©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KVPY PREVIOUS YEAR

KVPY 2021

Part I Mathematics

1. Let $[\mathrm{x}]$ be the greatest integer less than or equal to x , for a real number
x . Then the equation $\left[x^{2}\right]=x+1$ has
A. two solutions
B. one solution
C. no solution
D. more than two solutions

(D) Watch Video Solution

2. Suppose p, q, r are positive rational numbers such that $\sqrt{p}+\sqrt{q}+\sqrt{r}$ is also rational. Then
A. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
B. $\sqrt{p q}, \sqrt{p r}, \sqrt{q r}$ are rational, but $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are irrational
C. $\sqrt{p}, \sqrt{q}, \sqrt{r}$ are rational
D. $\sqrt{p q}, \sqrt{p r}, \sqrt{q r}$ are irrational

Answer:

- Watch Video Solution

3. A, B, E are 3 points of the circumference of a circle of radius 1 . If angle $A E B=\frac{\pi}{4}$. Then length of $A B$ is
A. $\sqrt{3}$
B. $\frac{4}{3}$
C. $\frac{3}{\sqrt{2}}$
D. $\sqrt{2}$

Answer:

- Watch Video Solution

4. Let x and y be two positive real numbers such that $x+y=1$. Then the minimum value of $\frac{1}{x}+\frac{1}{y}$ is
A. 2
B. $\frac{5}{2}$
C. 3
D. 4

Answer:

5. Let $A B C D$ be a qudrilateral such that there exists a point E inside the quadrilateral satisfying $\quad A E=B E=C E=D E . \quad$ Suppose $\angle D A B, \angle A B C, \angle B C D$ is an arithmetic progression. Then the median of the set $\{\angle D A B, \angle A B C, \angle B C D\}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

- Watch Video Solution

6. The number of ordered pairs (x, y) of positive integers satisying $2^{x}+3^{y}=5^{x y}$ is
A. 1
B. 2
C. 5
D. infinite

Answer:

- Watch Video Solution

7. If the integers from 1 to 2021 are written as a single integer like 123..... $91011 \ldots . . .20202021$, then the $2021^{\text {st }}$ digit (counted from the left) in the resulting number is
A. 0
B. 1
C. 6
D. 9

- Watch Video Solution

8. Let $[x]$ be the greatest integer less than or equal to x, for a real number
x . Then the following sum
$\left[\frac{2^{2020}+1}{2^{2018}+1}\right]+\left[\frac{3^{2020}+1}{3^{2018}+1}\right]+\left[\frac{4^{2020}+1}{4^{2018}+1}\right]+\left[\frac{5^{2020}+1}{5^{2018}+1}\right]+\left[\frac{6^{2020}+1}{6^{2018}+1}\right]$ is
A. 80
B. 85
C. 90
D. 95

Answer:

9. Let r be the remainder when 2021^{2020} is divided by 2020^{2}. Then r lies between
A. 0 and 5
B. 10 and 15
C. 20 and 100
D. 107 and 120

Answer:

- Watch Video Solution

10. In a triangle ABC , the altitude AD and the median AE divide $\angle A$ into three equal parts. If $B C=28$, then the nearest integer to $A B+A C$ is
A. 38
B. 37
C. 36

D. 33

Answer:

- Watch Video Solution

11. The number of permutations of the letters $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ in which the first letter a_{1} does not occupy the first position (from the left) and the second letter a_{2} does not occupy the second position (from the left) is
A. 96
B. 78
C. 60
D. 42

Answer:

12. In a book self if m books have black cover and n books have blue cover and all books are different, then the number of ways black books can be arranged side by side are
A. $m!n!$
B. $m!(n+1)$!
C. $(n+1)$!
D. $(m+n)$!

Answer:

- Watch Video Solution

Part I Chemistry

1. The number of ordered pairs of integers (x, y) which satisfy $x^{3}+y^{3}=65$ are
A. 0
B. 2
C. 4
D. 6

Answer:

D Watch Video Solution

2. Consider the following two statements :
I. If n is a composite number, then n divides ($n-1$)!.
II. There are infinitely many natural numbers n such that $n^{3}+2 n^{2}+n$ divides $\mathrm{n}!$.

