit numbers n such that n is equal the sum of the square of digit in its tens place and the cube of the digit in units place is
A. 0
B. 1
C. 2
D. 4

Answer: c

15. Let f be a funcation defined on the set of all positive integers such that $f(x)+f(y)$ for all postive integers $\mathrm{x}, \mathrm{y}, \mathrm{f} \mathrm{f}(12)=24$ and $\mathrm{f}(8)=15$ the value of $f(48)$ is
A. 31
B. 32
C. 33
D. 34

Answer: d

- Watch Video Solution

16. Suppose is a positive real number such that $a^{5}-a^{3}+a=2$. Then
A. $a^{6}<2$
B. $2<a^{6}<3$
C. $3<a^{6}<4$
D. $4 \leq a^{6}$

Answer: c

- Watch Video Solution

17. Consider the quadratic equation $n x^{2}+7 \sqrt{n x}+n=0$, where n is a positive intergar. Which of the following statements are necessarliy correct ?
I. For any n , the roots are distinct.
(II) There are infinitely many values of n for which both roots are real.
(III) The product of the roots is necessarlity an integer.
A. III only
B. I and II only
C. II and III only

D. I, II and III

Answer: b

- Watch Video Solution

18. Consider a semicircle of radius 1 unit constructed on the diameter $A B$, and let O be its centre. Let C be a point on $A O$ such that $A C: C O=2: 1$. Draw CD perpendicular to AO with D on the semicircle. Draw OE perpendicular to AD with E on AD. Let OE and CD intersects at H. Then DH equals
A. $\frac{1}{\sqrt{5}}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{\sqrt{5}-1}{2}$

Answer: c

19. Let S_{1} be the sum of areas of the squares whose sides are parallel to coordinates axes

Let S_{2} be the sum of areas of the slanted squares as shown in the figure.
Then S_{1} / S_{2} is

A. 2
B. $\sqrt{2}$
C. 1
D. $\frac{1}{\sqrt{2}}$

Answer: a

- Watch Video Solution

20. if a 3-digit number is randomly chosen, what is the probability that either the number itself or some permutation of the number (which is a 3-digit number) is divisible by 4 and 5 ?
A. $\frac{1}{45}$
B. $\frac{29}{180}$
C. $\frac{11}{60}$
D. $\frac{1}{4}$

Answer: b

exercise

1. The number of ordered pairs of integers (x, y) which satisfy $x^{3}+y^{3}=65$ are
A. 0
B. 2
C. 4
D. 6

D Watch Video Solution

2. A, B, E are 3 points of the circumference of a circle of radius 1 . If angle AEB $=\frac{\pi}{4}$. Then length of AB is
3. $\left[x^{2}\right]=x+1$ how many real roots
A. exactly 2
B. no real roots
C. more than 2
D. none

- Watch Video Solution

4. If $x+y=1$ where x and y are positive numbers, then the minimum value of $\frac{1}{x}+\frac{1}{y}$ is
A. 2
B. 44318
C. 3
D. 4

- Watch Video Solution

5. If all the natural numbers from 1 to 2021 are written as 12345.....20202021, then find the 2021st term

- Watch Video Solution

6.

$\left[\frac{2^{2020}+1}{2^{2018}+1}\right]+\left[\frac{3^{2020}+1}{3^{2018}+1}\right]+\left[\frac{4^{2020}+1}{4^{2018}+1}\right]+\left[\frac{5^{2020}+1}{5^{2018}+1}\right]+\left[\frac{6^{2020}+1}{6^{2018}+1}\right]$

- Watch Video Solution

7. Let's say abcde is a 5 digit number which when multiplied by 9 new number formed is edcba then sum $a+b+c+d+e$
A. 18
B. 27
C. 36
D. 45
8. I: m is any composite number that divides ($\mathrm{m}-1$)!
$\mathrm{II}: \mathrm{n}$ is a natural number that $n^{3}+2 n^{2}+n$ divides n !
A. Both are true
B. Both are false
C. I is true , II is false
D. I is false, II is true
9. $2^{x}+3^{y}=5^{x y}$ Number of solutions = ?

- Watch Video Solution

10. In a book self if m books have black cover and n books have blue cover and all books are different, then the number of ways black books can be arranged side by side are
A. $m n!$
B. $(m+1)$!
C. $(n+1)$!
D. $(\mathrm{n}+1)$! m !

- Watch Video Solution

11. $x>2 y>0$ and $2 \log (x-2 y)=\log x y$ Possible values of $\frac{x}{y}$ is/are
12. In an equiangular octagon if 6 consecutive sides are $6,8,7,10,9,5$ then what is sum of other two sides

- Watch Video Solution

13. If the function $\mathrm{f}(\mathrm{x})=2+x^{2}-e^{x}$ and $\mathrm{g}(\mathrm{x})=f^{-1}(x)$, then the value of $\frac{\left|g^{\prime}(1)\right|}{4}$ equals

Watch Video Solution

14. $\mathrm{S}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{\sqrt{n^{2}+k^{2}}}$
A. Does not exist
B. $S \in[0,1)$
C. $S \in[1,2)$
D. $S \in[2, \infty)$

D Watch Video Solution

15. $f(x): R \rightarrow R$
$|f(x)-f(y)|>|x-y|$ forall $x, y \in R$ check one-one/many one $\&$ into/onto

D Watch Video Solution

16. $x^{3}-[x]^{3}=(x-[x])^{3}$
A. x has discrete values only
B. x contains an interval but is not an interval itself
C. x is a finite interval
D. $x \in(\infty,-\infty)$
17. S1: $\lim _{n \rightarrow \infty} \frac{2^{n}+(-2)^{n}}{2^{n}}$ does not exist

S2: $\lim _{n \rightarrow \infty} \frac{3^{n}+(-3)^{n}}{4^{n}}$ does not exist
A. S 1 is true s 2 is false
B. both are true
C. both are false
D. S 1 is false S 2 is true

- Watch Video Solution

18. In a 15 sidead polygon a diagnol is chosen at random. Find the probability that it is neither oneof the shortest nor one of the longest

- Watch Video Solution

1. Let $[x]$ be the greatest integer less than or equal to x, for a real number x . Then the equation $\left[x^{2}\right]=x+1$ has
A. two solutions
B. one solution
C. no solution
D. more than two solutions

- Watch Video Solution

2. Suppose $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are positive rational numbers such that $\sqrt{p}+\sqrt{q}+\sqrt{r}$ is also rational. Then
A. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
B. $\sqrt{p q}, \sqrt{p r}, \sqrt{q r}$ are rational, but $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
C. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are rational
D. $\sqrt{p q}, \sqrt{p r}, \sqrt{q r}$ are irrational

- Watch Video Solution

3. A, B, E are 3 points of the circumference of a circle of radius 1 . If angle $A E B=\frac{\pi}{4}$. Then length of $A B$ is
A. $\sqrt{3}$
B. $\frac{4}{3}$
C. $\frac{3}{\sqrt{2}}$
D. $\sqrt{2}$

- Watch Video Solution

4. Let x and y be two positive real numbers such that $x+y=1$. Then the minimum value of $\frac{1}{x}+\frac{1}{y}$ is
A. 2
B. $\frac{5}{2}$
C. 3
D. 4
5. Let $A B C D$ be a qudrilateral such that there exists a point E inside the quadrilateral satisfying $\quad A E=B E=C E=D E . \quad$ Suppose
$\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

- Watch Video Solution

6. The number of ordered pairs (x, y) of positive integers satisying $2^{x}+3^{y}=5^{x y}$ is
A. 1
B. 2
C. 5
D. infinite

- Watch Video Solution

7. If the integers from 1 to 2021 are written as a single integer like 123.....91011.....20202021, then the $2021^{\text {st }}$ digit (counted from the left) in the resulting number is
A. 0
B. 1
C. 6
D. 9
8. Let $[x]$ be the greatest integer less than or equal to x, for a real number
x. Then the following sum
$\left[\frac{2^{2020}+1}{2^{2018}+1}\right]+\left[\frac{3^{2020}+1}{3^{2018}+1}\right]+\left[\frac{4^{2020}+1}{4^{2018}+1}\right]+\left[\frac{5^{2020}+1}{5^{2018}+1}\right]+\left[\frac{6^{2020}+1}{6^{2018}+1}\right]$ is
A. 80
B. 85
C. 90
D. 95

- Watch Video Solution

9. Let r be the remainder when 2021^{2020} is divided by 2020^{2}. Then r lies between
A. 0 and 5
B. 10 and 15
C. 20 and 100
D. 107 and 120

D Watch Video Solution

10. In a triangle ABC , the altitude AD and the median AE divide $\angle A$ into three equal parts. If $B C=28$, then the nearest integer to $A B+A C$ is
B. 37
C. 36
D. 33

- Watch Video Solution

11. The number of permutations of the letters $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ in which the first letter a_{1} does not occupy the first position (from the left) and the second letter a_{2} does not occupy the second position (from the left) is
A. 96
B. 78
C. 60
D. 42
12. In a book self if m books have black cover and n books have blue cover and all books are different, then the number of ways black books can be arranged side by side are
A. $m!n!$
B. $m!(n+1)$!
C. $(n+1)$!
D. $(m+n)$!

- Watch Video Solution

PART I (Chemistry)

1. The number of ordered pairs of integers (x, y) which satisfy $x^{3}+y^{3}=65$
A. 0
B. 2
C. 4
D. 6
2. Consider the following two statements :
I. If n is a composite number, then n divides $(\mathrm{n}-1)$!.
II. There are infinitely many natural numbers n such that $n^{3}+2 n^{2}+n$ divides n!.

Then
A. I and II are true
B. I and II are false
C. I is true and II is false
D. I is false and II is true

- Watch Video Solution

PART II MATHEMATICS

1. Let a, b, c be non-zero real roots of the equation $x^{3}+a x^{2}+b x+c=0$. Then
A. there are infinitely many such triples a, b, c
B. there is exactly one such triple a, b, c
C. there are exactly two such triples a, b, c
D. there are exactly three such triples a, b, c
2. In a triangle ABC , the angle bisector BD of $\angle B$ intersects AC in D . Suppose $B C=2, C D=1$ and $B D=\frac{3}{\sqrt{2}}$. The perimeter of the triangle $A B C$ is
A. $\frac{17}{2}$
B. $\frac{15}{2}$
C. $\frac{17}{4}$
D. $\frac{15}{4}$

- Watch Video Solution

3. Len N be set of natural numbers. For $n \in N$ define
$I_{n}=\int_{0}^{\pi} \frac{x \sin ^{2 n}(x)}{\sin ^{2 n}(x)+\cos ^{2 n}(x)} d x$.
Then for $m, n \in N$
A. $I_{m}<I_{n}$ for all $m<n$
B. $I_{m}>I_{n}$ for all $m<n$
C. $I_{m}=I_{n}$ for all $m \neq n$
D. $I_{m}<I_{n}$ for some $m<n$ and $I_{m}>I_{n}$ for some $m<n$

Watch Video Solution

4. Let $a=B C, b=C A, c=A B$ be side lengths of a triangle $A B C$. And m be the length of the median through A. If $a=8, b-c=2, m=6$, then the nearest integer to b is
A. 7
B. 8
C. 9
D. 10
\square
