びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - GK PUBLICATIONS PHYSICS (HINGLISH)

ELECTROSTATICS

Illustrative Example

1. Given a cube with point charges q on each of its vertices. Calculate the force exerted on any of the charges due to rest of the 7 charges.

-
 Watch Video Solution

2. Two particles, each having a mass of 5 g and charge. $1.0 \times 10^{-7} \mathrm{C}$,
stay in limiting equilibrium on a horizontal. table with a separation of

10 cm between them. The coefficient of friction between each particle and the table. is the same. Find the value of this coefficient.

D Watch Video Solution

3. Two particles A and B having charges q and $2 q$ respectively are placed on a smooth table with a separtion d. A third partcle C is to be clamped on the table in such a way that the particles A and B remain at rest on the table undeer electrical forces. What should at rest on the table under electrical forces. What should be the charge on C and where should it clamped?

(D) Watch Video Solution

4. Charges $5.0 \times{ }^{-7} C$ and $1.0 \times 10^{-7} C$ are
held fixed at the three cornners $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of an equilateral
. charge at C due to the rest two.
5. A particle a having a charge of $5.0 \times 10^{-7} C$ is fixed in. a vertical wall. A second particle B of mass 100 g and. having equal charge is supended by a silk thread. of length 30 cm form the wall. The point of suspension is. 30 cm above the particle A . Find the angle of the thread. with the vertical when it stays in equilibrium.

D Watch Video Solution

6. Ten positively charged particles are kept fixed on the x-axis at points $\mathrm{x}=10 \mathrm{~cm}, 20 \mathrm{~cm}, 30 \mathrm{~cm}, \ldots, 100 \mathrm{~cm}$. The first particle has a charge $1.0 \times 10^{-8} C$, the second $8 \times 10^{-8} C$, the third $27 \times 10(-8) C$ and so on. The tenth particle has a charge $1000 \times 10^{-8} C$. find the magnitude of the electric force acting on a 1 C charge placed at the origin.
7. Two positive charges q_{1} and q_{2} are located at the points with redius vectors r_{1} and r_{2}. Find a negative charge q_{s} and a radius vector r_{s} of the point at which it has to be placed for the force acting on each of the three charges to be equal to zero.

D Watch Video Solution

8. Three small balls, each of mass 10 gm are suspended separately from common point. by silk threads, each one meter long. The balls are identically charged and hang at the corners of an equilateral triangle of side 0.1. metre. Find the charge on each ball?

- Watch Video Solution

9. Two identically charged spheres are suspended by strings of equal length. The strings make an angle of 30° with each other. When
suspended in a liquid of density $0.8 g / c c$ the angle remains same. What is the dielectric constant of liquid. Density of sphere $=1.6 \mathrm{~g} / \mathrm{cc}$

- Watch Video Solution

10. A ring of radius R with a uniformly distributed charge q as shown in figure. A charge q_{0}, is now placed at the centre of the ring. Find the
increment in-the tension in ring.

D Watch Video Solution

11. Four small particles charged with equal positive charges Q each are arranged at the four corners of a horizontal square of side a. A unit positive charge mass m is placed at a point P, at a height h above the centre of the square. What should be the magnitude of charge Q in order that the unit charge remain in equilibrium
12. Two small particles charged with equal positive charges Q each, are fixed apart at a distance 2a. Another small particle having a charge q lies midway between the fixed charges. Show that
(i) For small displacement (relative to a) along line joining the fixed charges, the middle charge executes SHM'if it is +ve and
(ii) For small lateral displacement, it executes SHM ifit is-ve. Compare the frequencies of oscillation in the two cases

- Watch Video Solution

13. A wooden ball covered with an aluminimum foil having a mass m hangs by a fine silk thread I metre long in a horizontal electric field E . When the ball is given an electric charge q coulomb, it stands out d metre from the vertical line passing through !he • suspension point of thread. Show that the electric field is given by
$E=\frac{m g d}{\sqrt{l^{2}-d^{2}}}$
14. A particle of mass m and charge q is thrown with initial velocity v_{0} at an angle with the horizontal. In space there exist an electric field of strength E at angle β with the downward vertical away from the point of projection. Find the time of flight and range of projectile on horizontal ground

D Watch Video Solution

15. An inclinded plane making an angle of 30° with the horizontal electric field of $100 \mathrm{Vm}^{-1}$ as shown in Figure. A particle of mass 1 kg and charge $0 \cdot 01 C$ is allowed to slide down from rest from a height of 1 m . If the coefficient of friction is 0.2 , find time taken by the
particle to reach the bottom.

D Watch Video Solution

16. A ball of mass m with a charge q can rotate in a vertical plane at the end of a string of length I in a uniform electrostatic field whose lines of force are directed upwards. What horizontal velocity must be imparted to the ball in the upper position so that the tension in the string in the lower position of the ball is 1.5 times than the weight of the ball?
17. A simple pendulum has a bob of mass $m=40 \mathrm{gm}$ and a positive charge $q=4 \times 10^{-6} C$. It makes 20 oscillation in 4.5 s . A vertical upward electric field of magnitude $E=2.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$ is switched on in space. How much time will the simple pendulum will now take to complete 20 oscillation.

D Watch Video Solution

18. A bob of mass m carrying a positive charge q is suspended from a light insulating string of length I inside a parallel plate capacitor with its plates making an angle β with the horizontal as shown in figure. The plates of the capacitor are connected with a battery to establish an electric field E between the plates with its upper plate negatively charged. Find the period of small oscillations of the pendulum and the angle between the thread and vertical in equilibrium position of
the bob

- Watch Video Solution

19. A rectangular tank of mass m_{0} and charge Q is placed over a smooth horizontal floor. A horizontal electric field $£$ exist in the region. Rain drops are falling vertically in the tank at the constant rate of n drops per second. Mass of each drop is m. Find velocityoftank as function of time.
20. Four particles each having a charge q are placed on the four vertices of a regular pentagon. The distance of each comer from !be centre is 'a'. Find the electric field at the centre of pentagon.

(D) Watch Video Solution

21. In the given arrangement of a charged square frame made up of four wires 1, 2, 3 and 4 charged witb the linear charge density as mentioned in figure. Find electric field at centre due to this frame

D Watch Video Solution

22. A system consits fo a thin charged wire ring of radius R and a very long uniformly charged thread oriented along the axis of the ring, with one of its ends coinciding with the centre of the ring. The total charge of the ring, with one of the ring so equal to q. The
charge of the thread (per unit length) is equal to λ. Find the interaction froce between the ring and the thread.

D Watch Video Solution

23. A point charge q is located at the centre fo a thin ring of radius R with uniformly distributed charge $-q$, find the magnitude of the electric field strength vectro at the point lying on the axis of the ring at a distance x from its centre, if $x \gg R$.

- Watch Video Solution

24. A thin fixed of radius 1 metre has a positive charge 1×10^{-5} coulomb uniformly distributed over it. A particle of mass 0.9 gm and having a negative charge of 1×10^{-6} coulomb is placed on the axis at a distance of 1 cm from the centre of the ring. Show that the
motion of the negatively charged particle is approaximately simple harmonic. Calculate the time period of oscillations.

D Watch Video Solution

25. A clock face has charges $-q,-2 q,, \ldots .-12 q$ fixed at the position of the corresponding numerals on the dial. The clock hands do not disturb the net field due to point charges. At what time does the hour hand point in the direction of the electric field at the centre of the dial.

D Watch Video Solution

26. Consider the classical model of an electron such that a nucleus of charge +e is uniformly distributed within a sphere of radius $2 \AA$. An electron of charge -e at a radial distance $1 \AA \AA$ moves inside this sphere.

Find the force altracting the electron on to the centre of the sphere.

Calculate the frequency with which the electron would oscillate about the centre of the sphere, if released from rest at this radial distance.

D Watch Video Solution

27. A positive charge q is placed in front of conducting solid cube at a distance d from its centre. Find the electric field at the centre of the cube due to the charges appearing on its surface.

- Watch Video Solution

28. A large nonconducting surface has a uniform charge density σ. A small circular hole ofradius R is cut in the middle of the sheet, as shown in figure. Ignore fringing of the field lines around all edges calculate the electric field at' pointP, a distancez from the centre of
the hole along its axis.

D Watch Video Solution

29. A thin insulating wire is stretched along the diameter of an. insulated circular hoop of radius R. A small bead of mass m and charge -q is threaded onto the wire. Two small identical charges are tied to the hoop at points opposite to each other, so that the diameter passing through them is perpendicular to the thread as shown in figure. The bead is released at a point which.is located at a distance x_{0} from the centre of the hoop. Assume that $x_{0} \ll R$.
(a) What is the resultant force acting on the charged bead?
(b) Describe the motion of the bead after it is released X
(c) Use the assumption that $\frac{x}{R} \ll 1$ to obtain an approximate equation of motion, and find the displacement and velocity of the bead as functions of time
(d) When will the velocity of the bead will bcome zero for the first time?

30. An infinitely long cylindrical shell ofinner radius r_{1} and outer radius r_{2} is charged in its volume with a volume charge density which varies with distance from axis of cylinder as $p=b l r C / m^{3}$ which C is a positive constant and r is the distance from axis of cylinder. Find the electric field intensity at a point P at a distance x from axis of cylinder

D Watch Video Solution

31. An infinitely long cylindrical surface density $\sigma=\sigma_{0} \cos \varphi$. Where φ is the polar angle of the cylindrical coordinate system whose z axis coincides with the axis of the given surface. Find the magnitude and direction of the electric field strength vector on the z axis.
32. A thin nonconducting ring of radius R has a linear charge density
$\lambda=\lambda_{0} \cos \varphi$, where λ_{0} is a constant, ϕ is the azimutahl angle. Find the magnitude of the electric field strength
(a) at the centre of the ring ,
(b) on the axis of the ring as a function of the distance x from its centre. Investegation the obtained function at $x \gg R$.

D Watch Video Solution

33. A ball of radius R carries a positive charge whose volume density depends only on a separation r from the ball's centre as $\rho=\rho_{0}(1-r / R)$, where ρ_{0} is a constant. Asumming the permittivites of the ball and the enviroment to be equal to unity find
(a) the magnitude of the electric field strength as a function of the distance r both inside and outside the ball :
(b) the maximum intensity $E_{\text {max }}$ and the corresponding distance r_{m}.
34. A point charge $q_{1}=4.00 n C$ is placed at the origin, and a second point charge $q_{2}=-3.00 n C$, placed on the x-axis at $\mathrm{x}=+20.0 \mathrm{~cm}$. A third point charge $q_{3}=2.00 n C$ is placed on the X -axis between q_{1}, and q_{2}. (Take as zero the potential energy of the three charges when they are infinitely far apart).
(a) What is the potential energy of the system of the three charges if q_{3} is placed at $\mathrm{x}=+10.0 \mathrm{~cm}$?
(b) Where should q_{3} be placed to make the potential energy of the system equal to zero?

D Watch Video Solution

35. A particle of mass 400 mg and charged with $5 \times 10^{-9} \mathrm{C}$ is moving directly towards a fixed positive point charge of magnitude $10^{-8} C$. When it is at a distance of 10 cm from the fixed positive point charge
it has a velocity of $50 \mathrm{~cm} / \mathrm{s}$. At what distance from the fixed point charge will the particle come momentarily to rest ? Is the acceleration constant during the motion ?

D Watch Video Solution

36. Figure shows a charge $+Q$ clamped at a point in free space. From a large distance another charge particle of charge -q an. d mass m is thrown toward $+Q$ with an impact parameter d as shown with speed v. Find the distance of closest approach of the two particles.