Then
A. I and II are true
B. I and II are false
C. I is true and II is false
D. I is false and II is true

Answer:

- Watch Video Solution

Part I Mathematics

1. Consider the following statements :
I. $\lim _{n \rightarrow \infty} \frac{2^{n}+(-2)^{n}}{2^{n}}$ does not exist
II. $\lim _{n \rightarrow \infty} \frac{3^{n}+(-3)^{n}}{4^{n}}$ does not exist

Then
A. I is true and II is false
B. I is false and II is true
C. I and II are true
D. neither I nor II is true

- Watch Video Solution

2. Consider a regular 10-gon with its vertices on the unit circle. With one vertex fixed, draw straight lines to the other 9 vertices. Call them $L_{1}, L_{2}, \ldots L_{9}$ and denote their lengths by $l_{1}, l_{2} \ldots l_{9}$ respectively. Then the product $l_{1} l_{2} \ldots l_{9}$ is
A. 10
B. $10 \sqrt{3}$
C. $\frac{50}{\sqrt{3}}$
D. 20

Answer:

3. The value of the integral
$\int_{-\pi / 2}^{\pi / 2} \frac{\sin ^{2} x}{1+e^{x}} d x$
is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi^{2}}{2}$

Answer:

Watch Video Solution

4. Let \mathbb{R} be the set of all real numbers and
$f(x)=\sin ^{10} x\left(\cos ^{8} x+\cos ^{4} x+\cos ^{2} x+1\right)$
for $x \in \mathbb{R}$. Let
$S=\left\{\lambda \in \mathbb{R} \mid\right.$ there exists a point $c \in(0,2 \pi)$ with $\left.f^{\prime}(c)=\lambda f(c)\right\}$.
A. $S=\mathbb{R}$
B. $S=\{0\}$
C. $S=[0,2 \pi]$
D. S is a finite set having more than one element

Answer:

- Watch Video Solution

5. A person standing on the top of a building of height $60 \sqrt{3}$ feel observed the top of a tower to lie at an elevation of 45°. That person descended to the bottom of the building and found that the top of the same tower is now at an angle of elevation of 60°. The height of the tower (in feet) is
A. 30
B. $30(\sqrt{3}+3)$
C. $90(\sqrt{3}+1)$
D. $150(\sqrt{3}+1)$

Answer:

- Watch Video Solution

6. Assume that $3.313 \leq \pi \leq 3.15$. The integer closest to the value of $\sin ^{-1}(\sin 1 \cos 4+\cos 1 \sin 4)$. Where 1 and 4 appearing in \sin and \cos are given in radians, is
A. -1
B. 1
C. 3
D. 5

Answer:

- Watch Video Solution

7. The maximum value of the function $f(x)=e^{x}+x \ln \mathrm{x}$ on the interval $1 \leq x \leq 2$ is
A. $e^{2}+\ln 2=1$
B. $e^{2}+2 \ln 2$
C. $e^{\pi / 2}+\frac{\pi}{2} \ln \frac{\pi}{2}$
D. $e^{3 / 2}+\frac{3}{2} \ln \frac{3}{2}$

Answer:

- Watch Video Solution

8. Let A be a 2×2 matrix of the form $A=\left[\begin{array}{ll}a & b \\ 1 & 1\end{array}\right]$, where a, b are integers and $-50 \leq b \leq 50$. The number of such matrices A such that A^{-1}, the inverse of A , exists and A^{-1} contains only integer entries is
A. 101
B. 200
C. 202
D. 101^{2}

Answer:

- Watch Video Solution

9. Let $A=\left(a_{i j}\right)_{1 \leq I, j \leq 3}$ be a 3×3 invertible matrix where each $a_{i j}$ is a real number. Denote the inverse of the matrix A by A^{-1}. If $\Sigma_{j=1}^{3} a_{i j}=1$ for $1 \leq i \leq 3$, then
A. sum of the diagonal entries of A is 1
B. sum of each row of A^{-1} is 1
C. sum of each row and each column of A^{-1} is 1
D. sum of the diagonal entries is A^{-1} is 1

Answer:

10. Let x, y be real numbers such that $x>2 y>0$ and
$2 \log (x-2 y)=\log x+\log y$.
Then the possible values (s) of $\frac{x}{y}$
A. is 1 only
B. are 1 and 4
C. is 4 only
D. is 8 only

Answer: C

- Watch Video Solution

11. Let $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(b<a)$. Be an ellipse with major axis AB and minor axis CD. Let F_{1} and F_{2} be its two foci, with $\mathrm{A}, F_{1}, F_{2} \mathrm{~B}$ in that order on the segment AB. Suppose $\angle F_{1} C B=90^{\circ}$. The eccentricity of the ellipse is

$$
\text { A. } \frac{\sqrt{3}-1}{2}
$$

B. $\frac{1}{\sqrt{2}}$
c. $\frac{\sqrt{5}-1}{2}$
D. $\frac{1}{\sqrt{5}}$

Answer:

- Watch Video Solution

12. Let A denote the set of all real numbers x such that $x^{3}-[x]^{3}=(x-[x])^{3}$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x. Then
A. A is a discrete set of at least two points
B. A contains an interval, but is not an interval
C. A is an interval, but a proper subset of $(-\infty, \infty)$
D. $A=(-\infty, \infty)$

Answer:

13. Define a sequence $\left\{S_{n}\right\}$ of real numbers by
$S_{n}=\sum_{k=0}^{n} \frac{1}{\sqrt{n^{2}+k}}$, for $n \geq 1$.
Then $\lim _{n \rightarrow \infty} S_{n}$
A. does not exist
B. exists and lies in the interval $(0,1)$
C. exists and lies in the interval $[1,2)$
D. exists and lies in the interval $[2, \infty)$

Answer:

- Watch Video Solution

14. Let

$$
f(x)= \begin{cases}\frac{x}{\sin x}, & x \in(0,1) \\ 1, & x=0\end{cases}
$$

$I_{n}=\sqrt{n} \int_{0}^{1 / n} f(x) e^{-n x} d x$.
Then $\lim _{n \rightarrow \infty} I_{n}$
A. does not exist
B. exists and is 0
C. exists and is 1
D. exists and is $1-e^{-1}$

Answer:

- Watch Video Solution

15. The value of the integral
$\int_{1}^{3}\left((x-2)^{4} \sin ^{3}(x-2)+(x-2)^{2019}+1\right) d x$
is
A. 0
B. 2
C. 4
D. 5

Answer:

D Watch Video Solution

16. In a 15 sidead polygon a diagnol is chosen at random. Find the probability that it is neither oneof the shortest nor one of the longest
A. $\frac{2}{3}$
B. $\frac{5}{6}$
C. $\frac{8}{9}$
D. $\frac{9}{10}$

Answer:

17. Let $M=2^{30}-2^{15}+1$, and M^{2} be expressed in base 2 . The number of 1 's in this base 2 representation of M^{2} is
A. 29
B. 30
C. 59
D. 60

Answer:

- Watch Video Solution

18. Let $A B C$ be a triangle such that $A B=15$ and $A C=9$. The bisector of $\angle B A C$ meets BC in D . If $\angle A C B=2 \angle A B C$, then BD is
A. 8
B. 9
C. 10
D. 12

Answer:

- Watch Video Solution

19. The figur in the complex plane given by

$$
10 z \bar{z}-3\left(z^{2}+\bar{z}^{2}\right)+4 i\left(z^{2}-\bar{z}^{2}\right)=0
$$

is
A. a straight line
B. a circle
C. a parabola
D. an ellipse

Answer:

- Watch Video Solution

1. Let a, b, c be non-zero real roots of the equation $x^{3}+a x^{2}+b x+c=0$. Then
A. there are infinitely many such triples a, b, c
B. there is exactly one such triple a, b, c
C. there are exactly two such triples $\mathrm{a}, \mathrm{b}, \mathrm{c}$
D. there are exactly three such triples a, b, c

Answer:

- Watch Video Solution

2. In a triangle $A B C$, the angle bisector BD of $\angle B$ intersects AC in D .

Suppose $B C=2, C D=1$ and $B D=\frac{3}{\sqrt{2}}$. The perimeter of the triangle $A B C$ is
A. $\frac{17}{2}$
B. $\frac{15}{2}$
C. $\frac{17}{4}$
D. $\frac{15}{4}$

Answer:

- Watch Video Solution

3. Len N be set of natural numbers. For $n \in N$ define $I_{n}=\int_{0}^{\pi} \frac{x \sin ^{2 n}(x)}{\sin ^{2 n}(x)+\cos ^{2 n}(x)} d x$.

Then for $m, n \in N$
A. $I_{m}<I_{n}$ for all $m<n$
B. $I_{m}>I_{n}$ for all $m<n$
C. $I_{m}=I_{n}$ for all $m \neq n$
D. $I_{m}<I_{n}$ for some $m<n$ and $I_{m}>I_{n}$ for some $m<n$

Answer:

D Watch Video Solution

4. Let $a=B C, b=C A, c=A B$ be side lengths of a triangle $A B C$. And m be the length of the median through A. If $a=8, b-c=2, m=6$, then the nearest integer to b is
A. 7
B. 8
C. 9
D. 10

Answer:

