©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - GK PUBLICATIONS PHYSICS

(HINGLISH)

KINEMATICS

Illustrative Example

1. Road distance from Jaipur to Ajmer is 135 km .

How long can one afford to stop for lunch if
he can drive at an average speed of 72 kmph on the highway, if he has to reach in $2^{1 / 2} h r$

D Watch Video Solution

2. A 10 hr tour is made at an average speed of

40 kph . Ifduring the first half of the distance
the average speed of the bus was 30 kph , what
was the average speed for the second half of
the trip?

D Watch Video Solution

3. A carrier train, when it is 100 km away from
the station, going at a constant speedof 70
kph towards the station. At this instant a fast
bird from its engine flies towards the station
at 100 kph net speed.When the bird gets to
the station, it turns back and flies again towards the train, when it reaches engine, it again turns and heads towards the station. If
bird keep son flying in such a manner, find the distance travelled by the bird before train reaches the station ? How many trips, it made
in this duration between station and the train
?

D Watch Video Solution

4. An athlete starts running along a circular track of 50 m radius at a speed $5 \mathrm{~m} / \mathrm{s}$ in the clockwise direction for 40 s . Then the athlete reverses direction and runs inthe anticlockwise direction at $3 \mathrm{~m} / \mathrm{s}$ for 100 s . At
the end, how far around the track is the runner from the starting point ?

Watch Video Solution

5. A motorboat going downstream overcome a raft at a point $\mathrm{A}, \tau=60 \mathrm{~min}$ later it turned back and after some time passed the raft at a distance $l=6.0 \mathrm{~km}$ from the point A. Find the flow velocity assuming the duty of the engine to be constant.

- Watch Video Solution

6. Two ships, 1 and 2 , move with constant velocities $3 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ along two mutually perpendicular straight tracks toward the intersection point O . At the moment $t=0$ the ships were located at the distances 120 m and 200 m from the point 0 . How soon will the distance between the ships become the shortest and what is it equal to ?

D Watch Video Solution

7. A particle at origin starts towards positive direction of x-axis, with an accelerationa. This acceleration can be defined in three ways,(a) $a=$ constant, \quad (b) $a=f(x), \quad$ and
$a=-f(t)$. Find the velocity of the particle as a function of time. Also find velocity of the particle when it is at a displacement x from origin. Given that the velocity of the particle at $t=0$ is $v=w$.
8. A driver travelling at 90 kph applied the brakes for 5 s . If the braking acceleration was
$2 m / s^{2}$, what was her final speed?

D Watch Video Solution

9. A slowly moving flat car is 12.0 m long passing apoint at straight road at 10 kph . A boy beside the road near to that point tosses rocks onto the moving flat car at the rate of one per second, (a) If the first rock just hits the front edge of the car, how many rocks will fall
on to that car ? (b) How many rocks will fall onto that car if the car begins to accelerate at $0.5 m / s^{2}$, just as the first rock hits the car ?

D Watch Video Solution

10. In a car race, A takes a time of $t \mathrm{~s}$, less than
car B at the finish and passes the finishing
point with a velocity v more than car B.
Assuming that the cars start from rest and travel with constant accelerations a_{1} and a_{2}. Respectively, show that $v=\sqrt{a_{1} a_{2} t}$.
11. Two bodies start moving in the same straight line at the same instant of time from
the same origin. The first body moves with a constant velocity of $40 \mathrm{~ms}^{-1}$, and the second starts from rest with a constant acceleration of $4 m s^{-2}$.Find the time that elapses before the second catches the first body. Find the also the greatest distance between them prior to it and time at which this occurs.
12. A driver travelling at 30 kph sees the light turn red at the intersection. If his reaction
time is 0.6 s , and the car can decelerate at
$4.5 \mathrm{~m} / \mathrm{s}^{2}$, find the stopping distance ofthecar.
What would the stopping distance be ifthe car were moving at 90 kph .

D Watch Video Solution

13. If body travels half of its path in the last second of its fall from rest, find the time and
height of its fall.

- Watch Video Solution

14. A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd,

4th and 5th ball when the 6th ball is being dropped.
15. A small parachute dropped from a 30 m high cliff falls freely under gravity for 1.0 s and then attains a trminal velocity $1.2 \mathrm{~m} / \mathrm{s} .20 .0 \mathrm{~s}$ latera stone is dropped from the cliff. Will the stone catch up with the parachute before it reaches the ground ?

D Watch Video Solution

16. A balloon is going up with a uniform speed
$20 \mathrm{~m} / \mathrm{s}$. It was at a height of 100 m from
ground, when a stone is dropped from its basket. Find the time taken by the stone to reach the groimd and the height of the balloon from the ground, when stone hits the ground. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

D Watch Video Solution

17. From the foot of a tower 90m high, a stone is thrown up so as to reach the top of the tower. Two second later another stone is dropped from the top of the tower. Find when
and where two stones meet (Take $g=10 m / s^{2}$)

D Watch Video Solution

18. A girl is standing in an elevator that is moving upward at a velocity of $5 \mathrm{~m} / \mathrm{s}$ and acceleration $2 m / s^{2}$, when she drops her handbag. If she was originally holding the bag at a height of 1.5 m above the elevator floor, how long will it take the bag to hit the floor
19. A truck starts from rest with an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$ car 150 m behind starts from rest with an acceleration of
$2 m / s^{2}$. How long will it take before both the truck and car side byside, and how much distance is traveled by each?

- Watch Video Solution

20. An elevator car whose floor to ceiling distance is equal to $2.7 m$ starts ascending
with constant acceleration $1.2 \mathrm{~m} / \mathrm{s}^{2} .2 \mathrm{~s}$ after
the start, a bolt begins falling from the ceiling of the car. Find
(a)the time after which bolt hits the floor of the elevator.
(b)the net displacement and distance travelled by the bolt, with respect to earth. (Take $\left.g=9.8 m / s^{2}\right)$
21. Consider the child standing on the top of a tower of height h, shown in figure-I .12. He throws the ball up and the ball follows the trajectory as shown in figure. Draw the displacement versus time graph of the ball's motion during its flight. Take vertically upwards direction as positive x-axis.

D Watch Video Solution

22. Draw, the velocity - time graph for the case explained in example 1.21.

D Watch Video Solution

23. A car starts moving rectilinearly first with
acceleration $\alpha=5 m s^{-2}$ (the initial velocity is
equal to zero), then uniformly, and finally, deceleration at the same rate α comes to a stop. The time of motion equals $t=25 \mathrm{~s}$. The average velocity during this time is equal to
$72 \mathrm{kmh}^{-1}$ How long does the car move

uniformly?

D Watch Video Solution

24. A car accelerates from rest at a constant rate α for some time after which it decelerates
at a constant rate β to come to rest. If the total time lapse is t seconds, evauate.
(i) maximum velocity reached, and
(ii) the total distance travelled.
25. Instantaneous velocity of a particle moving in astraight line is given as
$v=(4+4 \sqrt{t}) m / s$. For the first five second of motion. Then after velocity of it becomes a constant. Find the acceleration of the particle at time $t=3.0 \mathrm{~s}$ and its displacement till this instant.

D
 Watch Video Solution

26. Instantaneous velocity of an object varies
with time as $v=\alpha-\beta t^{2}$. Find its position
and acceleration as a function of time, also
find the object's maximum positive
displacement from the origin.

D Watch Video Solution

27. The velocity of a particle moving in the positive direction of the x axis varies as $v=\alpha \sqrt{x}$, where α is a positive constant.

Assuming that at the moment $t=0$ the particle was located at the point $x=0$, find:
(a) the time dependence of the velocity and the acceleration of the particle,
(b) the mean velocity of the particle averaged over the time that the particle takes to cover the first s metres of the path.

- Watch Video Solution

28. A point moves rectilinearly with deceleration which depends on the velocity v
of the particle as $a=k \sqrt{v}$, where is apositive constant. At the initial moments the velocity of the point is equal to v_{0}. What distance will it cover before it stops, and what time it will take to cover that distance.

D Watch Video Solution

29. An object moves such that is acceleration
is given as $a=3-2 t$. Find the initial speed of the object such that the particle will have the same x-coordinate at $t=5.0 \mathrm{~s}$ as it had at
$t=0$. Also find the object's velocity at $t=5.0 s$.

D Watch Video Solution

30. A man standing on a road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws the umbrella and starts running at $10 \mathrm{~km} / \mathrm{hr}$. He finds that rain drop are hitting his head vertically. Find the speed of rain drops with respect to (a) road (b) the moving man.
31. A 400 m wide river is flowing at a rate of
$2.0 \mathrm{~ms}^{-1}$. A boat is sailing with a velocity of $10 \mathrm{~ms}^{-1}$ with respect to the water, in a direction perpendicular to the river.
(a) Find the time taken by the boat to reach
the opposite bank.
(b) How far from the point directly opposite to
the starting point does the boat reach the opposite bank?
(c) In what direction does the boat actually

move ?

D Watch Video Solution

32. Two trains, one travelling at 54 kph and the ot her at 72 kph , are headed towards each ot her on a level track. When the yare two kilometers apart, both drivers simultaneously apply their brakes. If their brakes produces equal retardation in both the trains at a rate
of $0.15 \mathrm{~m} / \mathrm{s}^{2}$, determine whether there is a collision or not

D Watch Video Solution

33. A boat moves relative to water with a velocity v which is n times less than the river
flow velocity u. At what angle to the stream direction must the boat move to minimize drifting ?
34. On morning Joy was walking on a grass-way
in a garden.Wind was also blowing in the direction of his walking with speed $u . \mathrm{He}$ suddenly saw his friend Kim walking on the parallel grass-way at a distance x away.Both stopped as they saw each other when they were directly opposite on their ways at a distance x.Joy shouted "Hi Kim".Find the time after which Kim would have heard his greeting.Sound speed in still air is v.
35. Two swimmers leave point A on the bank of
the river to reach point B lying right across on
the other bank. One of them crosses the river
along the straight line $A B$ while the other swims at right angles to the stream and then walks the distance that he has been carried away by the stream to get to point B. What was the velocity u of his walking if both swimmers reached the destination simultaneously? The stream velocity
$v_{0}=2.0 \mathrm{~km} /$ hour and the velocity v^{\prime} of each
swimmer with respect to water equals to
2.5 km per hour.

D Watch Video Solution

36. A particle is moving in XY plane such that its velocity in x-direction remains constant at
$5 m / s$ and its velocity in y-direction varies with
time as $v=3 t m / s$, where t is time in seconds. Find :

D Watch Video Solution

37. A car starts moving from rest on a horizontal ground such that the position vector of car with respect to its starting point is given as $\vec{r}=b t \hat{i}-c t^{2} \hat{j}$, where a and b are position constants, direction (x and y axes) intersect at the starting point of car (origin).

Find:
(a) The equation of the trajectory of car $y=f(x)$.
(b) The angle between direction of velocity and acceleration of car as a function of time
$\theta=f(t)$.
(c) Average velocity of car over first t seconds of motion

D Watch Video Solution

38. A point moves in the plane $x y$ according to
the law $x=a t, y=a t(1-\alpha t)$, where a and α are positive constants, and t is time. Find:
(a) the equation of the point's trajectory $y(x)$,
plot this function,
(b) the velocity v and the acceleration w of the point as functions of time,
(c) the moment t_{0} at which the velocity vector forms an angle $\pi / 4$ with the acceleration vector.

- Watch Video Solution

39. A projectile is thrown from a point on ground with an initial speed u and at anelevatio θ to the horizontal. Find the change in momentum of the particle, when it reaches
the top most point of its trajectory.
40. When a particle is projected at an angle to
the horizontal, it has range R and time of flight t_{1}. If the same projectile is projected with same speed at another angle to have the saem range, time of flight is t_{2}. Show that:

$$
t_{1} t_{2}=(2 R / g)
$$

D Watch Video Solution

41. Two second after projection, a projectile is travelling in a direction inclined at 30° to the
horizontal. After one more second, it is travelling horizontally. Find the magnitude and direction of the velocity of projection.

- Watch Video Solution

42. A cannon fires successively two shells from
the same point with velocity $V_{0}=250 \mathrm{~m} / \mathrm{s}$,
the first at the angle $\theta_{1}=60^{\circ}$ and the second at the angle $\theta_{2}=45^{\circ}$ to the horizontal, the azimuth being the same. Neglecting the air drag, find the approximate time interval
between firings leading to the collision of the
shells $\left(g=9.8 m / s^{2}\right)$

D Watch Video Solution

43. A particle is thrown over a triangle from one end of a horizontal base and after grazing
the vertex falls on the other end of the base. If α and β be the base angles and θ the angle of projection, prove that $\tan \theta=\tan \alpha+\tan \beta$.
44. A stone is projected from the ground in such a direction so as to hit a bird on the top of a telegraph post of height h and attains the maximum height of $2 h$ above the ground. If at the insatant of projection, the bird were to fly away horizontally with a uniform speed, find
the ratio between the horizontal velocity of bird and the horizontal component of velocity of stone, if the stone hits the bird while descending.
45. The radius of the front and rear wheels of
a carriage are a and b , and c is the distance between the front an drear axles. A particle of dust driven from the highest point of the rear wheel is observed to alight on the highest point of the front wheel. Find the velocity of the carriage.
46. A ball starts falling with zero initial velocity
on to a smooth inclined plane forming an
angle α with the horizontal. Having fallen a distance h, the ball rebounds elastically off the inclined plane. At what distance from the impact point will the ball rebound for the second time?
47. A projectile is thrown at an angle θ with an inclined plane of inclination β as shown in fig.

1E108. Find the relation between β and θ ifv :
(a)projectile strikezs the inclined plane perpendicularly,
(b) projectile strikes the inclined plane horizontal.

D Watch Video Solution

48. A child throws a ball so as to clear a wall of
heigh than data distance x from it. Find the minimum speed required for clearing the wall.

D Watch Video Solution

49. Figure shows a rod of length I resting on a
wall and the floor. Its lower end A is pulled towards left with a constant velocity u. As a result of this, end A starts moving down along the wall. Find the velocity of the other end B
downward when the rod makes an angle θ with the horizontal.

D Watch Video Solution

50. In the arrangement shown in fig the ends
P and Q of an unstretchable string move
downwards with unifrom speed U. Pulleys A
and b are fixed. Mass M move upwards with a
speed

- Watch Video Solution

51. Figure- 1.52 showns a hemisphere and a supported rod. Hemisphere is moving in right direction with a uniform velocity v_{2} and the end of rod which is in contact with ground is moving in left direction with a velocity v_{1}. Find the rate at which the angle θ is changing in terms of v_{1}, v_{2}, R and θ.

- Watch Video Solution

52. Consider the situation of block pulley arrangement shown in figure-1.63. A plank is
connected to three strings and an electric motor M is fitted on to it and a string is
wound on it according to the arrangement
shown in figure. Given that the string is
winding on shaft of motor at a speed v . Find
the speed with which the plank would be
going up.

- Watch Video Solution

53. Figure-1.65 shows a system of four pulleys
with two masses A and B. Find, at an instant:

- Watch Video Solution

54. Consider the situation shown in figure-I.76
(a) Find the constraint relation for velocities of blocks A and B.

- Watch Video Solution

55. Consider the situation shown in figure-1.77
(a). A string connected to block B is passing
through two movable pulleys X and Yand
wound on the smaller disc of a step pulley.

Another block A attached to the pulley X .

Analyze the constrained motion of blocks A and B. (Step pulley radii ratio $=1: 3$)

D Watch Video Solution

56. If block B shown in figure-I.78(a) is going down with acceleration $5 m / s^{2}$, find the acceleration of the block A. All pulleys and strings are ideal. Radii ratio for the two step pulleys are 1:3:5 and 1:2.

Watch Video Solution

57. Block C shown in figure-1.79 is going down at acceleration $2 m / s^{2}$. Find the acceleration of blocks A and B.

- Watch Video Solution

58. Blocks shown in figure-1.81 move by a distance 3 m toward left. Find the distance and direction in which the point P on string shown in figure is displaced.

- Watch Video Solution

59. In the situation shown in figure-1.86, if mass M is going down along the incline at an
acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ and m is moving toward right relative to M horizontally with $3 m / s^{2}$. Find the net acceleration of m

- Watch Video Solution

60. Find the relation among accelerations of
wedge A and the rod B supported on wedge A.
Rod B is restricted to move vertically by two
fixed wall comers shown in figure-1.88.

D Watch Video Solution

61. Figure shows a block A constrained to slide along the inclined plane of the wedge B shown. Block A is attached with a string which passes through three ideal pulleys and connected to the wedge B. If wedge is pulled toward right with an acceleration a, find
(a) the acceleration of the block with respect to wedge
(b) the acceleration of the block with respect
to ground.

- Watch Video Solution

Practice Exercise

1. Two bicycle riders made a 30 km trip in the
sametime. Cyclist A travelled non-stop at an
average speed of 20 kph . Another cyclist B
travelled with a lunch break of 20 min . What
was the average speed of B for the actual riding ?

D Watch Video Solution

2. The light speed is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and the sound speed is $340 \mathrm{~m} / \mathrm{s}$. Find the value of count N , if "A child start counting after every second, he sees a bomb blast 1 km away and stops when he hear its 'blast sound."
3. Two cars travelling in parallel lanes at 90 kph and 72 kph . Assuming each car to be 5 m long, find the time taken during the overtake and the total road distance used for the overtake

D Watch Video Solution

4. A point traversed half of the total distance
covered by its with velocity v_{0}. The remaining part of the distance was covered with velocity
v_{1} for half of the remaining time, and with
velocity v_{2} for the other half of the remaining
time.Find the mean velocity of the point over the whole time of motion.

D Watch Video Solution

5. From point A located on a highway (figure)
one has to get by car as soon as possible to
point B located in the field at a distance l from
the highway. It is known that the car moves in
the field η times slower than on the highway.

At what distance from point D one must turn
off
the
highway?

D Watch Video Solution

6. Two junglemen are standing at the two opposite banks of a river of width l facing each
other. One of the m starts beating a drum and sound reaches to the other one after time t_{1}
the stats. Then second one starts beating the drum and now first one hear the sound after
time t_{2}. Calculate the velocity of sound relative
to air and the velocity of wind, if it is blowing
from first bank to the other bank at right angle to the river flow
7. A rectangular farm house has a 1 km difference between its sides. Two farmers simultaneously leave one of the vertex of the rectangle for a point at the opposite vertex.

One farmer crosses the farmhouse along its diagonal and other walks along the edge. The speed of each farmer is $4 k m / h r$. If one of them arrives half an hour earlier then the other then the size of farmhouse is .
8. A car is moving at a constant speed of 40 km / h along a straight road which heads towards a large vertical wall and makes a
sharp 90° turn by the side of the wall. A fly
flyingat constant speed of $100 \mathrm{~km} / \mathrm{h}$, starts
from the wall towrds the car t an instant when
the car is 20 km away,flies until it reaches the
glasspane of the car and returns to teh wll at
teh same speed. It continues to fly between
the car and teh wall time the car makes the
90° turn. a. What is the total distance the fly
has travelled during the period?b. How many
trips has it made between the car and the wall?

D Watch Video Solution

9. A bike starts from rest and accelerates at
$4 \mathrm{~m} / \mathrm{s}^{2}$ for 5.0 s . It then moves at contant
velocity for 25.0 s, and then decelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$ unit it stops. Find the total distance that the motorcycle has moved.

- Watch Video Solution

10. Fiate Siena can accelerate from 0 to 48 kph
in 3.6 s and from 0 to 96 kph in 10.2 s Also,
under constant acceleration from rest it crosses the 0.4 km marker at as peed of 140 kph. (a)Calculate the average acceleration needed get the speed 48 kph . (b) Calculatethe average acceleration during the time it requires to go from 48 to 96 kph . (c) What constant acceleration would be required to get a speed of 140 kph over the 0.4 km run starting from rest ?
11. Two friends start bikes from one corner of as quarefield of edge L towards the diagonally opposite corner in the same time t: They both start from the same place and take different routes. One travels along the diagonal with constant acceleration a, and the other accelerates momentarily and then travels along the edge of the field with constant speed v. What is the relationship between a and v ?

D Watch Video Solution

12. A truck travelling along a straight road at a constant speed of 72 kph passes a car at time
$t=0$ moving much slower. At the instant the
truck passes the car, the car starts accelerating at constant $1 m / s^{2}$ and overtake
the truck 0.6 km further down the road, from where the car moves uniformly. Find the distance between them at time $t=50 \mathrm{~s}$.

- Watch Video Solution

13. A motorcycle and a car start from rest from
the same place at the same and travel in the
same direction. The motorcycle acceleration at
$1.0 m s^{-1}$ up to a speed of $36 k m h^{-1}$ and the car at $0.5 m s^{-1}$ up to a speed of $54 k m h^{-1}$.

The time at which the car would overtake the motorcycle is

- Watch Video Solution

14. A driver having a definite reaction time is
capable of stopping his car over a distance of

30 m on seeing a red traffic signal, when the speed of the car is $72 \mathrm{~km} / \mathrm{hr}$ andover a distance of 10 m when the speed is $36 \mathrm{~km} / \mathrm{hr}$.

Find the distance over which he can stop the car if it were running at a speed of $54 \mathrm{~km} / \mathrm{hr}$.

Assume that his reaction time and the deceleration of the car remains same in all the three cases.

D Watch Video Solution

15. A point moving with constant acceleration
from A to B in the straight line $A B$ has
velocities u and v at and B respectively. Find its
velocity at C, the mid point of AB. Also show
that if the time from A to C is twice that from
C to B , then $v=7 u$.

- Watch Video Solution

16. A train is targeted to run from Delhi to

Pune at an average speed of 80 kph but due to
repairs of track looses 2 hr sin the first part of
the journey. If then accelerates at a rate of $20 k p h^{2}$ till the speed reaches 100 kph. Its speed is now maintained till the end ofthe journey. If the train now reaches station in time, find the distance from when it started accelerating ?

D Watch Video Solution

17. A train of length $l=350 \mathrm{~m}$ starts moving rectilinearly with constant acceleration
$w=3.0 \cdot 10^{-2} m / s^{2}, t=30 s$ after the start
the locomotive headlight is switched on (event
1), and $\tau=60 s$ after that event the tail signal
light is switched on (event 2). Find the distance between these events in the reference frames fixed to be train and to the

Earth. How and at what constant velocity V relative to the Earth must a certain reference
frame K move for the two events to occur in it at the same point?

- Watch Video Solution

18. Two cars travelling towards each other on a
straight road at velocity $10 \mathrm{~m} / \mathrm{s}$ and $12 \mathrm{~m} / \mathrm{s}$
respectively. When they are 150 metre apart, both drivers apply their brakes and each car decelerates at $2 m / s^{2}$ until it stops. How far apart will they be when they have both come to a stop?

- Watch Video Solution

19. Two bodies start moving in the same straight line at the same instant of time from
the same origin. The first body moves with a constant velocity of $40 \mathrm{~ms}^{-1}$, and the second starts from rest with a constant acceleration of $4 m s^{-2}$.Find the time that elapses before the second catches the first body. Find the also the greatest distance between them prior to it and time at which this occurs.

D Watch Video Solution

20. A ball is allowed to slip from restdown a smooth incline plane, and the distances are
marked every 2.0 s . If the second mark is made
1.6 m from the starting point, where are the first and fourth marks ?

D Watch Video Solution

21. Water drops from the nozzle of a shower into the stall floor 176.4 m below. The drops
fall at regular interval of time, the first drop striking the floor at the instant the fourth drop begins to fall. Find the location of the
individual drops when a drop strikes the floor.
Take $g=9.8 m / s^{2}$

D Watch Video Solution

22. A particle is projected vertically upward
from the ground at time $t=0$ and reaches a
height h at $t=T$. Show that the greater height of the particle is $\left(g T^{2}+2 h\right)^{2} / 8 g T^{2}$
23. A circus artist maintains four balls in motion making each in turn to rise to a height of 5 m from hishand. Calculate the velocity with which he projects the balls. Where will the other three balls be at the instant when the fourth one is just leaving his hand ? Take

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

- Watch Video Solution

24. A dog sees a flowerpot sail upand then
back down past a window 5 ft high. If the total
time the pot is in sight is 1.0 sec , find the height above the window that the pot rises.

Take $g=32 f t / s^{2}$

D Watch Video Solution

25. A ball projected vetically upwards from (A),
the top of tower reaches the ground in t_{1} second.

If it is projected vectically downwards from (A)
with the same vecoty, it reaches the ground in
t_{2} seconds.
If it falls freely from (A), show that it would reahc the ground in $\sqrt{t} t_{2}=2 \sec$ onds.

- Watch Video Solution

26. Jimmy is doing an experiment to measure
the height of a tall building. He drops awatermelon from the roof the building. 3.0 s
later he hears the watermelon splash sound.

What height of the building he had calculated.
Take speed of soimd $340 \mathrm{~m} / \mathrm{s}$ and air resistance, on water melon can be neglected. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

27. You are on the roof of your school building

60m, high. You see your physics teacher 1.6 m
tall walking directly towards the building at
2.m/s. You wish to throw an egg vertically down at a speed $5 \mathrm{~m} / \mathrm{s}$ on to your teacher's
head. Where should your teacher be when you
throw the egg. Neglect air resistance. Take $g=10 m / s^{2}$

D Watch Video Solution

28. A student goes to the a 100 m high floor of

Kutubmeenar at Delhi. To verify the law of gravity, he starts from a window with zero initial velocity, with a stop watch in his hand.

After 3.0 s , Batman comes to the same floor and jumps to save the boy. What must be his
initial velocity so that he'll just be able to save
the boy. Assume free fall for both boy and Batman before he catches the boy. Take $g=10 m / s^{2}$

D Watch Video Solution

29. From the top of at all building
(height27.3m), a boy throws an apple upward, which strikes ground after 16 s . Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, find the speed of apple with
which it was thrown and the maxium height reached by it.

D Watch Video Solution

30. A roket fired vertically ascends with a constant acceleration $g / 3$ for 1 min . Its fuel
is then all used and it continues to rise as a
free body. What is the maximum height reached? What is the total time elapsed from the take off until the rocket strikes the earth?
31. A truck driver, starting with zero speed at
time zero, drove in such a way that the speed
time graph is approximately an isosceles
triangle with the base along the time axis. The maximum speed was $30 \mathrm{~m} / \mathrm{s}$, and the total elapsed time was 50.0 s . What distance did he travel.

D Watch Video Solution
32. Figure-1.20 shows displacement-time graphof a particle. Find the time during motion such that the average velocity of the particle during that period is zero.

D Watch Video Solution
33. A train starts from station A with uniform
acceleration a_{1}. For some distance and then
goes with uniform retardation a_{2} for some more distance to come to rest at station B.

The distance between stations A and B is
$4 k m$ and the train takes $1 / 5 h$ to compete this
journey. If accelerations are in km per minute
unit, then show that $\frac{1}{a_{1}}+\frac{1}{a_{2}}=x$. Find the value of x.
34. Between two stations a train starting from rest first accelerates uniformly, then moves with constant velocity and finally retarts uniformly to come to rest. If the ratio of the time taken be 1:8:1 and the maximum speed attained be $60 \mathrm{~km} / \mathrm{h}$, then what is the average speed over the whole journey?

D Watch Video Solution

35. A partical starts from rest and moves in a
straight line. It travels a distance L with
uniform acceleration and then moves with
constant velocity a further distance $2 L$. Finally,
it comes to rest after moving a further distance 4L under uniform retardation. Find the ratio of average speed to the maximum speed.

D Watch Video Solution

36. A particle starts with an initial velocity u towards $+x$ direction with an acceleration a after time t_{1}, it starts retarding with another
acceleraation a^{\prime}, comes to an instantaneous stop and returns. If reaches its initial position at time t_{2}. Draw the approximate time dependence plots for particle's displacement and velocity.

D Watch Video Solution

37. A particle moves in a straight line. Figure-
1.21 shows the distance traversed by the particle as a function of time t.Using the graph, find (a)the average velocity of the point
during the time of motion, (b) the maximum velocity, (c) the time $t=t_{0}$ at which the instantaneous velocity is equal to the mean velocity averaged over the first t_{0} seconds.

38. The velocityof a particle that moves in the positive X - direction varies with its position, as shown in figure-1.22. Find its acceleration in
m / s^{2} where $x=6 m$

39. The acceleration vs time of a particle moving along $+x$ direction is shown in figure-
1.23. If starts at $t=0$, from rest, Draw the
position -time graph for the motion.

D Watch Video Solution

40. The displacement x of particle moving in one dimension, under the action of a constant
force is related to the time t by the equation
$t=\sqrt{x}+3$
where xis \in meters and $t \in \sec$ onds. Find
(i) The displacement of the particle when its
velocity is zero, and
(ii) The work done by the force in the first 6 sec onds.

- Watch Video Solution

41. Instantaneous velocity of a particle moving in $+x$ direction is given as $v=\frac{3}{x^{2}+2}$. At
$t=0$, particle starts from origin. Find the average velocity of the particle between the two points $p(x=2)$ and $Q(x=4)$ of its motion path.

D Watch Video Solution

42. A street car moves rectilinearly from station A to the next station B (from rest to rest) with an acceleration varying according to
the law $f=a-b x$, where a and b are constants and x is the distance from station A .

The distance between the two stations and the maximum velocity are

D Watch Video Solution

43. A particle moves along a staight line such
that its displacement at any time t is given by $s=t^{3}-6 t^{2}+3 t+4 m$. Find the velocity when the acceleration is 0 .
44. A radius vector of a particle varies with
time t as $r=a t(1-\alpha t)$, where a is a constant vector and α is a positive factor.

Find:
(a) the velocity v and the acceleration w of the particles as functions of time,
(b) the time interval Δt taken by the particle to return to the initial points, and the distance s covered during that time.
45. A box is thrown with velocity v_{0} on top of a rough table of length l. Assume friction on the object is such that during its motion, its acceleration is given as $a=-k v$, where k is a positive constant. Find the velocity of the box when it leaves the edge of the table. Also find the time after which it falls off the edge.

- Watch Video Solution

46. A particle start revolution with initial speed u in a circular path of radius R. During
revolution it is retarded due to friction and its
acceleration is given as $a=c v^{2}$. Find the speed of the particle after completing one revolution.

D Watch Video Solution

47. A rever 500 m wide flows at a rate at a rate
of $4 \mathrm{kmh}^{-1}$. A swinmmer who can swin at $8 k m h^{-1}$. In still water, wishes to cross the river straight. (i) Along what direection must he strike? (ii) What should be his resultant
velocity. (ii) What is the time of crossing the river?

D Watch Video Solution

48. An aeroplane takes off from Mumbai to

Delhi with velocity 50 kph in north-east direction. Wind is blowing at 25 kph from north to south. What is the resultant displacement of aeroplane in 2 hrs .
49. A man can swim at a speed of $3 \mathrm{~km} / \mathrm{h}$ in
still water. He wants t cross a 500 m wide river
flowing at $2 \mathrm{~km} / \mathrm{h}$. He flow while swimming. A.

Find the time he takes to cross the river. b.At what point on the opposite bank will he arrive?

- Watch Video Solution

50. Two boats, A and B, move away from a buoy anchored at the middle of a river along the mutually perpendicular straight lines: the boat
A along the river, and the boat B across the river. Having moved off an equal distance from the buoy the boats returned. Find the ratio of times of motion of boats τ_{A} / τ_{B} if the velocity of each boat with respect to water is $\eta=1.2$ times greater than the stream velocity.

D Watch Video Solution

51. A man running on the horizontal road at
$8 \mathrm{kmh}^{-1}$ find the rain appears to be falling
vertically. He incresases his speed to $12 \mathrm{kmh}^{-1}$
and find that the drops make angle 30^{2} with
the vertical. Fin dthe speed and direction of the rain with respedt to the road.

D Watch Video Solution

52. Two trains A and B are approaching each other on a straight track, the former with a
uniform velocity of $25 \mathrm{~m} / \mathrm{s}$ and other with
$15 \mathrm{~m} / \mathrm{s}$, when they are 225 m a part brakes are simultaneously applied to both of them. The deceleration given by the brakes to thetrain B
increases linearly with time by $0.3 \mathrm{~m} / \mathrm{s}^{2}$ every second, while the train A is given a uniform deceleration, (a) What must be the minimum deceleration of the train A so that the trains do not collide ? (b) What is the time taken by the trains to come to stop ?

D Watch Video Solution

53. A body starts from rest at A and moves
with uniform accelerationa in a straight line. T
seconds after,a second body starts from A and
moves with uniform velocity Kinthe same line.

Prove that the second body will be ahead of
the first for a time $\frac{2}{a} \sqrt{V(V-2 a T)}$

D Watch Video Solution

54. An aeroplane has to go from a point A to
another point B, 500 km away due 30° east of
north. Wind is blowing due north at a speed of
$20 \mathrm{~m} / \mathrm{s}$. The steering-speed of the plane is
$150 \mathrm{~m} / \mathrm{s}$. (a) Find the direction in which the pilot should head the plane to reach the point
B. (b) Find the time taken by the plane to go fram A to B.

D Watch Video Solution

55. Find the time an aeroplane having velocity v takes to fly around a square with side a if the
wind is blowing at a velocity u along one side of the square. 1

- Watch Video Solution

56. A man swimming in a river from a point. A on one bank has to reach a point C on other bank, which is at a distance l from the point B, directly opposite to A on other bank. River width is d and the current velocity is u_{0}. Find the minimum speed of swimmer relative to still water with which he should swim.

- Watch Video Solution

57. The coordinates of a bird flying in the $x y$ -
plane are $x=2-\alpha t$ and $y=\beta t^{2}$, where $\alpha=3.6 m / s$ and $\beta=1.8 \mathrm{~m} / \mathrm{s}^{2}$. Calculate 'the
velocity and acceleration vectors and their magnitude as a functions of time .Also find the magnitude and direction of bird's velocity and acceleration at $t=3.0 \mathrm{~s}$. From the given data
can you find whether at this instant, bird is speeding up, speeding down or it is taking a turn. If so in which direction
58. On a smooth horizontal platform a mass of

2 kg is dragged with a horizontal force of 10

Nt. On platform there are so many holes spreaded on its surface below which there is
an air blower which exerts a force on block in
upward direction depending on its height above the platformas $\vec{F}=20(2-h) N$,
where h is the height of the block above the
platform. Let at $t=0$ block starts from rest
from origin of coordinate system shown. Find
the equation of trajectory of the block during
its motion. Consider x-axis along the motion
ofparticle and y-axis in vertical up direction.

D Watch Video Solution

59. A ball is thrown straight up in air with an initial velocity u. Air exerts a force on it in horizontal direction which produces an acceleration depending on its height from ground as $a_{x}=a h^{2}$. Find the displacement of ball from the projection point as a function of time.
60. A boy releases a toy plane from the top of a high hill of height H . Hill is so high that gravity varies with height from ground as $g=g_{0}\left(1-\frac{2 h}{R}\right)$, where h is the height from ground and R is the radius of earth. The engine of toy plane accelerates it in horizontal direction with acceleration $a_{x}=b t^{2}$. Find the position from the foot of hill where the plane lands and the time after which it lands.
61. The position vector of a particle P with respect to a stationary point O change with time according to the law $\vec{r}=\vec{b} \sin \omega t+\vec{c} \cos \omega t$ where \vec{b} and \vec{c} are constant vectors with bpotc and ω is a positive constant. Find the equation of the path of the particle $y=f(x)$, assuming x an dy axes to coincide with the direction of the vector \vec{b} and \vec{c} respectively and to have the origin at the point O

D Watch Video Solution

62. The motion of a particle restricted to move in a two dimensional plane is given by
$x=2 \cos \pi t$
and $y=1-4 \cos 2 \pi t$
where x and y are in metres and t is in seconds. Show that the path of the particle is
a part of parabola $y=5-2 x^{2}$. Find the velcoity and the acceleration of particle at $t=0$ and $t=1.5 s$.

Watch Video Solution

63. A stone is thrown from the top of a tower
of height 50 m with a velocity of 30 m per second at an angle of 30° above the horizontal. Find (a) the time during which the stone will be in air, (b) the distance from the tower base to where the stone will hit the ground, (c) the speed with which the stone will hit the ground, (d) the angle formed by the trajectory of the stone with the horizontal at the point of hit.
64. A stone is thrown up from the top of a tower $20, \mathrm{~m}$ with a velocity of $24 \mathrm{~m} / \mathrm{s}$ a tan elevation of 30° above the horizontal. Find the horizontal distance from the foot of the tower to the point at which the stone hits the ground. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

65. Two bodies are thrown at the same time and in opposite directions and with an equal
velocity v_{0} at angles α_{1} and α_{2} to the horizon.

What is the velocity with which the bodies move relative to each other -? What will be the distance between the bodies be after time t elapses?

D Watch Video Solution

66. A ball rolls off top of a staircase with a horizontal velocity $u m s^{-1}$. If the steps are h metre high and b mere wide, the ball will just hit the edge of $n t h$ step. Find the value of n.
67. A boat is moving directly away from a gun on the shore with speed v_{1}. The gun fires a shell with speed v_{2} at anangle of elevation α and hits the boat. Prove that the distance of the boat from the gun at the moment it is
fired is given by:
$2 v_{2} \sin \alpha$
$\left(v_{2} \cos \alpha-v_{1}\right)$ g

- Watch Video Solution

68. Two bodies were thrown simultaneously
from the same point, one, straight up, and the other, at an angle of $\theta=60^{\circ}$ to the horizontal. The initial velocity of each body is equal to $v_{0}=25 m / s$. Neglecting the air drag,
find the distance between the bodies
$t=1.70 s$ later.

D Watch Video Solution

69. Two particles are projected from a point at
the same instant with velocities whose horizontal and vertical components are u_{1}, v_{1} and u_{2}, v_{2} respectively. Prove that the interval between their passing through the other common point of their path is
$2\left(v_{1} u_{2}-v_{2} u_{1}\right)$ $g\left(u_{1}+u_{2}\right)$

D Watch Video Solution
70. A ball is thrown from a point in level with
velocity u and at a horizontal distance r from the top os a tower of height h.

How must the speed and angle of the projection of the ball be related to r in order that the ball may just go grazing the top edge of the tower?

D Watch Video Solution

71. In a "RamLeela"stage show an unhappy guy
from audience throws an rotten egg at
Rawana. The egg travels a horizontal distance of 15 m in 0.75 s before hitting the Rawana's face 1.7 m above the stage. The egg is thrown at 2.0 m above the horizonta floor with an initial velocity 30° above the horizontal, (a)Find the initial and final velocities of egg.
(b)How high is the stage above the floor. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
72. A machine gun is mounted on the top of a tower of height $\mathrm{h}=100 \mathrm{~m}$. At what angle should the gun be inclined to cover a maximum range of firing on the ground below ?The muzzle speed of the bullet is $u=150 \mathrm{~ms}^{-1}$ and $g=10 \mathrm{~ms}^{-2}$.

- Watch Video Solution

73. A partacle is thrown in horizontal direction
with speed u from a point P, the top of a tower
shown in figure.1.49 at a vertical height h above the inclined plane of inclination θ. Find the speed with which the particle is thrown so that it strikes the plane normally. Also find the distance from the foot of the tower where the particle will strike.

74. From an inclined plane a particleis thrown
in a direction normal to the surface. Find the ratio of successive ranges of the particle on inclined plane. Consider all collisions as elastic collisions (particle rebounds with the same speed with which it strikes the plane)

- Watch Video Solution

75. A body is projected up with a speed v_{0} along the line of greatest slope of an inclined
plane of angle of inclination β. If the body collides elastically perpendicular to the inclined plane, find the time after which the body passes through its point of projection.

D Watch Video Solution

76. A partacle is thrown in horizontal direction
with speed u from a point P, the top of a tower
shown in figure.1.49 at a vertical height h
above the inclined plane of inclination θ. Find
the speed with which the particle is thrown so
that it strikes the plane normally. Also find the
distance from the foot of the tower where the particle will strike.

77. In example 1.49 find the velocity of the mid point of the rod in terms of its length I, v and θ.

- Watch Video Solution

78. Two rings O and O are put on two vertical stationary rods $A B$ and $A^{\prime} B^{\prime}$ respectively as
shown in figure. An inextensible string is fixed at point A^{\prime} and on ring O and is passed through O' moves downwards at a constant
speed v, find the velocity of the ring O in terms of α.

79. An aircraft is descending to land at an airport in the morning. The aircraft is landing to the east, so that pilot has the sun in his eyes. The aircraft has a speed v and is descending at an angle α and the sun is at an angle β above the horizon. Find the speed with which the aircraft's shadow moves over the groung.
80. Figure shows s small mass m hanging over
a pulley. The other end of the thread is being
pulled in horizontal direction with a uniform
speed u. Find the speed with which the mass
ascend at the instant the string makes an
angle θ with the horizontal.

D Watch Video Solution

81. A man of height 1.2 m walks away from a
lamp hanging at a height of 4.0 m above
ground level. If the man walks with a speed of
$2.8 \mathrm{~m} / \mathrm{s}$, determine the speed of the tip of man's shadow.

D Watch Video Solution

82. Find the speed of the box-3, if box-1 and
box-2 are moving with speeds v_{1} and v_{2} as
shown in figure when the string makes an angle θ_{1} and θ_{2} with the horizontal at its left
and right end.

D Watch Video Solution

83. A smooth ring A of mass m can slide on a fixed horizontal rod. A string tied to the ring passes over a fixed pulley B and carries a block

C of mass $M(=2 m)$ as shown in figure. At an instant the string between the ring and the pulley makes an angle θ with the rod. (a). Show
that, if the ring slides with a speed v, the block descends with speed $v \cos \theta$, (b). With what acceleration will the ring starts moving if the system is released from rest with $\theta=30^{\circ}$

84. Figure shows a pulley over which is string
passes and connected to two masses A and B.
Pulley moves up with a velocity V_{P} and mass B is also going up at a velocity V_{B}.

Find the velocity of mass A if
(a) $V_{P}=5 m s^{-1}$ and $V_{B}=10 \mathrm{~ms}^{-1}$
(b) $V_{P}=5 m s^{-1}$ and $V_{B}=-20 m s_{-1}$.
85. Find the relation in the accelerations of the three masses shown in fig.

(a)

(b)

- Watch Video Solution

86. Figure (a) and (b) shows a system of two masses A and B a motor M. find the relation in
velocities of mass A and B, if the motor winding speed is v.

(a)

(b)

D Watch Video Solution
87. Find the Relation among velocities of the
blocks shown in figure (a), (b) moving under the given constraints.

(a)

(b)
88. Block B shown in figure , moves downwards
with a constant velocity of $20 \mathrm{~cm} / \mathrm{s}$. At $\mathrm{t}=0$,
block A is moving upward with a constant acceleration, and its velocity is $3 \mathrm{~cm} / \mathrm{s}$. If at
$t=3 s$ blocks C has moved 27 cm to the right, determine the velocity of block C at $\mathrm{t}=0$ and the acceleration of A and C.

89. Block C shown in figure, starts from rest and moves downward with a constant acceleration. Knowing that after 12 s the velocity of block $A 7.2 \mathrm{~m} / \mathrm{s}$, determine the acceleration of A, B and C and the velocity and the displacement of block B after 8 s .

- Watch Video Solution

90. The system shown in figure starts from
rest, and each block moves with a constant
acceleration. If the relative acceleration of
block C with respect to block B is $6 \mathrm{~m} / \mathrm{s}^{2}$
upward and the relative acceleration of block

D with respect to block C after 3 s from starts.

- Watch Video Solution

91. Find the relation among the acceleration of
blocks A and B constrained to move along the
inclined surfaces of the fixed wedge shown in
figure

D Watch Video Solution

92. If the wedge A shown in figure-1.93, is moving toward left with acceleration $3 \frac{m}{s^{2}}$, find the net acceleration of block B which is constrainedtoslide along the wedge surface. $\left(\theta=30^{\circ}\right)$

93. Find the speed of the block B when the wedges A and C are moving toward each other with speed v and the strings connected to block make and angle θ with the vertical, as shown in figure

- Watch Video Solution

94. Find the acceleration of the block B as
shown in figure- 1.95 (a) and (b) relative to the
block A and relative to ground if the block A is moving toward left with acceleration a.

95. If the point P on string shown in figure-1.96
is pulled down with a velocity v, find the
velocity of the block A connected to another
string passing over a step pulley with radii
ratio 1: 2.

D Watch Video Solution

96. Find the constrained relation among the

 acceleration of blocks A, B and C for the situation shown in figure-1.97. Ratio of radii of step pulley is given as $1: 2$.

Discussion Question

1. Give an example of a case in which an object's velocity is zero but its acceleration is not. Can an object's velocity ever be in a direction other than the direction of its acceleration? Explain.
(Watch Video Solution
2. Sketch graphs of velocity and acceleration
as a function of time for a car as it strikes a
telegraphic pole. Repeat for a billiard ball in a head on collision with the edge of the billiard table.

D Watch Video Solution

3. A rabbit enters the end of a drainpipe of
length L. Its motion from that instant is shown
in figure-1.98. Describethe motion in words.

D Watch Video Solution

4. Under what conditionit is wrong to say that an object's acceleration is negative when the object is thrown upward. Does the sign of the
acceleration depend at all on the direction.

Can an object's acceleration be positive when the object is slowing down?

D Watch Video Solution

5. The distance-time curve for a hypothetical
journey has the shape of an equilateral triangle with one side along the time axis.

Discuss the velocity and acceleration necessary to bring about such a journey.

Comment on whether or not this is a realistic
journey. Will it be a real curve if it is a displacement-time curve.

D Watch Video Solution

6. If you want to hit a distant stationary object with arifle, you have to adjust the aiming hole pipe for the mark of corresponding approximate distance. What is the need for it.

Why don't you use a single adjustment for firing objects at different distances
7. A man standing on the edge of a cliff throws
a stone straight up with initial speed (u) and then throws another stone straight down with same initial speed and from the same position.

Find the ratio of the speeds. The stones would have attained when they hit ground at the base of the cliff.

D Watch Video Solution

8. A helicopter on a flood relief mission flying horizontally with a speed u at an altitude h, has to drop a food packet for a victim standing on the ground. At what distance form the victim should the food packet be dropped.

D Watch Video Solution

9. A car's speedometer is correctly calibrated
for tires of a specific size. If larger diameter
tires are substituted, what will be the effect on the speedometer reading ?

D Watch Video Solution

10. If an observer is in a boat accelerating with
a constant acceleration, observes a stone dropped from rest from the top of a mast.

What would be the path of the stone observed. What would be the path if stone
had been thrown down ward from the top of the mast rather than dropped from rest.

Watch Video Solution

11. Each second a rabbit moves half the remaining distance from its nose to ahead of lettuce. Does the rabbit ever get to the lettuce
? What is the limiting value of the rabbit's velocity? Draw graphs showing the rabbit's position and average velocity versus time.

D Watch Video Solution

12. Assume that a car is moving behind a loaded truck. Both moving with the same uniform velocity. A box from the top of the truck falls. Does car hit the box before the box hits the road, if driver neither brake nor accelerate?

D Watch Video Solution

13. A second ball is dropped down from an elevator acceleration up with $1 m / s^{2}, 1$ second
after the first ball is dropped. How does the relative velocity of the two balls change with time. How the ratio v_{1} / v_{2} change with time.

D Watch Video Solution

14. Assertion : In javelin throw, the athlete throws the projectile at an angle slightly more than 45°.

Reason : The maximum range does not depends upon angle of projection.
15. A foot ball is thrown in a parabolic path. Is there a point at which the acceleration is parallel to the velocity ?Perpendicular to the velocity ? Explain.

- Watch Video Solution

16. If a rabbit can give it self the same initial speed regardless of the direction in which it jumps, how is the maximum vertical height to
which it can jump related to it smaximum horizontal range ?

D Watch Video Solution

17. Look at the situation shown in figure-1.99. A
fire man fires his shot aiming to a monkey, who
fall sat the time of shot. So the shot has
passed the highest point of it strajectory and is descending when it hits the monkey, which
is still in air. At the instant, the shot was at the
highest point of its trajectory,was them on
key's height above the ground the same, lower, or higher than that of the shot. Explain your answer.

D Watch Video Solution

18. If you are on the west bank of a river that is
flowing north with a speed $4 \mathrm{~m} / \mathrm{s}$. Your swimming speed relative to the water is $5 \mathrm{~m} / \mathrm{s}$, and the river is 60 m wide. What is your path relative to earth that allows you to cross the river in the shortest time? Explain your reasoning.

D Watch Video Solution

Conceptual Mcqs Single Option Correct

1. For a particle moving along a straight line,
the displacement x depends on time t as
$x=A t^{3}+B t^{2}+C t+D$. The ratio of its
initial velocity to its initial acceleration
depends on:
A. A \& C
B. B \& C
C. C
D. C and D

Answer: B
2. For the displacement time graph shown in figure -1.100 , the ratio of the speeds during the first two seconds and the next four second is :

A. $1: 1$
B. $1: 2$
C. 2:1
D. $3: 2$

Answer: A

D Watch Video Solution

3. From the top of a tower, a stone A is thrown upwards and a stone B is thrown downwards with the same speed. The velocity of stone A, on colliding with the ground is :
A. Greater than the velocity of B
B. Less than the velocity of B
C. The velocities of stones A and B will be
same
D. Both the stones will fall on the earth at
the same time

Answer: C

D Watch Video Solution

4. Two cars C_{1} and C_{2} are moving on parallel roads in the same direction with velocity v. The relative of C_{1} w.r.t. C_{2} is :
A. Direction towards C_{2}
B. Direction towards C_{1}
C. Zero
D. 2 v

Answer: C

D Watch Video Solution
5. A ball dropped from a height reaches the same height after elastic impact with a glass
floor. If the event is continued, the velocitytime graph is shown by the adjoining figure :

Answer: C

D Watch Video Solution

6. The distance-time curve of a moving motor-
car is according to the following figure-1.101.

The portion OA of the curve shows:

A. Accelerated motion
B. Retarted motion
C. Uniform motion
D. State of rest

- Watch Video Solution

7. In the above figure, the portion $A B$ of the curve shows:
A. Accelerated motion
B. Retarted motion
C. Uniform motion
D. State of rest

D Watch Video Solution

8. In the above figure, the portion $B C$ of the curve shows:
A. Accelerated motion
B. Retarted motion
C. Uniform motion
D. State of rest

Answer: B

- Watch Video Solution

9. Two particles start from rest simultaneously
and are equally accelerated throughout the motion, the relative velocity ofone with respect to other is :
A. Zero
B. Non zero and directed parallel to
acceleration
C. Non zero and directed opposite to

acceleration

D. Directed perpendicular to the acceleration

Answer: A

- Watch Video Solution

10. The following graph shows the speed ofabody which is :

A. Projected upwards with some velocity in
vertical plane
B. Having only constant accelerated motion
C. Having only the constant retardation
D. A perfectly elastic ball falling from a height on a fnction less and hard floor

Answer: D

- Watch Video Solution

11. The following figures show some velocity
versus time curves. But only some of these can
be realised in practice. These are:

9

A. Only a, b and d
B. Only a, b, c
C. Only b and c
D. All of them

D Watch Video Solution

12. The distance travelled by the moving body is :
A. The area between the speed time graph
and time axis.
B. The area between the speed time graph
and speed axis
C. The area between the distance time
graph and time axis
D. The area between the distance time graph and distance axis

Answer: A

D Watch Video Solution

13. The diagram shows the velocity-time graph
for a particle moving in a straight line. The
sum of the two shaded areas represents :

A. The increase in displacement of the
particle
B. The average velocity of the particle
C. The average acceleration ofthe particle
D. The distance moved by the particle

Answer: D

- Watch Video Solution

14. Forces proportional to $A B, B C \& 2 C A$ act along the sides of triangle $A B C$ in order, their resultant represented in magnitude and direction as:
A. CA
B. AC
C. BC

D. $C B$

Answer: A

D Watch Video Solution

15. A particle moves as shown in the following
figure 1.104:

From the above curve the correct velocity-time graph for the interval of 4 seconds will be :

Answer: A

- Watch Video Solution

16. The following figure-1.105 shows the
velocity-time graph ofa body. According to
this, at the point B :

A. The force is zero
B. The force is in the direction of the
motion
C. The force is in opposite direction of the
motion

D. It is only the gravitational force

Answer: C

- Watch Video Solution

17. A bullet is fired in a horizontal direction
from a tower while a stone is simultaneously dropped from the same point then :
A. The bullet and the stone will reach the ground simultaneously
B. The stone will reach earlier
C. The bullet will reach earlier
D. None of these

Answer: A

D Watch Video Solution

18. Which graph in the following figure best represents the variation of velocity with time of a ball which bounces vertically on a hard
surface, from the moment when it rebounds

from the surface ?

(A)
B.

(C)

D.
(D)

19. The variation in the speed of a car during
its two hour journey is shown in the graph of
the figure-1.106. The magnitude of the maximum acceleration of the car occupies an
interval of:

A. OA
B. BC
C. CD
D. DE

Answer: B

D Watch Video Solution

20. A car which has front and rear glass
screens almost vertical is moving on a road
when rain drops' are falling vertically downward. The rain will strike:
A. The front screen only
B. The rear screen only
C. Both the screens
D. The particular screen depending upon
the velocity

Answer: A

21. A river is flowing from north to south at a speed of 0.3 kph . A man on the west bank of
the river, capable of swimming 1 kph in still water, wants to swim across the river in the shortest time. He should in a direction:
A. Due east
B. 30° north of east
C. 30° weat of north
D. 60° north of east

Answer: A

D Watch Video Solution

22. A time-velocity graph of two vehicles A and B starting from rest at the same time is given in the figure-1.107. The statement that can be
deduced correctly from the graph is :

A. Acceleration of A is greater thanthat of B
B. Acceleration of B is greater than that of

A
C. Acceleration of A is increasing at a slower rate than that of B
D. Velocity of B is greaterthan that of A.

Answer: A

D Watch Video Solution

23. Mark the correct statements :
A. The magnitude of the instantaneous
velocity of a particle is equal to its
instantaneous speed.
B. The magnitude of average velocity in an interval is equal to its average speed in that interval.
C. It is possible to have a situation in which
the speed ofa particle is always zero but
the average speed is not zero.
D. It is possible to have a situation in which
the speed of a particle is never zero but the average speed in an interval is zero.

Answer: A

- Watch Video Solution

24. The force acting on a particle moving along
a straight line varies with time as shown in
diagram.

Which of the following graphs is best representative of its speed and time graphs. Initial velocity the particle is zero.
A.
(A)

B.
(B)

c.
(C)

D.

D Watch Video Solution

25. An object is dropped from rest. Its velocity
versus displacement graph is:
$\mathrm{A} . \xrightarrow{\text { (A) }}$
B.
(B)

C.
(C)

Answer: C

- Watch Video Solution

26. A stone is dropped from a balloon rising
with acceleration a. The acceleration of the stone relative to the balloon is :
A. g downward
B. g +a downward

C. g-a upward

D. $g+a$ upward

Answer: B

- Watch Video Solution

27. The Figure-1.109 shows the displacement-
time graph ofa body subject only to the force
of gravity. This graph indicates that:

A. At A, the acceleration is zero
B. At A, the velocity is maximum
C. At A, the displacement is zero

D. The acceleration is constant for all times

shown

Answer: D

D Watch Video Solution

28. Two particles are projected simultaneously
in the same vertical plane from the same point, with different speeds u_{1} and u_{2}, making angles θ_{1} and θ_{2} respectively with the horizontal, such that $u_{1} \cos \theta_{1}=u_{2} \cos \theta_{2}$. The
path followed by one, as seen by the other (as
long as both are in flight), is
A. A horizontal straight line
B. A vertical straight line
C. A parabola
D. A straight line making an angle $\left|\theta_{1}-\theta_{2}\right|$
with the horizontal.

Answer: B

D Watch Video Solution

29. A ball is projected vertically up with an initial velocity. Which of the following graphs represents the KE of the ball?
(A)

B.

C.

(D)

Answer: C

D Watch Video Solution

30. The velocity of a particle moving in straight
line is given by the graph shown here. Then its acceleration is best represented by :

(A)

Answer: B

D Watch Video Solution
31. A ball is thrown up with a certain velocity at angle θ to the horizontal. The kinetic energy
varies with height h of the particle as:
A.

(B)

(C)

C.
(D)

D.

- Watch Video Solution

32. A small object is dropped from the top of a building and- falls to the ground. As it falls, accelerating due to gravity, it passes window. It has speed v_{1} at the top of the window and speed v_{2} at the bottom of the window, at what point does it have speed $\frac{v_{1}+v_{2}}{2}$? Neglect the air resistance.
A. It depends on the height of the window or its distance from the top of the
building.
B. Above the centre point of the window
C. Below the centre point of the window
D. At the centre point of the window

Answer: B

D Watch Video Solution

33. Acceleration vs time graph is shown in the
figure for a particle moving along a straight
line. The particle is initially at rest. Find the
time instant(s) when the particle comes to rest?

A. $t=0,1,2,3,4$
B. $t=0,2,4$
C. $t=1,3$
D. None of these

Answer: B

D Watch Video Solution

34. A toy car is moving on a closed track whose curved portions are semicircules of radius 1 m .

The adjacent graph describes the variation of speed of the car with distance moved by it
(starting from point P). The time t required for the car to complete one lap is equal to 6 K
second. Find K. (take $\pi \ln 2 \approx 2$)

A. 4
B. 8
C. 12
D. 16

Answer: B

D Watch Video Solution

35. Which of the following sets of displacements might be capable of returning a car to its starting point?
A. $4,6,8$ and 15 km
B. $10,30,50$ and 120 km
C. 5, 10, 30 and 50 km
D. $40,50,75$ and 200 km

Answer: A

- Watch Video Solution

Numerical

1. A particle starts moving in +ve x direction
with initial velocity of $10 \mathrm{~ms}^{-1}$ with a uniform
acceleration of magnitude $2 m s^{-2}$ but directed in -ve x direction. What is the distance traversed by the particle in 12 seconds:
A. $-24 m$
B. $24 m$
C. $70 m$
D. $74 m$

Answer: D

D Watch Video Solution

2. For the velocity time graph shown in Fig. 2
(CF).14, the distance covered by the body in
last two seconds of its what fraction if the
total distance covered by it in all the seven seconds?

Velocity (m / s)

A. $1 / 2$
B. $2 / 3$
C. $1 / 4$
D. $1 / 3$

Answer: D

D Watch Video Solution

3. A particle is moving in a straight line and passes through a point O with a velocity of $6 m s^{-1}$ The particle moves with a constant retardation of $2 m s^{-2}$ for 4 s and there after moves with constant velocity. How long after leaving O does the particle return to O
A. 8 s
B. Never
C. 4 s
D. 6 s

Answer: A

- Watch Video Solution

4. The velocity ofacar travelling on a straight road is given by the equation $v=6+8 t-t^{2}$ where vis in meters per second and t in
seconds. The instantaneous acceleration when
$t=4.5 s$ is :
A. $0.1 m / s^{2}$
B. $1 m / s^{2}$
C. $-1 m / s^{2}$
D. $-0.1 m / s^{2}$

Answer: C

- Watch Video Solution

5. The following figure-1.114 shows the linear motion velocity-time graph of a body.The body will be displaced in 5 seconds by:

A. 2 m
B. 3 m
C. 4 m
D. 5 m

Answer: B

D Watch Video Solution

6. In the above question, the acceleration in
the portion OA of the curve will be :
A. Zero
B. $2 m / \mathrm{sec}^{2}$
C. $1 \mathrm{~m} / \mathrm{sec}^{2}$

D. $0.5 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: C

D Watch Video Solution

7. In the above question, which portion of the

 will have zero acceleration:A. OA
B. $A B$
C. $C D$

D. DE

Answer: D

D Watch Video Solution

8. A particle has initial velocity of $17 \mathrm{~ms}^{-1}$ towards east and constant acceleration of
$2 m s^{-2}$ due west. The distance covered by it in 9th second of motion is :
A. 0 m
B. 0.5 m
C. 72 m
D. 2 m

Answer: B

- Watch Video Solution

9. A ball is thrown vertically upwards from the
ground. It crosses a point at the height of 25
m twice at an interval of 4 secs. The ball was
thrown with the velocity of
A. $20 \mathrm{~m} / \mathrm{sec}$
B. $25 \mathrm{~m} / \mathrm{sec}$
C. $30 \mathrm{~m} / \mathrm{sec}$
D. $35 \mathrm{~m} / \mathrm{sec}$

Answer: C

D Watch Video Solution

10. The velocity of a particle moving on the
$x-$ axis is gienv by $v=x^{2}+x($ for $x>0)$
where v is in m / s and x is in m. Find its
acceleration in m / s^{2} when passing through
the point $x=2 m$
A. 0
B. 5
C. 11
D. 30

Answer: D
(Watch Video Solution
11. A rocket is projected vertically upwards and
its time velocity graph is shown in the figure-
1.115. The maximum height attained by the rocket is :

A. 1 Km
B. 10 Km
C. 100 Km

D. 60 Km

Answer: D

D Watch Video Solution

12. In the previous question, the height attained by the rocket before deceleration is :
A. 1 Km
B. 10 Km
C. 20 Km

D. 60 Km

Answer: B

D Watch Video Solution

13. In the previous question, the mean velocity of the rocket reaching the maximum height is :
A. $100 \mathrm{~m} / \mathrm{sec}$
B. $50 \mathrm{~m} / \mathrm{sec}$
C. $500 \mathrm{~m} / \mathrm{sec}$

D. $25 / 3 \mathrm{~m} / \mathrm{sec}$

Answer: C

D Watch Video Solution

14. In the above question, the acceleration of the rocket is :
A. $50 \mathrm{~m} / \mathrm{sec}^{2}$
B. $100 \mathrm{~m} / \mathrm{sec}^{2}$
C. $500 \mathrm{~m} / \mathrm{sec}^{2}$

D. $10 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: A

D Watch Video Solution

15. The engine of a motoecycle can produce a maximum acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. Its brakes
can produce a maximum retardation of
$10 \mathrm{~m} / \mathrm{s}^{2}$. What is the minimum time in which
the motorcycle can cover a distance of 1.5 km ?
A. $5 s$
B. $10 s$
C. $15 s$
D. 30 s

Answer: D

D Watch Video Solution

16. Two balls are dropped from the same point after an interval of 1 s . If acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, what will be their
separation 3 seconds after the release of first ball?
A. 5 m
B. 10 m
C. 25 m
D. 30 m

Answer: C
(Watch Video Solution
17. The following figure-1.116 shows the time and applied force graph for a body. What will be the momentum gained by the body in 6 seconds :

A. Zero
B. $60 \mathrm{~N}-\mathrm{s}$
C. $30 \mathrm{~N}-\mathrm{s}$

D. $40 \mathrm{~N}-\mathrm{s}$

Answer: D

D Watch Video Solution

18. A person throws balls into the air one after
the other at an interval ofone second. The next ball is thrown when the velocityof the ball thrown earlier is zero. To what height the ball rise:

B. 10 m

C. 20 m
D. 40 m

Answer: A

D Watch Video Solution

19. A body starts from rest and moves for n seconds with uniform acceleration a, its
velocity after n seconds is v . The displacement of the body in last 3 seconds is :

> A. $\frac{v(6 n-9)}{2 n}$
> B. $\frac{2 v(6 n-9)}{n}$
> C. $\frac{2 v(2 n+1)}{n}$
> D. $\frac{2 v(n-1)}{n}$

Answer: A

- Watch Video Solution

20. The displacement-time graph for two particle A and B straight lines inclined at angle of 30° and 90° with the time axis. The ratio of
the velocities V_{A} and V_{B} is:

A. 1:2
B. $1: \sqrt{3}$
C. $\sqrt{3}: 1$
D. 1:3

Answer: D

D Watch Video Solution

21. A particle has an initial velocity of $9 \mathrm{~m} / \mathrm{s}$
due east and a constant acceleration of
$2 m / s^{2}$ due west. The distance coverd by the particle in the fifth second of its motion is :
A. 0
B. $0.5 m$
C. $2 m$

D. None of these

Answer: B

- Watch Video Solution

22. The velocity-time graph of a linear motion
is shown below. The distance from the origin
after 8 seconds is :

A. 18 m
B. 16 m
C. 8 m
D. 6 m

Answer: D

D Watch Video Solution

23. Water drops fall at regular intervals from a roof. At an instant when a drop is about to
leave the roof, the separations between 3
successive drops below the roof are in the ratio
A. $1: 2: 3$
B. $1: 4: 9$
C. $1: 3: 5$
D. 1:5:13

Answer: C
(Watch Video Solution
24. A body is in straight line motion with an acceleration given by $a=32-4 v$. The initial conditions are at $t=0, v=4$. Find the velocity when $t=\ln 2$:
A. $15 / 2$
B. $17 / 2$
C. $23 / 4$
D. $31 / 4$

Answer: D

25. A particle is moving in a circle of radius r with speed v as shown in the figure. The magnitude of change in velocity in moving from P to Q is

A. $2 v \cos 40^{\circ}$
B. $2 v \sin 40^{\circ}$
C. $2 v \cos 20^{\circ}$
D. $2 v \sin 20^{\circ}$

Answer: D

D Watch Video Solution

26. A car accelerates from rest at constant rate
for the first 10 s and covers a distance x . It
covers a distance y in the next 10 s at the same acceleration. Which of the following is true?
A. $x=3 y$
B. $y=3 x$
C. $x=y$
D. $y=2 x$

Answer: B
(Watch Video Solution
27. A particle starts from rest and moves with
acceleration a which varies with time t as
$a=k t$ where k is a costant. The displacement
s of the particle at time t is
A. $\frac{1}{2} k t^{2}$
B. $\frac{1}{2} a t^{2}$
C. $\frac{1}{6} a t^{2}$
D. None

Answer: C

28. The following shows the time-velocity graph for a moving object. The maximum acceleration will be:

A. $1 m / \sec ^{2}$
B. $2 m / \mathrm{sec}^{2}$
C. $3 \mathrm{~m} / \mathrm{sec}^{2}$

D. $4 m / \sec ^{2}$

Answer: D

D Watch Video Solution

29. In the above question the magnitude of retardation will be:
A. $1 m / \sec ^{2}$
B. $2 m / \mathrm{sec}^{2}$
C. $3 \mathrm{~m} / \mathrm{sec}^{2}$

D. $4 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: B

- Watch Video Solution

30. A rocket is fired vertically upwards and moves with net acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. After

1 min the fuel is exhausted. The time taken by it to reach the highest point after the fuel is exhausted will be:
A. 10 sec
B. 20 sec
C. 30 sec
D. 60 sec

Answer: D

D Watch Video Solution

31. In the following velocity-time graph of a body, the distance and displacement travelled
by the body in 5 seconds in meters will be:

A. 70,110
B. 110,70
C. 40,70

D. 90,50

Answer: B

- Watch Video Solution

32. The displacement x of a body varies with
time t as $x=-\frac{2}{3} t^{2}+16 t+2$. The body will come to rest after :
A. 6 s
B. 12 s
C. 18 s
D. 20 s

Answer: B

D Watch Video Solution

33. A particle moves along X-axis in such a way
that its coordinate X varies with time t according to
the equation
$x=\left(2-5 t+6 t^{2}\right) m$. The initial velocity of the particle is
A. $2 m / s$
B. $-5 m / s$
C. $6 m / s$
D. $-3 m / s$

Answer: B

D Watch Video Solution

34. A parachutist drops first freely from a plane for $10 s$ and then his parachute opens out. Now he descends with a net retardation
of $2.5 \mathrm{~ms}^{-2}$ If he bail out of the plane at a
height of $2495 m$ and $g=10 m s^{-2}$, his velocity on reaching the ground will be`.
A. $2.5 \mathrm{~m} / \mathrm{s}$
B. $7.5 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution
35. The acceleration of a'particle starting from rest, varies with time according to the relation $a=k t+c$. The velocity of the particle after time t will be :
A. $k t^{2}+c t$
B. $1.2 k t^{2}+c t$
C. $\frac{1}{2}\left(k t^{2}+c t\right)$
D. $k t^{2}+\frac{1}{2} c t$

Answer: B

- Watch Video Solution

36. The variation ofvelocity ofa particle moving along a straight line is illustrated in the following figure-1.122. The distance covered by the particle in 4 seconds is :

A. 60 m
B. 25 m
C. 55 m
D. 30 m

Answer: C

D Watch Video Solution

37. A street car moves rectilinearly from station A to the next station B with an acceleration varying according to the law $f=a-b x$, where a and b are constants and
x is the distance from station A. The distance between the two stations \& the maximum
velocity are :

$$
\begin{aligned}
& \text { A. } x=\frac{2 a}{b}, v_{\max }=\frac{a}{\sqrt{b}} \\
& \text { B. } x=\frac{b}{2 a}, v_{\max }=\frac{a}{b} \\
& \text { C. } x=\frac{a}{2 b}, v_{\max }=\frac{b}{\sqrt{a}} \\
& \text { D. } x=\frac{a}{b}, v_{\max }=\frac{\sqrt{a}}{b}
\end{aligned}
$$

Answer: A

D Watch Video Solution
38. When the speed of the car is v, the minimum distance over which it can be stopped is x. If the speed becomes $n v$, what will be the minimum distance over which it can be stopped during same time:
A. x / n
B. $n x$
C. x / n^{2}
D. $n^{2} x$

Watch Video Solution

39. The following figure-I .123 shows the velocity-time graph of a moving body along a straight line. The displacement and distance travelled in six seconds be respectively given as :

A. $8 \mathrm{~m}, 16 \mathrm{~m}$
B. $16 \mathrm{~m}, 8 \mathrm{~m}$
C. $16 \mathrm{~m}, 16 \mathrm{~m}$
D. $8 \mathrm{~m}, 8 \mathrm{~m}$

Answer: A

D Watch Video Solution
40. A particle is moving in a straight line with initial velocity u and uniform acceleration f. If
the sum of the distances travelled in
$t^{\text {th }}$ and $(t+1)^{\text {th }}$ seconds is 100 cm , then its velocity after t seconds, in cm / s, is.
A. 20
B. 30
C. 50
D. 80

Answer: C
(Watch Video Solution
41. The following figure-1.124 shows the velocity-time graph of a train. The total distance travelled by the train is:

A. 780 m
B. 1200 m
C. 660 m
D. 1500 m

Answer: A

- Watch Video Solution

42. A stone falls freely rest. The distance covered by it in the last second is equal to the distance covered by it in the first 2 s . The time taken by the stone to reach the ground is
A. 4 s
B. 5 s
C. 6 s

D. 7 s

Answer: B

D Watch Video Solution

43. The figure- 1.125 shows the acceleration
versus time graph of a train. If it starts from
rest, the distance it travels before it comes to
rest is :

A. 30 m
B. 26 m
C. 13 m
D. 40 m

Answer: B

D Watch Video Solution

44. A particle moving on a straight line
ultimately comes to rest ? What is the angle between its initial velocity and acceleration?
A. Zero
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: D

D Watch Video Solution

45. Ona twolaneroada carAistravelling witha speedof $v=5 m s^{-1}$. Two car B and C approach car A in opposite direction with a speed $u=10 m s^{-1}$ each. At a certain instant when the B and C are equidistant from A each being $l=1500 m$, B decides to overtake A before C does. What minimum acceleration of
car B is required to avoid an accident with C :

A. $-0.2 m s^{-2}$
B. $-1 / 15 m s^{-2}$
C. $0.2 m s^{-2}$
D. $1 / 15 m s^{-2}$
46. Two cars get closer by 8 m every second while traveling in the opposite directions. They get closer by 0.8 m while traveling in the same directions. What are the speeds of the two cars ?
A. $4 \mathrm{~m} / \mathrm{s}$ and $4.4 \mathrm{~m} / \mathrm{s}$
B. $4.4 \mathrm{~m} / \mathrm{s}$ and $3.6 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$ and $3.6 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

47. At rain 200 m long moving at constant acceleration crosses a bridge 300 m long. It enters the bridge with a speed of $3 \mathrm{~m} / \mathrm{s}$ and leaves it with a speed of $5 \mathrm{~m} / \mathrm{s}$. What is the time taken to cross the bridge ?
A. 25 s
B. 75 s
C. 125 s
D. 150 s

Answer: C

D Watch Video Solution

48. A ball is dropped from top of a tower of

100 m height. Simultaneously another ball was
thrown upward from bottom of the tower with
a speed of $50 \mathrm{~m} / \mathrm{s}\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$. They will
cross each other after
A. 1 s
B. 2 s
C. 3 s
D. 4 s

Answer: B

D Watch Video Solution
49. A truck travelling due north at $20 \mathrm{~m} / \mathrm{s}$ turns east and travels at the same speed.

What is the change in velocity :
A. $40 \mathrm{~m} / \mathrm{s}$ north east
B. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ south east
C. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ south west
D. $20 \sqrt{2} \mathrm{~m} / \mathrm{s}$ north west

Answer: B

- Watch Video Solution

50. If the velocity v of a particle moving along
a straight line decreases linearly with its
position coordinates s from $50 \mathrm{~m} / \mathrm{s}$ to a value
approaching zero at $=100 \mathrm{~m}$, the time it takes
to reach the 100 m position will be:

A. 10 s
B. 5 s
C. Infinity
D. 0.5 s
51. A particle moves towards east with velocity
$5 m / s$. After 10 sec onds its direction changes
towards north with same Velocity. The average
acceleration of the particle is
A. 0
B. $1 / \sqrt{2} m / s^{2}$ north west
C. $1 / \sqrt{2} m s^{2}$ north east
D. $\sqrt{2} m / s^{2}$ north east

Answer: B

D Watch Video Solution

52. A body of mass 2 kg is moving along northeast direction with a speed $\sqrt{2} \mathrm{~m} / \mathrm{s}$. A force of
$0.2 N$ is applied on the body due west for 10 sec. The final velocity ofthe body is:
A. $1 \mathrm{~m} / \mathrm{s}$ due north
B. $1 \mathrm{~m} / \mathrm{s}$ due east
C. $2 \mathrm{~m} / \mathrm{s}$ due north

D. $2 \mathrm{~m} / \mathrm{s}$ due east

Answer: A

D Watch Video Solution

53. A person moves 30 m north and then 20 m towards east and finally $30 \sqrt{2} \mathrm{~m}$ in south-west direction. The displacement of the person from the origin will be
A. 14 m south west

B. 20 m south

C. 10 m west
D. 15 m east

Answer: C

D Watch Video Solution

54. A river is flowing with a speed of $1 \mathrm{kmh}^{-1}$

A swimmer wants to go point C starting from
A. He swims with a speed of $5 k m h^{-1}$ at an angle θ w.r.t. the river flow. If
$A B=B C=400 \mathrm{~m}$, at what angle with the
river bank should the swimmer swim?

A. 37°
B. 30°
C. 53°
D. 45°

Answer: C

D Watch Video Solution

55. A blind person after walking each 10 steps
in one direction, each of length 80 cm , turns
randomly the left or to right by 90°. After
walking a total of 40 steps the maximum possible displacement the person from his starting position could be (A) 320 m (B) 32 m (C) $\frac{16}{\sqrt{2}} \mathrm{~m}$ (D) $16 \sqrt{2} \mathrm{~m}$
A. 30 m
B. $16 \sqrt{2} m$
C. $8 \sqrt{2} m$
D. 0 m

Answer: B

D Watch Video Solution

56. A person standing on the roof of a house of height h throws a particle vertically downwards and otherparticle in a horizontal
direction with the same speed u. The ratio ofspeeds of the particles on reaching the earth is :
A. $\sqrt{2 g h}: u$
B. 1:2
C. $\sqrt{2}: 1$
D. $1: 1$

Answer: D

D Watch Video Solution
57. A particle moves along a horizontal straight line with a velocity-time relationship
as shown in the figure-1.129. The total distance moved by the particle is :

A. 39 m
B. 13 m
C. 26 m
D. 2.6 m

Answer: C

D Watch Video Solution

58. A car is going east wards with a velocity of
$8 \mathrm{~m} / \mathrm{s}$. To the passengers in the car, a train appears to be moving north wards with a
velocity of $15 \mathrm{~m} / \mathrm{s}$. What is the actual velocity of the train:
A. $7 \mathrm{~m} / \mathrm{s}$
B. $17 \mathrm{~m} / \mathrm{s}$
C. $23 \mathrm{~m} / \mathrm{s}$
D. None of these

Answer: B
(Watch Video Solution
59. Rain is falling vertically with a velocity of 3
$k m h^{-1}$. A man walks in the rain with a velocity of $4 \mathrm{kmh}^{-1}$. The rain drops will fall on the man with a velocity of
A. 1 kph
B. 3 kph
C. 2 kph
D. 5 kph

Answer: D

60. A man walks in rain with a velocity of 5
kmph. The rain drops strike at him at an angle
of 45° with the horizontal. The downward velocity of the rain drops will be :
A. 5 kph
B. 4 kph
C. 3 kph
D. 1 kph

Answer: A

- Watch Video Solution

61. The velocities of A and B are marked in the
figure-1.130. The velocity of block C is (assume that the pulleys are ideal and string inextensible) :

A. $5 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

62. If θ is the angle between the velocity and acceleration of a projectile at a point of its
path, its value when the projectile is at the highest point is :
A. 0°
B. 180°
C. 90°
D. 45°

Answer: C
(Watch Video Solution
63. If the angle of projection θ corresponds to
horizontal range being equal to the maximum
height then $\tan \theta$ equals :
A. 1
B. $1 / \sqrt{3}$
C. $\sqrt{3}$
D. 4

Answer: D

D Watch Video Solution
64. A thief is running away on a straight road
in a jeep moving with a speed of $9 \mathrm{~m} / \mathrm{s}$. A police man chases him on a motor cycle moving at a speed of $10 \mathrm{~m} / \mathrm{s}$. If the instantaneous separation of the jeep from the motorcycle is

100m, how long will it take for the police man to catch the thief?
A. 1 s
B. 19 s
C. 90 s

D. 100 s

Answer: D

D Watch Video Solution

65. Two cars are moving in the same direction
with the same speed $30 \mathrm{~km} / \mathrm{hr}$. They are
separated by a distance of $5 k m$, the speed of a car moving in the opposite direction of it meets these two cars at an interval of 4 minutes, will be.
A. 30 kph
B. 35 kph
C. 40 kph
D. 45 kph

Answer: D

D Watch Video Solution

66. A particle is projected upwards with a velocity of $110 \mathrm{~m} / \mathrm{sec}$ at an angle of 60° with
the vertical. Find the time when the particle
will move perpendicular to its initial direction, taking $g=10 \mathrm{~m} / \mathrm{sec}^{2}$
A. 10 seconds
B. 22 seconds
C. 5 secomds
D. $10 \sqrt{3}$ seconds

Answer: B
(Watch Video Solution
67. The horizontal range of a projectile is R and the maximum height at tained by it is $\mathrm{H} . \mathrm{A}$ strong windnow begins to blow in the direction of the motion of the projectile, giving it a constant horizontal acceleration $=$ $\mathrm{g} / 2$. Under the same conditions of projection, the horizontal range of the projectile will now be:
A. $R+\frac{H}{2}$
B. $R+H$
C. $R+\frac{3 H}{2}$

D. $R+2 H$

Answer: D

D Watch Video Solution

68. Two particles, one with constant velocity 50
m / s and the other with uniform acceleration
$10 \mathrm{~m} / \mathrm{s}^{2}$ start moving simultaneously from the same place in the same direction. They will be at a distance of 125 m from each other after: A. 5 sec .
B. $5(1+\sqrt{2}) \mathrm{sec}$
C. 10 sec
D. $10(\sqrt{2}+1)$ sec

Answer: A

D Watch Video Solution

69. A stone is dropped from an aeroplane which is rising with acceleration $5 m s^{-2}$. If the acceleration of the stone relative to the
aeroplane be f, then the following is (are) true
A. $f=5 m s^{-2}$ downward
B. $f=5 m s^{-2}$ upwards
C. $f=15 m s^{-2}$ upward
D. $f=15 m s^{-2}$ downward

Answer: D
(Watch Video Solution
70. A ball is thrown vertically upwards in air. If
the air resistance can not be neglected
(Assume it be directly proportionalto velocity)
thenthe acceleration of the ball at the highest point will be :
A. 0
B. g
C. $>g$
D. $<g$

Answer: B
71. If $y=x-x^{2}$ is the of the path of a projectile, then which of the following is incorrect:
A. Range $=1 \mathrm{~m}$
B. Maximum height $=0.25 \mathrm{~m}$
C. Time of flight $=0.5 \mathrm{sec}$.
D. Angle of projection $=45^{\circ}$

- Watch Video Solution

72. A rocket is fired upwards. Its velocity versus
time graph is shown in the figure-1.131. The maximum height reached by the rocket is:

A. 7.1 km
B. 79.2 km
C. 72 km

D. Infinite

Answer: B

D Watch Video Solution

73. A person walks up a stalled escalator in 90
s. When standingon the same escalator, now moving, he is carried in 60 s. The time it would
take him to walk up the moving escalator will be:
A. 27 s
B. 72 s
C. 18 s
D. 36 s

Answer: D

D Watch Video Solution

74. An object is thrown horizontally from a tower H meter high with a velocity of $\sqrt{2 g H}$ m / s. Its velocity on striking the ground will be :
A. $\sqrt{2 g H}$
B. $\sqrt{6 g H}$
C. $2 \sqrt{g H}$
D. $2 \sqrt{2 g H}$

Answer: C

D Watch Video Solution

75. For a train that travels from one station to another at a uniform speed of $40 \mathrm{kmh}^{-1}$ and
returns to initial station at speed of $60 \mathrm{kmh}^{-1}$ then its average speed is
A. $48 \mathrm{~km} / \mathrm{hr}$, zero
B. $36 \mathrm{~km} / \mathrm{hr}$, zero
C. $24 \mathrm{~km} / \mathrm{hr}, 24 \mathrm{~km} / \mathrm{hr}$
D. None of these

Answer: A
(Watch Video Solution
76. A motor car is going due north at a speed of $50 \mathrm{~km} / \mathrm{h} . \mathrm{lt}$ makes a 90° left turn without changing the speed. The change in the velocity of the car is about :
A. $50 \mathrm{~km} / \mathrm{h}$ towards west
B. $50 \sqrt{2} \mathrm{~km} / \mathrm{h}$ towards south-west
C. $70 \mathrm{~km} / \mathrm{h}$ towards north-west
D. Zero

Answer: B
77. A bird flies for 4 sec with a velocity of
$|t-2| \mathrm{m} / \mathrm{s}$ in a straight line, where $t=$ time
in seconds. It covers a distance of:
A. $2 m$
B. 4 m
C. 6 m
D. 8 m

Answer: B
78. Three particles A, B and C are thrown from the top of a tower with the same speed. A is thrown up, B is thrown down and C is horizontally. They hit the ground with speeds v_{A}, v_{B} and v_{C} respectively then,
A. $v_{A}=v_{B}=v_{C}$
B. $v_{A}>v_{B}>v_{C}$
C. $v_{A}=v_{B}>v_{C}$
D. $v_{A}>v_{B}=v_{C}$

Answer: A

D Watch Video Solution

79. A particle is thrown with a speed u at an
angle θ with the horizontal. When the particle
makes an angle ϕ with the horizontal. Its
speed changes to v :
A. $v=u \cos \theta$
B. $v=u \cos \theta \cdot \cos \phi$
C. $v=u \cos \theta \cdot \sec \phi$

D. $v=u \sec \theta \cdot \cos \phi$

Answer: C

D Watch Video Solution

80. Two projectiles A and B are projected with
angle of projecton 15° for the projectile A and
45° for the projectile B. If R_{A} and R_{B} be the horizontal range for the two projectiles then :

$$
\text { A. } R_{A}<R_{B}
$$

B. $R_{A}=R_{B}$
C. $R_{A}>R_{B}$
D. The information is insufficient to decide the relation of R_{A} with R_{B}.

Answer: D

D Watch Video Solution

81. In the arrangement shown in the figure
-1.132 if v_{1} and v_{2} are instaneous velocities of masses m_{1} and m_{2} respectively, and angle
$A C B=2 \theta$ at the instant then :

A. $\theta=\frac{\cos ^{-1} v_{2}}{2 v_{1}}$
B. $\theta=\frac{\cos ^{-1} v_{1}}{2 v_{2}}$
C. $\theta=\frac{\tan ^{-1} v_{1}}{2 v_{2}}$
D. $\theta=\frac{\sin ^{-1} v_{1}}{v_{2}}$
82. A man rows a boat with a speed of 18 $\mathrm{km} / \mathrm{hr}$ in northwest direction. The shoeline makes an angle of 15° south of west. Obtain
the component of the velocity of the boat along the shoreline:
A. $9 \mathrm{~km} / \mathrm{hr}$
B. $18 \frac{\sqrt{3}}{2} \mathrm{~km} / \mathrm{hr}$
C. $18 \cos 15^{\circ} \mathrm{km} / \mathrm{hr}$

D. $18 \cos 75^{\circ} \mathrm{km} / \mathrm{hr}$

Answer: A

D Watch Video Solution

83. A bullet is fired from a gun falls at a
distance half of its maximum range. The angle
of projection of the bullet can be :
A. 15°
B. 30°
C. 60°
D. 75°

Answer: A

D Watch Video Solution

84. A bus begins to move with an accelaration
of $1 \mathrm{~ms}^{-1}$. A man who is 48 m behind the bus
starts running at $10 \mathrm{~ms}^{-1}$ to catch the bus,
the man will be able to catch the bus after .
A. 8 s
B. 10 s
C. 12 s
D. 14 s

Answer: A

D Watch Video Solution
85. An experiment on the take-off performance
of an aeroplane shows that the acceleration
varies as shown in the figure-l. 133, and that it
takes 12 s to take off from a rest position. The distance along the run way covered by the aeroplane is :

A. 210 m
B. 2100 m
C. 21000 m
D. 1200 m

Answer: A

D Watch Video Solution

86. Wind is blowing in the north direction at speed of $2 \mathrm{~m} / \mathrm{s}$ which causes the rain to fall at
some angle with the vertical. With what velocity should acyclist drive so that the rain appears vertical to him:
A. $2 \mathrm{~m} / \mathrm{s}$ south
B. $2 \mathrm{~m} / \mathrm{s}$ north

C. $4 \mathrm{~m} / \mathrm{s}$ west

D. $4 \mathrm{~m} / \mathrm{s}$ south

Answer: B

D Watch Video Solution

87. A particle has a velocity u towards east at
$t=0$. Its acceleration is towards west and is
constant. Let x_{A} and x_{B} be the magnitude of displacements in the first 10 seconds and the next 10 seconds
A. $x_{A}<x_{B}$
B. $x_{A}=x_{B}$
C. $x_{A}>x_{B}$
D. The information is insufficient to decide
the relation of x_{A} with x_{B}

Answer: D

- Watch Video Solution

88. A particle thrown up vertically reaches its
highest point in time t_{1} and returns to the ground in a further time t_{2}. The air resistance exerts a constant force on the particle opposite to its direction of motion.
A. $t_{1}>t_{2}$
B. $t_{1}=t_{2}$
C. $t_{1}<t_{2}$
D. may be (A) or (C) depending on the ratio
of the force of air resistance to the

wight of the particle.

Answer: C

- Watch Video Solution

89. Three particles starts from origin at the same time with a velocity $2 m s^{-1}$ along
positive x-axis, the second with a velocity $6 m s^{-1}$ along negative y-axis, Find the velocity of the third particle along $x=y$ line so that
the three particles may always lie in a straight line.
A. $-3 \sqrt{3} \mathrm{~m} / \mathrm{s}$
B. $3 \sqrt{2} \mathrm{~m} / \mathrm{s}$
C. $-3 \sqrt{2} \mathrm{~m} / \mathrm{s}$
D. $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
90. A car 2 m long and 3 m wide is moving at
$13 \mathrm{~m} / \mathrm{sec}$ when a bullet hits it in a direction
making an angle $\theta=\tan ^{-1} 3 / 4$ with the car
as seen from the street. The bullet enters one
edge of the comer and passes out at the diagonally opposite comer. Neglectingany interaction between bullet and car find the
time for the bullet to cross the car :

A. 0.25 sec
B. 1.3 sec
C. 0.15 sec
D. 0.6 sec

Answer: C

D Watch Video Solution

91. Rain is falling with a speed of $4 n V s$ inadirection making an angle of 30° with vertical towards south. What should be the magnitude \& direction of velocity of cyclist to hold his umbrella exactly vertical, so that rain does not wet him:
A. $2 \mathrm{~m} / \mathrm{s}$ towards north
B. $4 \mathrm{~m} / \mathrm{s}$ towards south
C. $2 \mathrm{~m} / \mathrm{s}$ towards south
D. $4 \mathrm{~m} / \mathrm{s}$ towards north

Answer: C

D Watch Video Solution

92. The greatest acceleration or deceleration
that a train may have is a. The minimum time
in which the train may reach form one station to the other seprated by a distance is-
A. $\sqrt{\frac{s}{a}}$
B. $\sqrt{\frac{2 s}{a}}$
C. $\frac{1}{2} \sqrt{\frac{s}{a}}$
D. $2 \sqrt{\frac{s}{a}}$

Answer: D

D Watch Video Solution

93. A car of mass $=m=1000 \mathrm{~kg}$ is moving
with constant speed $v=100 m / s$ on a parabolic shaped bridge AFOE of span force
applied by the bridge on the car when he car is at point E, is:

A. $5000 \sqrt{\frac{5}{2}} N$
B. $\frac{5000}{\sqrt{2}} N$
c. $\frac{10000}{\sqrt{2}} N$
D. $5000 \sqrt{\frac{2}{5}} N$

Answer: A

- Watch Video Solution

94. A block B is suspended from a cable that is
attached to the block at E, wraps around three
pulleys and is tied to the back of a truck D.
Ifthe tmck starts from rest when x_{D} is zero
and moves forward with a constant acceleration of $a_{P}=3 / 2 m / s^{2}$, if the speed
of the block at the instant $x_{D}=3 m$ is :

$$
\begin{aligned}
& \text { A. } \frac{1}{5} m / s \\
& \text { B. } \frac{2}{5} m / s \\
& \text { C. } \frac{3}{5} m / s \\
& \text { D. } 1 m / s
\end{aligned}
$$

95. A particle is projected at an angle 60° with speed $10(\sqrt{3}) m / s$, from the point A, as shown in the figure. At the same time the wedge is made to move with speed $10(\sqrt{3}) \mathrm{m} / \mathrm{s}$ towards right as shown in the figure. Then the time after which particle will strike with wedge is

A. 1 sec
B. 2 sec
C. 3 sec
D. it will never collide on the wedge

Answer: B

- Watch Video Solution

96. An aeroplane flies along a straight line
from A to B with a speed v_{0} and back again. A
steady wind v is blowing if $A B=l$ then
a)total time for the trip is $\frac{2 v_{0} l}{v_{0}^{2}-v^{2}}$ if wind
blows along the line $A B$
b)total time for the trip is $2 \frac{l}{\sqrt{v_{0}^{2}-v^{2}}}$, if wind
blows perpendicular to the line $A B$
c)total time for the trip decrease because of
the presence of wind
d)total time for the trip increase because of
the presence of wind
A. $T_{w}=T_{0}$
B. $T_{w}>T_{0}$
C. $T_{w}<T_{0}$

$$
\text { D. } T_{w}=2 T_{0}
$$

Answer: B

D Watch Video Solution

97. In the arrangement of rigid links of equal
length l, they can freely rotate about the joined ends as shown in the figure- 1.138. If the end U is pulled horizontally with constant speed $20 \mathrm{~m} / \mathrm{s}$, find the approx. speed of end P
when the angle SUT is 90°.

A. $5 \mathrm{~m} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $7.1 \mathrm{~m} / \mathrm{s}$
D. $14.12 \mathrm{~m} / \mathrm{s}$

Answer: C
98. A snapshot of apetrol engine is given in
which piston is moving downwards with
velocity $40 \sqrt{3} \mathrm{~m} / \mathrm{s}$. Find the angular velocity of
the shaft:

A. $100 \mathrm{rad} / \mathrm{s}$
B. $300 \mathrm{rad} / \mathrm{s}$
C. $200 \mathrm{rad} / \mathrm{s}$
D. $500 \mathrm{rad} / \mathrm{s}$

Answer: A

D Watch Video Solution

99. The acceleration time graph of a particle is
shown in the figure-1.140. What is the velocity
of particle at $t=8 \mathrm{~s}$, if initial velocity of particle
is $3 \mathrm{~m} / \mathrm{s}$? (Assume motion is 1 dimension) :

A. $4 \mathrm{~m} / \mathrm{s}$
B. $5 \mathrm{~m} / \mathrm{s}$
C. $6 \mathrm{~m} / \mathrm{s}$
D. $7 \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

100. A particle is moving on a circular path of radius R with uniform angular speed ω. The magnitude of average velocityof particle during time $t=0$ to $t=\frac{2 \pi}{3 \omega}$:
A. $\frac{\sqrt{3}}{2} \frac{\omega R}{\pi}$
B. $\frac{3}{2} \frac{\omega R}{\pi}$
C. $\frac{3 \sqrt{3}}{2} \frac{\omega R}{\pi}$

D. $\frac{2}{3} \frac{\omega R}{\pi}$

Answer: C

D Watch Video Solution

101. A particle is thrown at time $t=0$ with a
velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with the horizontal from a point on an incline plane, making an angle of 30° with the horizontal.

The time when the velocity of the projectile
becomes parallel to the incline is :

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \mathrm{sec} \\
& \text { B. } \frac{1}{\sqrt{3}} \mathrm{sec} \\
& \text { C. } \sqrt{3} \mathrm{sec} \\
& \text { D. } \frac{1}{2 \sqrt{3}} \mathrm{sec}
\end{aligned}
$$

Answer: B
102. A particle is moving along the path given
by $y=\frac{C}{6} t^{6}$ (where C is a positive constant).
The relation between the acceleration (a) and the velocity (v) of the particle at $t=5 \mathrm{sec}$ is
A. $5 a=v$
B. $a=5 v$
C. $a=\sqrt{v}$
D. $a=v$

Answer: D

- Watch Video Solution

103. Three particles are projected in air with
the minimum possible speeds, such that the
first goes from Ato B, the second goes from 5 to C and the third goes from C to A. Points A and C are at the same vertical level. The two inclines make the same angle a with the horizontal as shown. Thenthe relation among the projection speeds of the three particles is :
A. $u_{3}=u_{1}+u_{2}$
B. $u_{3}^{2}=2 u_{1} u_{2}$
C. $\frac{1}{u_{3}}=\frac{1}{u_{1}}+\frac{1}{u_{2}}$
D. $u_{3}^{2}=u_{1}^{2}+u_{2}^{2}$

Answer: B

D View Text Solution

104. A particle moving in the positive x direction has initial velocity v_{0}. The particle undergoes retardation $k v^{2}$, where vis its
instantaneous velocity. The velocity of the particle as a function of time is given by:
A. $v=v_{0} /\left(1+k v_{0} t\right)$
B. $v=\frac{2 v_{0}}{1+k t}$
C. $v=\frac{v_{0}}{k t}$
D. $v=\frac{v_{0}}{\left(1+k^{2} v_{0}^{2} t\right)}$

Answer: A

105. A particles is projected with speed u at an
angle θ with horizontal particle explodes at
highest point of its path into two equal
fragments one of fragment moving up
straight with a speed u. The difference in time
in which the particles fall on ground. (Assume
it explodes at maximum height H)

$$
\begin{aligned}
& \text { А. } \frac{2 u}{g} \\
& \text { B. } \frac{u}{g} \sqrt{u^{2}-2 g H} \\
& \text { С. } \frac{1}{2 g} \sqrt{u^{2}+2 g H}
\end{aligned}
$$

D. $\frac{2}{g} \sqrt{u^{2}+2 g H}$

Answer: A

D Watch Video Solution

106. Inthe figure shown a river of width 4 km is
flowing with the speed of $5 \mathrm{~km} / \mathrm{h}$. A swimmer whose swimming speed relative to the water is
$4 \mathrm{~km} / \mathrm{h}$, starts swimming from a points on a bank. On the other bank 5 is a point which is directly opposite to A. What minimum
on the other bank to reach the point B.

A. 2
B. 3
C. 4
D. 5

Answer: B

D Watch Video Solution

107. If block A starts from rest at $t=0$ \&
begins to move towards right with $2 m / s^{2} \&$
simultaneously C moves towards right with
constant velocity of $4 \mathrm{~m} / \mathrm{s}$. Velocity of block B
at $t=5 \mathrm{sec}$. will be:

A. $2 \mathrm{~m} / \mathrm{s}$
B. $3 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. None

Answer: B
108. In the pulley system shown the two upper pulleys are fastened together to form single unit. The cable is wrapped around the smaller pulley with its end secured to the pulleys so that it cannot slip. Determine the upward acceleration of block B if A has downward acceleration of $2 m / s^{2}$:

A. $16 m / s^{2}$
B. $8 m / s^{2}$
C. $0.5 m / s^{2}$
D. $0.25 \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

D Watch Video Solution

109. Knowing that block B starts to move downward with a constant velocity of
$18 \mathrm{~cm} / \mathrm{sec}$, the velocity of block A will be:

A. $27 \mathrm{~cm} / \mathrm{s}$
B. $12 \mathrm{~cm} / \mathrm{s}$
C. $36 \mathrm{~cm} / \mathrm{s}$
D. $9 \mathrm{~cm} / \mathrm{s}$

Answer: B

D Watch Video Solution
110. If velocity of block B in the given arrangement is $300 \mathrm{~mm} / \mathrm{sec}$. towards right.

Then velocity of A will be :
$300 \mathrm{~mm} / \mathrm{sec}$.

A. $200 \mathrm{~mm} / \mathrm{sec}$
B. $100 \mathrm{~mm} / \mathrm{sec}$
C. $450 \mathrm{~mm} / \mathrm{sec}$
D. $150 \mathrm{~mm} / \mathrm{sec}$

Answer: A
111. Find range of projectile on the inclined plane which is projected perpendicular to the incline plane with velcoity $20 \mathrm{~m} / \mathrm{s}$ as shwon in figure.

A. 75 m

B. 40 m

C. 45 m

D. 50 m

Answer: A

D Watch Video Solution

Advance Mcqs With One Or More Options

 Correct1. Thedisplacement xofaparticle asa function oftime t si shown in following figure -1.148. The figure indicates:

A. The particle starts with a certain velocity,
but the motion is retarded and finally
particle stops
B. The velocity ofparticle is constant through out
C. The acceleration oftheparticleisconstant
throughout
D. The particle starts with a constant
velocity, the motion is accelerated:

Answer: A

D Watch Video Solution

2. A particle is projected vertically upward with
velocity u from a point A, when it returns to the point of projection .
A. Its average velocity is zero
B. Its displacement is zero
C. Its average speed is $u / 2$
D. Its average speed is u

Answer: A, B, C

D Watch Video Solution
3. An object may have :-
A. Varying speed without having varying
velocity,
B. Varying velocity without having varying
speed,
C. Non zero acceleration without having
varying velocity,
D. Non zero acceleration without having
varying speed.

Answer: B, D

- Watch Video Solution

4. Choose the correct statement(s):
A. We can have a motion having zero
displacement and nonzero average
speed.
B. Average velocity is half the sum of its
initial and final velocity.
C. Total displacement is equal to product
of average velocity and time.
D. Acceleration of a particle is positive if it
is moving in negative direction with
decreasing speed.

Answer: A, C, D

D Watch Video Solution

5. Choose the correct statement(s):
A. If a particle moving in a straight line has a negative acceleration then this always meant that the speed is decreasing. B. If speed of a particle moving in straight
line changes, it must have non-zero acceleration.
C. Acceleration of a particle is negative if it is moving in +ve direction with decreasing speed.

D. Rate of change of speed is magnitude of

 acceleration at any instant.
Answer: B, C

- Watch Video Solution

6. Figure shows some velocity versus time graphs:

,

Only some of these can be realised in practice.These are:
A. Figure-(a)
B. Figure-(b)
C. Figure-(c)
D. Figure-(d)

Answer: B, D
(Watch Video Solution
7. A man is running with a constant acceleration on a plank which is placed on a horizontal smooth surface. Then choose the correct option(s):
A. Work done by friction on the man is negative
B. Work done by friction on the man is
positive
C. Work done by friction on the plank is
positive

D. Work done by friction on the plank is

 negative
Answer: B, C

D Watch Video Solution

8. Man A is sitting in a car moving with a speed of $54 \frac{k m}{h r}$ observes a man B in front of the car crossing perpendicularly a road of width 15 m in three seconds. Then the velocity of man B (in $\frac{m}{s}$) will be:
A. Speed of man B is $5 \sqrt{10} \mathrm{~m} / \mathrm{s}$
B. Speed of man B is $5 m s^{-1}$
C. Actual direction of motion of B is at an
angle of $\tan ^{-1}\left(\frac{1}{3}\right)$ with direction of
motion of car
D. Actual direction of motion of B si at
angle of $\tan ^{-1}(3)$ with direction
opposite to the direction of motion of
car

- Watch Video Solution

9. A motor boat is to reach to a point 30° upstream on other side of a river flowing with
velocity $5 \mathrm{~m} / \mathrm{s}$.Velocity of motor boat with respect to water is $5 \sqrt{3} m / s e c$.The driver should steer the boat at an angle of
A. 30° up w.r.t. the line of destination from
the starting point
B. 60° up w.r.t. normal to the bank
C. 120° w.r.t. stream direction
D. None of these

Answer: A, B, C

- Watch Video Solution

10. The position of a particle moving in a
straight line is given by
$x=3 t^{3}-18 t^{2}+36 t$

Here, x is in m and t in second. Then
A. direction of velocity and acceleration
both change at $t=2 s$
B. the distance travelled by particle is equal
to magnitude of displacement for $t=0$
to $t=5 s$
C. the speed of particle is decreasing in
$t=0$ to $t=2 s$ then it is increasing for
$t>2$
D. The magnitudes of velocity and
acceleration are equal at $t=0$

Answer: B, C, D

D Watch Video Solution

11. A particle is projected at an angle $\theta=30^{\circ}$ with the horizontal, with a velocity of $10 \mathrm{~ms}^{-1}$. Then
A. after 2 s the velocity of particle makes an
angle of 60° with initial velocity vector
B. after 1 s the velocity of particle makes an
angle of 60° with initial velocity vector
C. the magnitude of velocity of particle after 1 s is $10 \mathrm{~m} / \mathrm{s}$
D. the magnitude of velocity of particle after 1 s is $5 \mathrm{~m} / \mathrm{s}$

Answer: B, C

D Watch Video Solution

12. Under the action of force P, the constant acceleration of block B is $6 \mathrm{~m} / \mathrm{sec}^{2}$ up the incline. For the instant when the velocity of B
is $3 \mathrm{~m} / \mathrm{sec}$ up the incline. Choose the correct option (s)

A. Velocity of B relative to A is $1 \mathrm{~m} / \mathrm{s}$
B. Acceleration of B relative to A is $2 m / s^{2}$
C. The velocity of point C of the cable (in
ground frame) is $4 \mathrm{~m} / \mathrm{s}$
D. Velocity of B relative to A is $2 \mathrm{~m} / \mathrm{s}$

Answer: A, B, C

D Watch Video Solution

13. A particle moves with constant speed v along a regular hexagon $A B C D E F$ in the
same order. Then the magnitude of the avergae velocity for its motion form A to
A. F is $v / 5$
B. D is $v / 3$
C. C is $v \sqrt{3} / 2$

D. B is v

Answer: A, C, D

D Watch Video Solution

14. A particle has initial velcoity $10 \mathrm{~m} / \mathrm{s}$. It moves due to constant retarding force along
the line of velocity which produces a retardation of $5 m / s^{2}$. Then
A. The maximum displacement in the
direction of initial velocity is 10 m
B. The distance travelled in first 3 seconds
is 7.5 m
C. The distance travelled in first 3 seconds
is 12.5 m
D. The distance travelled in first 3 seconds is 17.5 m .

Answer: A, C
15. If a particle is moving along a straight line and following is the graph showing acceleration varying with time then choose correct statement(s). At $t=0, x=0$ and
$v_{0}=7 m s^{-1}$

A. Its displacement can never become zero
B. Its velocity can never become zero

C. Its displacement can become zero

D. Its velocity can become zero

Answer: A, D

D Watch Video Solution

16. a particle moving along a straight line with
uniform acceleration has velocities $7 m / s$ at A
and $17 m / s$ at $\mathrm{C} . \mathrm{B}$ is the mid point of AC . Then
:-
A. The velocity at B is $12 m / s$
B. The average velocity between A and B is
$10 \mathrm{~m} / \mathrm{s}$
C. The ratio of the time to go from A to B
to that from B to C is $3: 2$
D. The average velocity between B and C is
$15 \mathrm{~m} / \mathrm{s}$

Answer: B, C, D

D Watch Video Solution

17. The string in fig. is passing over small smooth pulley rigidly attached to trolley A. If the speed of trolley is constant and qual to v_{A} towards right, speed and magnitude of acceleration of block B at the instant shown in
figure are

A. $V_{B}=V_{A}, a_{B}=0$
B. $a_{B}=0$
C. $a_{B}=\frac{3}{5} v_{A}$
D. $a_{B}=\frac{16 v_{A}^{2}}{125}$

Answer: C, D

- Watch Video Solution

Unsolved Numerical Pro

1. A ball is released from rest. If it takes 1 second to cross the last 20 m before hitting the ground, find the height from which it was dropped.

- Watch Video Solution

2. The accelerator of a train can produce a uniform acceleration of $0.25 \mathrm{~ms}^{-2}$ and its brake can produce a retardation of $0.5 \mathrm{~ms}^{-2}$

The shortest time in which the train can travel
between two stations 8 km apart is x minutes
and 10 s , if it stops at both stations. The value of x is.

D Watch Video Solution

3. All insect is moving on a groove whose displacement is
given
$x=6 t^{2}-8+40 \cdot \cos \pi t$, , where x and t are expressed in metres and seconds. Find the position, velocity and acceleration of insect at time $t=6 \mathrm{~s}$.

Watch Video Solution

4. Two cars, A and B, are traveling in the same direction with velocities v_{a} and v_{b} respectively. When car is at a distance d behind car B, the brakes on A are applied, causing a deceleration at a rate a. Show that to prevent a collision between A and B it is necessary that:
5. A motor boat starts from rest with an acceleration given by the law $a=\frac{c}{(x+4)^{2}}$ where c is a positive constant. Given that the velocity of the boat when its displacement is $8 m$ is $4 m / s$. Find:
(a) The magnitude of c .
(b) The position of the boat when its speed was $4.5 \mathrm{~m} / \mathrm{s}$.
(c) The maximum velocity of the boat.

- Watch Video Solution

6. The acceleration of a particle is given by the relation as $a=-k v^{5 / 2}$, where is a constant.

The particle starts at $\mathrm{x}=0$ with a velocity of 16 m / s, and when $\mathrm{x}=6$, the velocity is observed to be $4 \mathrm{~m} / \mathrm{s}$. Find the velocity of particle when $x=5 m$ and the time at which the velocity ofthe particle is $9 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

7. In a given steam jet, the velocity of the steam at the mouth of jet is $V_{0}=3.6 \mathrm{~m} / \mathrm{s}$.

The velocity of the steam at a distance x from
jet is given as $v=\frac{0.18 v_{0}}{x}$. Find the acceleration of the air at $\mathrm{X}=2 \mathrm{~m}$ and the time required for the air to flow from $x=1 m$ to $x=$ $3 m$

D Watch Video Solution

8. Figure shows three blocks A, B and C connected by a cable and system of pulleys.

The blocks is pulled downward with a constant velocity of $7.5 \mathrm{~cm} / \mathrm{s}$. At $\mathrm{t}=0$, block, A starts
moving downward from rest with a constant acceleration. It is given that the velocity of block A after travelling 20 cm is $30 \mathrm{~cm} / \mathrm{s}$, find the change in position, velocity and the acceleration of block C at this instant.

9. A traffic police officer observes a fast moving
car. Due to over speed officer starts his bike, accelerates uniformly to 90 kph in 8 s , and maintaining a constant velocity of 90 kph , overtakes the car 42 s after the car passed him. If he overtakes the carafter 18 s from the instant he starts, find the distance the officer travelled before overtaking and the speed of car.
10. A steel ball is dropped from the roof of a building. A man standing in front of a $1-m$
high window in the building notes the the ball
takes $0.1 s$ to the fall from the top to the
bottom of the window. The ball continues to
fall and strikes the ground. On striking the ground, the ball gets rebounded with the same speed with which it hits the ground. If
the ball reappears at the bottom of the window $2 s$ after passing the bottom of the
window on the way down, find the height of the building.

D Watch Video Solution

11. A particle starts from a pointn A and travels along the solid curve shown in figure. Find approximately the position B of the particle
such that the average velocity between the positions A and B has the same direction as
the instantaneous velocity at B.

D Watch Video Solution

12. A car starts moving along a line, first with
acceleration $\mathrm{a}=5 \mathrm{~ms} \mathrm{~s}^{-2}$ starting from rest then uniformly and finally decelerating at the same rate a, comes to rest.The total time of motion
is $\tau=25 s$. The average velocity during the time is equal to lt v gt $=72 \mathrm{~km} / \mathrm{hr}$.How long does the partial move uniformly?

D Watch Video Solution

13. In a motorcycle race, a rider A is leading another rider B by 36 m and both riders are travelling at a constant speed of 170 kph . At $\mathrm{t}=0$ both starts accelerating at a constantrate.

It is given that after 8 s , So vertakes And at this
instant speed of A is 220 kph . Find the accelerations of the two riders

D Watch Video Solution

14. Two friends A and B are standing a distance x apart in an open field and wind is blowing in
a direction perpendicular to .the line joining

AB. A beats a drum and finds a time lag between seeing and hearing the drum beating by A. Find this time lag.
15. Two blocks A and B are shown in figure. Block A moves to the left with a constant velocity of $6 \mathrm{~m} / \mathrm{s}$. Find :

(a) Velocity of the blocks B.
(b) Velocity of the point P of the string.

Relative velocity of the point M of the cable with respect to the point P.

D Watch Video Solution

16. In figure block A starts from rest and moves
upward with a constant acceleration. After 8 s
the relative velocity of block B with respect to
A is $0.6 \mathrm{~m} / \mathrm{s}$. Find the accelerations of blocks A
and B. Also find the velocity of block B after 6 s .

17. A man of height 1.2 m walks away from a lamp hanging at a height of 4.0 m above ground level. If the man walks with a speed of
$2.8 \mathrm{~m} / \mathrm{s}$, determine the speed of the tip of man's shadow.

- Watch Video Solution

18. A particle moves in a straight line with the
velocity curve shown in figure. Draw approximate acceleration vs time and
displacement vs time curves. Consider $x=0$ at
$t=0$.

D Watch Video Solution

19. A point mass starts moving in a straight
line with a constant acceleration a. At a time t_{1}
a fter the beginning of motion, the acceleration changes sign, remaining the same
in magnitude. Determine the time t from the beginning of motion in which the point mass returns to the initial position.

D Watch Video Solution

20. A car C_{1} travelling at a uniform speed of 75
kph passed another C_{2} car at rest beside the track. Two minutes later C_{2} starts and accelerates uniformly until its speed increases
to 100 kph , then it maintains the speed. After

12 minutes from the instant C_{1} passes C_{2}, C_{2}
is 800 m ahead of C_{1}. Find when and where C_{2} overtakes C_{1} and the acceleration of C_{2}.

D Watch Video Solution

21. A helicopter takes off along the vertical
with an acceleration $a=3 \mathrm{~m} / \mathrm{s}^{2}$ and zero
initial velocity. In a certain time the pilot
switches off the engine. At the point of take off, the sound dies away in a time $t_{2}=30 \mathrm{sec}$.

Determine the velocity of the helicopter at the
moment when its engine is switched off assuming that velocity of sound is $320 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

22. Two trucks are moving in a straight line towards each other at initial velocities u_{1} and u_{2} and with constant retardations a_{1} and a_{2}. If the initial separation between them is d, find the minimum value of d for no collision.

- Watch Video Solution

23. Block 5 shown in figure moves to the right with a constant velocity of $30 \mathrm{~cm} / \mathrm{s}$. Find :

(a) The velocity of block A.
(b) The velocity of the point P of the string.
(c) The velocity of the point M of the string.
(d) The relative velocity of the point P of the string with respect to the block A.

- Watch Video Solution

24. At $t=0$, block B in figure starts moving with a velocity $15 \mathrm{~cm} / \mathrm{s}$ and with a constant acceleration. It is observed that after blocks travels 24 cm to the right its velocity is $6 \mathrm{~cm} / \mathrm{s}$.

Find:
(a) The accelerations of A and B,
(b) The acceleration of point M of the string.

D View Text Solution

25. A stone is dropped from the top of a cliff of height h. " n " seconds later, a second stone is
projected downwards from the same cliff with a vertically downward velocity u. Show that the two stones will reach the bottom of the cliff together, if
$8 h(u-g n)^{2}=g n^{2}(2 u-g n)^{2}$
what can you say about the limiting value of "n" ?

D Watch Video Solution

26. How long will a plane take to fly around a square with side a with the wind blowing at a
velocity u, in the two cases (a) the direction of the wind coincides with one of the sides
the direction of the wind coincides with one diagonal of the square. The velocity of the plane in still air is $v>u$..

D Watch Video Solution

27. The motion of an in secton at able is given as $x=4 t-2 \sin t$ and $y=A-1 \cos t$, where
x and y are in metres and t is in seconds. Find
the magnitude of minimum and maximum velocities attained by the insect.

D Watch Video Solution

28. Two motor cars start from A simultaneously \& reach B after 2 hour. The first
car travelled half the distance at a speed of
$v_{1}=30 k m h r^{-1} \&$ the other half at a speed
of $v_{2}=60 \mathrm{kmhr}^{-1}$. The second car covered
the entire with a constant acceleration. At what instant of time, were the speeds of both
the vehicles same? Will one of them overtake the other enroute?

D Watch Video Solution

29. A body of mass m is thrown straight up
with a velocity Mq. Find the velocity u ' with
which the body comes down if the air drag
equals $c u^{2}$ where c is a constant and u is the velocity of the body.

D Watch Video Solution

30. In a village Shyam bats for hitting two points A and B on a staircase with his goli from the position P shown in figure. Find the velocities required for P to hit A and B.

31. A ship moves along the equator to the east
with velocity $\quad v_{0}=30 \mathrm{~km} /$ hour. The
southeastern wind blows at an angle $\varphi=60^{\circ}$ to the equator with velocity $v=15 \mathrm{~km} / \mathrm{hour}$.

Find the wind velocity v^{\prime} relative to the ship and the angle of φ^{\prime} between the equator and the wind direction in the reference frame fixed to the ship.

D Watch Video Solution

32. Point A moves uniformly with velocity ν so
that the vector v is continually "aimed" at point B which in its turn moves rectilinearly and uniformly with velocity $v<\nu$. At the initial moment of time $v \perp u$ and the points are separated by a distance l. How soon will the points converge?

D Watch Video Solution

33. The speed of a train increases at a constant rate α from zero to v and then remains constant for an interval and finally decreases to zero at a constant rate β. The total distance travelled by the train is I. The time taken to complete the journey is t . Then,

D Watch Video Solution

34. The position vector \vec{r} of a moving particle at time t after the start of the motion is given
by $\vec{r}=(5+20 t) \hat{i}+\left(95+10 t-5 t^{2}\right) \hat{j}$. At
the $\mathrm{t}=\mathrm{T}$, the particle is moving at right angles
to its initial direction of motion. Find the value of T and the distance of the particle from its initial position at this time.

- Watch Video Solution

35. On a cricket field, the batsman is at the origin of coordination and a fielder stands in position given as $(46 \hat{i}+28 \hat{j}) m$. The batsman hits the ball so that it rolls along the ground
with
$(7.5 \hat{i}+10 \hat{j}) \mathrm{m} / \mathrm{s}$. The fielder can run with a speed of $5 m / s$. If the starts to run immediately the ball is hit, what is the shortest time in which he could intercept the ball.

D Watch Video Solution

36. Two steel balls fall freely on an elastic slab.

The first ball is dropped from a height h_{1} and
the second from a height $h_{2}\left(h_{2}<h_{1}\right)$ sec
after the first ball. After the passage of time T,
the velocities of the balls coincide in magnitude and direction. Determine the time T and the time interval during which the velocities of the two balls will be equal assuming that the balls do not collide.

- Watch Video Solution

37. A motor boat, with its engine on in a running river and blow n over by a horizontal wind is observed to travelat 20 kph in a
direction 53° East of North. The velocity of the
boat with its engine on in still water \& blown
over by the horizontal wind is 4 kph East ward
and the velocity of the boat with its engine on
over the running river, in the absence of wind
is 8 kph due south. Find:
(a) The velocity of the boat in magnitude and direction, over still water in the absence of wind.
(b) The velocity of the wind in magnitude and direction.
38. A particle moves from rest in a straight line
with alternate acceleration and retardation of
mahnitudes f and f^{\prime} during equal intervals of
time t. At the end of $2 n$ such intervals prove
that the space it has described is
$\frac{n t^{2}}{2}\left[(2 n+1) f-(2 n-1) f^{\prime}\right]$

- Watch Video Solution

39. A launch travels across a river from a point
A to a point B of the opposite bank along the
line $A B$ forming angle \propto with the bank. The flag on the mast of the launch makes an angle β with its direction of motion. Determine the speed of the launch w.r.t. the bank. The velocity of wind is u perpendicular to the stream.

- Watch Video Solution

40. A particle moves for total time T sec in a straight line in three consecutive parts such that its acceleration during the first, second and third parts is in the ratio 1:2:7. The distances covered in the first and the third parts are a and b meters while the time taken for each of the is tseconds. Find the average velocity of the particle during the second part.

D Watch Video Solution

41. Two particles are located on a horizontal plane at a distance 60 m . At $t=0$ both the particles are simultaneously projected at angle 45° with velocities
$2 m s^{-1}$ and $14 m s^{-1}$, respectively. Find
(a) Minimum separation between them during motion.
(b) At what time is the separation between
them minimum ?

42. A ball is projected directly upward with an
initial speed v_{0}. Bounces elastically from a roof inclined at an angle 45° as shown in figure and then it strikes a table at a horizontal
distance 2D from its starting point. Find v_{0}.

- Watch Video Solution

43. The current velocity of river grows in proportion to the distance from its bank and
reaches the maximum value v_{0} in the middle.

Near the banks the velocity is zero. A boat is moving along the river in such a manner that the boatman rows his boat always perpendicular to the current. The speed of the boat in still water is u. Find the distance through which the boat crossing the river will be carried away by the current, if the width of the river is c. Also determine the trajectory of the boat.
44. A vertical wind screen of a car is made up
of two parts, as shown in figure, where the
upper one A is 25 cm vertically long and covers
the 5 cm of the lower piece B.The upper one is
hinged at the top so that it can be opened outward, inclining to the vertical. The car is running on the horizontal road at $60 \mathrm{~km} / \mathrm{hr}$ in
the rain which is falling vertically at $20 \mathrm{~km} / \mathrm{hr}$.

Find the maximum angle, through which the upper part A can be opened outward, such
that the rain drops do not enter the car.

- Watch Video Solution

45. A hunter is riding an elephant of height
$4 m$ moving in straight line with uniform speed
of $2 m / \mathrm{sec}$. A deer running with a speed V in
front at a distance of $4 \sqrt{5}$ moving perpendicular to the direction of motion of the elephant. If hunter can throw his spear with a speed of $10 \mathrm{~m} / \mathrm{sec}$. relative to the elephant, then at what angle θ to it's direction of motion must he throw his spear horizontally for a successful hit. Find also the speed 'V' of the deer.

D Watch Video Solution

46. A swimmer wishes to cross a 500 m wide river flowing at a rate $5 \mathrm{~km} / \mathrm{hr}$. His speed with
respect to water is $3 \mathrm{~km} / \mathrm{hr}$. (a) If the heads in a direction making an angle θ with the flow, he takes to cross the river. (b) Find the shortest possible time to cross the river.

D Watch Video Solution

47. Two particles, 1 and 2 , move with constant
velocities v_{1} and v_{2}. At the initial moment
their radius vectors are equal to r_{1} and r_{2}. How must these four vectors be interrelated for the particles to collide?

D Watch Video Solution

48. A ball is thrown from ground level so as to
just clear a wall 4 m high at a distance of 4 m and falls at a distance of 14 m from the wall.

Find the magnitude and direction of the initial velocity.
49. A bomber plane is moving horizontally in a straight line with speed 594 km//hour. When the fighter is 300 m behind, he fires guns which are then horizontal. If the bullets have a muzzle velocity of $3348 \mathrm{~km} /$ hour relative to the fighter at what distance below the line of
slight and at what angle will the bullet hit the bomber ? Neglect air resistance and wind effects. Given that the velocity of the fighter plan is $720 \mathrm{~km} / \mathrm{hour}$.

D Watch Video Solution

50. A man in a river boat must get from point
A to point B on the opposite bank of the river (see figure).The distance $B C=a$.The width of
the river $A C=b$.At what minimum speed u relative to the still water should the boat travel to reach the point B ? The velocity of
flow of the river is v_{0}

- Watch Video Solution

51. A ball ' A ' is projected from origin with an
initial velocity $v_{0}=700 \mathrm{~cm} / \mathrm{sec}$ in a direction
37° above the horizontal as shown in fig
.Another ball 'B' 300 cm from origin on a line
37° above the horizontal is released from rest
at the instant A starts. How far will B have
fallen when it is hit by A ?

- Watch Video Solution

52. An Aeroplane flies horizontaily at a height
h at a speed v. An anti-air craft gun fires a shell
at the plane when it is vertically above the
gun. Show that the minimum muzzle velocity required to hit the plane is $\sqrt{v^{2}+2 g h}$ at an angle $\tan ^{-1}\left(\frac{\sqrt{2 g h}}{v}\right)$

D Watch Video Solution

53. A ball is projected at an angle of 30° above with the horizontal from the top of a tower ans strikes the ground in 5 sec at angle of 45° with the horizontal. Find the hieght of the
lower and the speede with which it was projected.

- Watch Video Solution

54. Two boys simultaneously aim their guns at a bird sitting on a tower. The first boy releases his shot with a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angle of projection of 30°. The second boy is ahead of the first by a distance of 50 m and releases his shot with a speed of $80 \mathrm{~m} / \mathrm{s}$. How must he aim
his gun so that both the shots hit the bird simultaneously ? What is the distance of the foot of the tower from the two boys and the
height of the tower ? With what velocities and when do the two shots hit the bird?

D Watch Video Solution

55. A boy throws a ball up ward with a speed of $12 \mathrm{~m} / \mathrm{s}$ The wind imparts a horizontal acceleration of $0.4 m / s^{2}$. At what angle θ to the vertical, the ball must be thrown so that it returns to the point of release.
56. A student is standing on the open platform of a moving trains at a speed of $10 \mathrm{~m} / \mathrm{s}$. The student throws a ball into the air along a path
that the, he judges to make an initial angle of 60° with the horizotal and to be in line with the track. The professor, who is standing on the ground nearby, observes the ball to rise vertically. Find the height reached by the ball.

- Watch Video Solution

57. On a two lane road, car (A) is travelling with a speed of $36 \mathrm{kmh}^{-1}$. Tho car B and C approach car (A) in opposite directions with a speed of $54 \mathrm{kmh}^{-1}$ each. At a certain instant, when the distance ($A B$) is equal to ($A C$), both being $1 \mathrm{~km},(B)$ decides \rightarrow overtake A before
C does, What minimum accelration of car (B)
is required to avoid and accident.

D Watch Video Solution

58. A particle moves in the plane $\mathrm{x} y$ with constant acceleration a directed along the negative y-axis. The equation of motion of the particle has the form $y=k_{1} x-k_{2} x^{2}$, where k_{1} and k_{2} are positive constants. Find the velocity of the particle at the origin of coordinates.
59. A gardener shower jet is placed at a distance d from the wall of a building. If R is the maximum range of the jet that is produced when the bowl is connected to the nose of a fire engine, show that the portion of the wall that is hit by the jet of water is bounded by a parabola whose height is $\left(R^{2}-d^{2}\right)$ $2 R$
60. A particle is projected at point A from an inclination plane with inclination angle θ as
shown in figure. The magnitude of projection velocity is \vec{u} and its direction is perpendicular to the plane. After some time it passes from point B which is in the same horizontal level of A, with velocity \vec{v}. Then the angle between
\vec{u} and \vec{v} will be

D Watch Video Solution

61. Two lines $A B$ and $C D$ intersect at O at an inclination α, as shown in figure. If they move out parallel to themselves with the speed v,
find the speed of 0 .

D Watch Video Solution

62. A gun of muzzle speed v_{0} is situated at height h above a horizontal plane. Prove that
the angle at which it must be fired so as to achieve the greatest range on the plane is
given by-
$\theta=\frac{1}{2} \cos ^{-1}\left(\frac{g h}{v_{0}^{2}+g h}\right)$

D Watch Video Solution

63. A shell is fired from a gun from the bottom
of a hill along its slope. The slope of the hill is
$\propto=30^{\circ}$ and the angle of the barrel to the
horizontal $\beta=60^{\circ}$. The initial velocity v of the shell is $21 \mathrm{~ms}^{-1}$. Then find the distance of point from the gun at which the shell will fall.
64. A particle is projected on an inclined plane
with a speed u as shown in (Fig. 5.61). Find the
range of the particle on the inclined plane.

- Watch Video Solution

65. A projectile aimed at a mark, which is in the horizontal plane through the point of projection, falls a cm short of it when the elevation is α and goes b cm far when the elevation is β. Show that, if the speed of projection is same in all the cases the proper elevation is
$\frac{1}{2} \sin ^{-1}\left[\frac{b \sin 2 \alpha+a \sin 2 \beta}{a+b}\right]$.

- Watch Video Solution

66. A boy sitting at the rear end of a railway
compartment of a train, running at a constant
acceleration on horizontal rails throws towards the fore end of the compartment with
a muzzle velocity of $20 \mathrm{~m} / \mathrm{sec}$ at angle 37°
above the horizontal, when the train is
running at a speed of $10 \mathrm{~m} / \mathrm{sec}$. If the same
boy catches the ball without moving from his
seat and at the same height of projection,find
the speed of the train at the instant of his
catching the ball.
67. There is an inclined surface of inclination θ.

A smooth groove is cut into it forming an angle α with AB as shown in figure. A steel ball
is free to slide a long the groove. If the ball is
released from the point O. Find the speed
when it comes to A.

- Watch Video Solution

68. To a person travelling due East with
velocity u the wind appears to blow from an
angle α North of East. When he starts
travelling due North with velocity 2 u,the wind appears to blow from an angle β North of East. Find the true direction of the wind.

D Watch Video Solution

69. A guided missile is fired to strike an object
at the same level 38 km away. It may be
assumed that it rises vertically 1.5 km and then
for the remainder of the flight it follows a parabolic path at an elevation of 45°.

Calculate its velocity at the begining of its parabolic path.

D View Text Solution

70. A train takes 2 minutes to acquire its full speed 60 kph from rest and 1 minute to come to rest from the full speed. If some where in between two stations 1 km of the track be under repair and the limited speed on this part be fixed to 20 kph , find the late running of the train on account of this repair work,
assuming otherwise normal at running of the train between the stations.

D Watch Video Solution

71. A stone is projected from the ground in such a direction so as to hit a bird on the top of a telegraph post of height h and attains the maximum height of 2 h above the ground. If at the insatant of projection, the bird were to fly away horizontally with a uniform speed, find
the ratio between the horizontal velocity of
bird and the horizontal component of velocity of stone, if the stone hits the bird while descending.

- Watch Video Solution

72. Particles P and Q of masses $20 g$ and $40 g$, respectively, are projected from positions A and B on the ground. The initial velocities of P and Q make angles of 45° and 135°, respectively with the horizontal as shown in
the fig. Each particle has an initial speed of
$49 \mathrm{~m} / \mathrm{s}$. The separation $A B$ is 245 m . Both particles travel in the same vertical plane and undergo a collision. After the collision P retraces its path. The separation of Q from its initial position when it hits the ground is

D Watch Video Solution

73. Two shots are projected from a gun at the top of a hill with the same velocity u at angles
of projection α and β respectively. If the shots
strike the horizontal ground through the foot
of the hill at the same point, show that the height h of the hill above the plane is given by

$$
h=\frac{2 u^{2}(1-\tan \alpha \tan \beta)}{g(\tan \alpha+\tan \beta)^{2}}
$$

D Watch Video Solution

74. A point moves in the plane $x y$ according to
the law $x=a \sin \omega t, y=a(1-\cos \omega t)$, where a and ω are positive constants. Find:
(a) the distance s traversed by the point during the time τ,
(b) the angle between the point's velocity and acceleration vectors.

D Watch Video Solution

75. Two towers $A B$ and $C D$ are situated at a distance d apart, as shown in figure. $A B$ is 20 m high and CD is 30 m high from the ground. An object of mass m is thrown from the top of $A B$ horizontally with a velocity of $10 \mathrm{~m} / \mathrm{s}$ towards
CD. Simultaneously another object of mass 2 m
is thrown fromt the top of $C D$ at an angle of 60° to the horizontal towards $A B$ with the same magnitude of initial velocity as that oft he first object. The two objects move in the same vertical plane, collide in mid air and stick to each other (i) calculate the distance between the towers and (ii) find the position
where the objects hit the ground.

D Watch Video Solution

76. A particle moves uniformly with speed v along a parabolic path $y=k x^{2}$, where k is a
positive constant. Find the acceleration of the particle at the point $x=0$.

D Watch Video Solution

77. A bullet of mass M is fired with a velocity
$50 \mathrm{~m} / \mathrm{s}$ at an angle with the horizontal. At the highest point of its trajectory, it collides headon with a bob of mass 3 M suspended by a massless string of length $10 / 3$ metres and gets embeded in the bob. After the collision, the string moves through an angle of 120°.

Find
(i) the angle θ,
(ii) the vertical and horizontal coordinates of the initial position of the bob with respect to
the point of firing of the bullet. Take $g=10 m / s^{2}$

D Watch Video Solution

78. Two bodies are thrown simultaneously
from the same point. One thrown straight up
and the other at an angle α with the
horizontal. Both the bodies have velocity equal to u. Find the separation between the bodies at time t.

D Watch Video Solution

79. A particle is moving in a plane with velocity
$\vec{v}=u_{0} \hat{i}+k \omega \cos \omega t \hat{j}$. If the particle is at origin at $t=0$, (a) determine the trajectory of
the particle. (b) Find its distance from the origin at $t=3 \pi / 2 \omega$.
80. Two swimmers start a race. One who
reaches the point C first on the other bank
wins the race. A makes his strokes in a
direction of 37^{0} to the river flow with velocity
$5 \mathrm{~km} / \mathrm{hr}$ relative to water. B makes his strokes in a direction 127^{0} to the river flow with same relative velocity.River is flowing with
speed of $2 k m / h r$ and is 100 m wide.speeds of
A and B on the ground are $8 k m / h r$ and
$6 \mathrm{~km} / \mathrm{hr}$ respectively.

D Watch Video Solution

81. Two particles are simultaneously projected in the same vertical plane from the same point with velocities u and v at angles α and β with
horizontal. Find the time that elapses when their velocities are parallel.

D Watch Video Solution

82. Three points are located at the vertices of an equilateral triangle whose sides equal to $a=3 m$.They all start moving simultaneously
with speed $v=1 m / s$, with the first point heading continually for the second, the second for the third, and the third for the first.How soon will the points meet?

Watch Video Solution

83. A particle is projected up an inclined plane of inclination β at na elevation \propto to the horizontal. Show that
(a) $\tan \propto=\cot \beta+2 \tan \beta$, if the particle strikes the plane at right angles
(b) $\tan \propto=2 \tan \beta$, if the particle strikes the plane horizontally.
