©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - KVPY PREVIOUS YEAR

KVPY 2021

Part I Physics

1. The ratio of radii of two wires of same material is $2: 1$. If these wires are stretched by
equal forces, then the ratio of stresses produced in them will be

> A. $\frac{1}{4}$
> B. $\frac{1}{2}$
> C. $\frac{3}{4}$
> D. 1

Answer:
(Watch Video Solution
2. A submarine has a window of area
$30 \times 30 \mathrm{~cm}^{2}$ on its ceiling and is at a depth of
100m below sea level in a sea. If the pressure inside the submarine is maintained at the sealevel atmosphere pressure, then the force acting on the window is (consider density of sea water $=1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, acceleration due to gravity $=10 \mathrm{~m} / \mathrm{s}^{2}$
A. $0.93 \times 10^{5} N$
B. $0.93 \times 10^{3} \mathrm{~N}$
C. $1.86 \times 10^{5} \mathrm{~N}$

D. $1.86 \times 10^{3} N$

Answer:

D Watch Video Solution

3. A spacecraft which is moving with a speed u relative to the earth in the x-direction, enters the gravitational field of a much more massive planet which is moving with a speed $3 u$ in the negative x-direction. The spacecraft exits following the trajectory as shown below.

The speed of the spacecraft with respect to the earth a long time after it has escaped the planet's gravity is given by
A. u
B. 4 u
C. 2 u
D. 7 u

- Watch Video Solution

4. The earth's magnetic field was flipped by 180° a million years ago. This flip was relatively rapid and took 10^{5} years. Then the average change in orientation per year during the flip was closest to,
A. 1 seconds
B. 5 seconds
C. 10 seconds
D. 30 seconds

Answer:

- Watch Video Solution

5. The platelets are drifting with the blood
flowing in a streamline flow through a horizontal artery as shown below.

Artery is contracted in region II. Choose the correct statement.
A. As the platelets enter a constriction, the
platelets get squeezed closer together
in the narrow region and hence the fluid
pressure must rise there.
B. As the platelets enter a constriction, pressure is lower there.
C. The artery's cross section area is smaller
pressure must be larger there because pressure equals the force divided by area.
D. Pressure is same in all the parts of the artery.

Answer:

D Watch Video Solution

6. Figure below shows a shampoo bottle in a perfect cylindrical shape

In a simple experiment, the stability of the bottle filled with different amount of shampoo
volume is observed. The bottle is tilted from
one side and then released. Let the angle θ
depicts the critical angular displacement resulting in the bottle losing its stability and
tripping over. Choose the graph correctly depicting the fraction f of shampoo filled ($f=1$ corresponds to completely filled) vs the tripping angle θ

C.

Answer:

- Watch Video Solution

7. The following graph depicts the inverse of magnification versus the distance between the object and lens data for a setup. The focal
length of the lens used in the setup is

A. 250 m
B. 0.004 m
C. 125 m
D. 0.002 m

Answer:

- Watch Video Solution

8. A student was trying to constant the circuit shown in the figure below marked (a), but ended up constructing the circuit marked (b). Realizing her mistake, she corrected the circuit, but the her surpris, the output voltage (across R) did not change

A. 100Ω

B. 150Ω

C. 200Ω
D. 300Ω

Answer:

D Watch Video Solution

9. The ratio of gravitational force and electrostatic repulsive force between two electrons is approximatly (gravitational
constant $=6.7 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{Kg}^{2}$, mass of
an electron $=9.1 \times 10^{-31} \mathrm{~kg}$, charge on an
electron $=1.6 \times 10^{-19} C$)
A. 24×10^{-24}
B. 24×10^{-36}
C. 24×10^{-44}
D. 24×10^{-54}

Answer:
(Watch Video Solution
10. A monochromatic beam of light enters a square enclosure with mirrored interior surface at an angle of incidence $\theta I(\neq 0)$ (see the figure below). For some value (s) of θi, the beam is reflected by every mirrored wall (other than the one with the opening) exactly once and exits the enclosure through the same hole. which of the following statements about
this beam is correct?

A. The beam will not come out of the
enclosure for any value of θi
B. The beam will coe out for more than two
values of θi
C. The beam will come out only at

$$
\theta i=45^{\circ}
$$

D. The beam will come out for exactly two

value of θi

Answer:

- Watch Video Solution

Part I Physics

1. A proton and an antiproton come close to
each other in vacuum such that the distance
between them is 1.0 cm . Consider the potential
energy to be zero at infinity. The velocity at
this distance will be
A. $1.17 \mathrm{~m} / \mathrm{s}$
B. $2.3 \mathrm{~m} / \mathrm{s}$
C. $3.0 \mathrm{~m} / \mathrm{s}$
D. $23 \mathrm{~m} / \mathrm{s}$
2. The output voltage (taken across the resistance) of a LCR series resonant circuit falls to half is peak value at a frequency of 200 Hz and again reaches the same value at 800 Hz . The bandwidth of this circuit is
A. 200 Hz
B. $200 \sqrt{3} H z$
C. 400 Hz

D. 600 Hz

Answer:

D Watch Video Solution

3. A collimated beam of charged and uncharged particles is directed towards a hole marked P on a screen as shown below. If the electric and magnetic fields as indicated below
are turned on.

A. only particles with speed E/B will go
through the hole P.
B. only charged particles with speed E/B and neutral particles will go through ?
C. only neutral particles will go though P.

D. only positively charged particles with

 speed E/B and neutral particles will go through P
Answer:

D Watch Video Solution

4. An engine runs between a reservoir at temperature 200 K and a hot body which is initially at temperature of 600 K . If the hot body cools down to a temperature of 400 K in
the process, then the maximum amount of work that the engine can do (while working in a cycle) is (the heat capacity of the hot body is $1 \mathrm{~J} / \mathrm{K}$)
A. $200(1-\ln 2)$ J
B. $200(1-\ln 3 / 2) \mathrm{J}$
C. $200(1+\ln 3 / 2)$ J
D. 200J

Answer:

5. The efficiency of the cycle shown below in
the figure (consisting of one isobar, one adiabatic and one isotherm (is 50% the ratio ,x, between the highest and lowest temperature attained in this cycle obeys (the working substance is an ideal gas)

A. $x=e^{x-1}$
B. $x^{2}=e^{x-1}$
C. $x=e^{x^{2}-1}$
D. $x^{2}=e^{x^{2}-1}$

Answer:

D Watch Video Solution

6. A right - angled isoceles prism is held on the surface of a liquid composed of miscible solvents A and B of refractive index
$n_{A}=1.50$ and $n_{B}=1.30$ respectively. The refractive index of prism is $n_{p}=1.5$ and that of the liquid is given by
$N_{L}=C_{A} n_{A}+\left(1-C_{A}\right) n_{B}$ where C_{A} is the percentage of solventA in the liquid

IF θ_{C} is the critical angle at prism - liquid interface . the plot which best represents the variation of the critical angle with the percentage of solvent is

A.

B.

C.

D.

Answer:

7. Instead of angular momentum quantization
a student posits that energy is quantized as
$E=-E_{0} / n\left(E_{0}>0\right)$ and n is a positive interger. Which of the following options is correct ?
A. The radius of the electron orbit is
$r \propto \sqrt{n}$
B. The speed of the electron is $v \propto \sqrt{n}$
C. The angular speed of the electron is
$\omega \propto 1 / n$

D. The angular momentum of the electron

$$
\text { is } \propto \sqrt{n}
$$

Answer:

D Watch Video Solution

8. A monochromatic beam of light is incident at the interface of two materials of refractive index n_{1} and n_{2} as shown. If $n_{1}>n_{2}$ and θ_{C} is the critical angle then which of the
following statements is NOT true?

A. $\theta_{1}=\theta_{3}$ for all values of θ_{1}
B. $\cos \theta_{2}$ is imaginary for $\theta_{1}>\theta_{2}$
C. $\cos \theta_{2}=0$ for $\theta_{1}=\theta_{C}$
D. $\cos \theta_{3}$ is imaginary for $\theta_{1}=\theta_{c}$

- Watch Video Solution

9. The intensity of light from a continuously emitting laser source operating at 638 nm wavelength is modulated at 1 GHz . The modulation is done by momentarily cutting the intensity off with a frequency of 1 GHz . What is the farthest distance apart two detectors can be placed in the line of the laser light so that they can see the portions of the same pulse simultaneously ? (consider the speed of light in air $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
A. $30 \mu \mathrm{~m}$
B. 30 cm
C. 3 m
D. 30 m

Answer:

D Watch Video Solution

10. A conducting rod, with a resistor of resistance R. is pulled with constant speed v on a smooth conducting rail as shown in
figure. A constant magnetic field \vec{B} is directed
into the page. If the speed of the bar is doubled, by what factor does the rate of heat dissipation across the resistance R change?

A. 0
B. $\sqrt{2}$
C. 2

D. 4

Answer:

D Watch Video Solution

11. Consider the following statements
regarding the real images formed with a converging lens. I -Real images can be seen only if the image is projected onto the screen .
(2)The real image can be seen only from the same side of the lens as that on which the
object is positioned. (3)Real images produced
by converging lenses are not only laterally but also longitudinally inverted as with mirrors.

Which of the above statement/statements
is/are incorrect?
A. Only I and III

B. All three

C. None
D. Only II

Answer:
12. A zinc ball of radius, $R=1 \mathrm{~cm}$ charged to a potential -0.5 V . The ball is illuminated by a monochromatic ultraviolet (UV) light with a wavelength 290 nm . The photoelectric threshold for zinc is 332 nm . The potential of ball after a prolonged exposure to the UV is
A. -0.5 V
B. 0 V
C. 0.54 V

D. 0.79 V

Answer:

D Watch Video Solution

13. A source simultaneously emitting light at two wavelengths 400 nm and 800 nm is used in the Young's double slit experiment. If the intensity of light at the slit for each wavelength is I_{0}, then the maximum intensity
that can be observed at any point on the screen is
A. I_{0}
B. $2 I_{0}$
C. $4 I_{0}$
D. $8 I_{0}$

Answer:

D Watch Video Solution

Part li Physics

1. A camera filled with a polarizer is placed on a mountain in a manner to record only the reflected image of the sun from the surface of a shown in the figure. If the sun rise at 6.00

AM and sets at 6.00 PM during the summer,
then at what time in the aftermoon will the recorded image have the lowest intensity, assuming there are no clouds and intensity of
the sun at the sea surface is constant
throughout the day?

A. 12.32 PM
B. 3.32 PM
C. 5.00 PM
D. 6.00 PM

Answer:

D Watch Video Solution
2. Suppose a long rectangular loop of width w is moving along the x-direction with its left arm in a magnetic field perpendicular to the plane of the loop (see figure). The resistance of the loop is zero and it has an inductance L.

At time $\mathrm{t}=0$, its left arm passes the origin O .

If for $t \geq 0$ the current in the loop is I and the
distance of its left are arm from the origin is x
then I versus x graph will be

Answer:

- Watch Video Solution

3. Imagine a would where free magnetic charges exist. In this world, a circuit is made with $a \mathrm{U}$ shape wire and a rod free to slide on it. A current carried by free magnetic charges
can flow in the circuit. When the circuit is
placed in a uniform electric field. E perpendicular to the plane of the plane of the circuit and the rod is pulled to the right with a constant speed v , the "magnetic EMF" in the current and the direction of the
corresponding current. arising because of changing electric flux will be (I is the length of the rod and c is speed of light).
A. $v E l$ clockwise.
B. $v E L$ counterclock wise
C. $\frac{v E l}{c^{2}}$ clockwise
D. $\frac{v E l}{c^{2}}$ counterclockwise

Answer:

D Watch Video Solution
4. The box in the circuit below has two inputs marked $v+$ and $v-$ and a single output marked V_{o}. The output obeys
$+10 V$ if $v+>v-$
$V_{0}=-10 V$ if $v+<v-$

The output V_{0} of this circuit a long time after is switched on is best represented by

B.

D.

Answer:
5. A bottle has a thin nozzle on top. It is filled with water, held horizontally at a height of 1 m and squeezed slowly by hands so that the water jet coming out of the nozzle hits the ground at a distance of 2 m . If the area over which the hands squeeze it is $10 \mathrm{~cm}^{2}$. the force applied by hand is close to (take $\mathrm{g}=10$ m / s^{2} and density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$)

A. 20 N
B. 10 N
C. 5 N
D. 2.5 N

Answer:

D Watch Video Solution

6. The circular wire in figure below encircles solenoid in which the magnetic flux is
increasing at a constant rate out of the plane
of the page.

The clockwise emf around the circular loop is
$\varepsilon 0$. By definition a voltammeter measures the volatage difference between the two pointws
given by $V_{b}-V_{a}=-\int_{a}^{b} \bar{E} . d \bar{s}$. We assume
that a and b are infinitestically close to each
other. The values of $V_{b}-V_{a}$ alon the path 1 and $V_{a}-V_{b}$ along the path 2 , respectively are
A. $-\varepsilon 0,-\varepsilon 0$
B. $-\varepsilon, 0$
C. $-\varepsilon, \varepsilon l o 0$
D. $\varepsilon, \varepsilon 0$

Answer:

D Watch Video Solution

7. A student is jogging on a straight path with
the speed 5.4 km per hour. Perpendicular to
the path is kept a pipe with its opening 8 m
from the road (see figure). Diameter of the pipe is 0.45 m . At the other end of the pipe is a speaker emitting sound of 1280 Hx to wards the opening of the pipes. As the student passes in front of the pipe, she hears the speaker for T seconds. T is in the range (Take speed of sound, $320 \mathrm{~m} / \mathrm{s}$)

8 m
\downarrow

A. $6-12$
B. $12-18$
C. $3-6$
D. $18-22$

Answer:

D Watch Video Solution

8. A solar cell is to be fabricated for efficient conversion of solar radiation to emf using material A. The solar cell is to be mechanically
protected with the help of a coating using material B. If the band gap energy of materials

A and B are E_{A} and E_{B} respectively, then which of the following choices is optimum for better performance of the solar cell.

$$
\begin{aligned}
& \text { A. } E_{A}=1.5 \mathrm{eV}, E_{B}=5 \mathrm{eV} \\
& \text { B. } E_{A}=1.5 \mathrm{eV}, E_{b}=1.5 \mathrm{eV} \\
& \text { C. } E_{A}=3 \mathrm{eV}, E_{B}=1.5 \mathrm{eV} \\
& \text { D. } E_{A}=0.5 \mathrm{eV}, E_{B}=5 \mathrm{eV}
\end{aligned}
$$

9. The "Kangi" is and earthen pot used to stay
warm in Kashmir during the winter monts.

Assume that the " Kangri" is shericla and of surface are $7 \times 10^{10-2} \mathrm{~m}^{2}$. It contains 300 g of mixture of coal. Wood and leaves with calorific value of $30 \mathrm{kj} / \mathrm{g}$ (and provides heat with 10 \% efficiency.) The surface temperature of the "Kangri" is $60^{\circ} \mathrm{C}$ and the room temperature is $0^{\circ} C$. Then, a reasonable estime for the duration t (in hours) that the
"kangri" heat will last is (take the "kangri" to be a black body).
A. 8
B. 10
C. 12
D. 16

Answer:
(D) Watch Video Solution

Part I Chemistry

1. A wide bottom cylindrical massless plastic container of height 9 cm has 40 identical coins
inside it and is floating on water with 3 cm
inside the water. If we start putting more of
such coins on its lid. It is observed that after N
coins are put, its equilibrium changes from stable to unstable. Equilibrium in floating is stable if the geometric center of the
submerged portion is above the center of
mass of the object) The value of N is closed to

A. 6
B. 10
C. 16
D. 24

Answer:

- Watch Video Solution

2. A small coin is fixed at the center of the base
of an empty of cylindrical stell container
having radius $\mathrm{R}=1 \mathrm{~m}$ and height $\mathrm{d}=4 \mathrm{~m}$. At
time $t=0 \mathrm{~s}$, the container starts gettting filled
with water at a flowrate of $Q=0.1 \mathrm{~m}^{3} / \mathrm{s}$ without disturbing the coin . Find the approximate time when the coin will first be seen by teh observer "O" from the height of $\mathrm{H}=$ 5.75 m above and $\mathrm{L}=1.5 \mathrm{~m}$ radially away from
the coin as shown in the figure. Refractive
index of water in $\mathrm{n}=1.33$

A. 0 s
B. 32 s
C. 63 s
D. 150 s

Answer:

- Watch Video Solution