37. A particle of mass 40 mg and carrying a charge $5 \times 10^{-9} \mathrm{C}$ is moving directly towards a fixed positive point charge on magnitude $10^{-8} C$. When it is at a distance of 10 cm from the fixed positive point charge it has a velocity of $50 \mathrm{cms}^{-1}$ at what distance from the fixed point charge will the particle come momentarily to rest ? Is the acceleration constant during motion?

D Watch Video Solution

38. Three point charges $q, 2 q$ and $8 q$ are to be placed on a
. 9 cm long straight line. Find the
. positions where the charges shouldbe placed such that the potential energy
. of this sysrem is minimum. In this situation, what is the
. electric field at the charge q due to the other two charges?
39. Two fixed, equal, positive charges, each of magnitude 5×10^{-5} coul are located at points A and B separated by a distance of 6 m . An equal and opposite charge moves towards them along the line COD, the perpendicular bisector of the line AB.

The moving charge, when it reaches the point C at a distance of 4 m from O , has a kinetic energy of 4 joules. Calculate the distance of the farthest point D which the negative charge will reach before returning towards C .

40. Two small identical balls lying on a horizontal plane are connected by a weightless spring. One ball (ball 2) is fixed at 0 , and the other (ball 1) is free. The balls are charged identically as a result of which the spring length increases $\eta=2$ times. Determine the change in frequency.

D Watch Video Solution

41. A small particle has charge $-5.00 \mu C$ and mass $2.00 \times 10-4 \mathrm{~kg}$. It moves from point A where the electric potential is $V_{A}=+200 \mathrm{~V}$. to point B , where the electric potential is $V_{B}=+800 \mathrm{~V}$. The electric force is the only force acting on the particle. The particle has speed
$5.00 \frac{m}{s}$ at point A . What is its speed at point B ? is it moving faster or slower at B than at A. Explain,

D Watch Video Solution

42. A particle having a charge $+3 \times 10^{-9 C}$ is placed in a uniform electric field directed toward left. It is released from rest and moves a distance of 5 cm after which its kinetic energy is found to be $4.5 \times 10^{-5} J$.
(a) Calcnalate the work done by the electrical force on the particle
(b) Calculate the magnitude of the electric field.
(c) Calculate the potential of starting point with respect to the end point of particle's motion.
43. An electric field $\vec{E}=\vec{I} A x$ exists in the space, where $A=10 \mathrm{Vm}^{-2}$. Take the potential at $(10 \mathrm{~m}, 20 \mathrm{~m})$ to be zero. Find the potential at the origin.

D Watch Video Solution

44. Find $V_{b a}$, if $12 J$ of work has to be done against an electric field to take a charge of $10^{-2} \mathrm{C}$ from a to b .

D Watch Video Solution

45. A particle of mass $9 \times 10^{-31} \mathrm{~kg}$ having a negative charge of $1.6 \times 10^{-19} \mathrm{C}$ is projected horizontally with a velocity of $10^{6} \mathrm{~ms}^{-1}$ into a region between two infinite horizontal parallel plates of metal.

The distance between the plates is $d=0.3 \mathrm{~cm}$ and the particle enters 0.1 cm below the top plate, THe top and bottom plates are connected, respectively to the positive and negative terminal of a 30 V
battery. Find the components of the velocity of the particle just before it hits one of the plates.

- Watch Video Solution

46. There are two large parallel metallic plates S_{1} and S_{2} carrying surface charge densities σ_{1} and σ_{2} respectively $\left(\sigma_{1}>\sigma_{2}\right)$ placed at a distance d apart in vacuum. Find the work done by the electric field in
moving a point charge q at distance $a(a<d)$ from S_{1} towards S_{2} along a line making an angle $\pi / 4$ with the normal to the plates.

- Watch Video Solution

47. A charge q_{0} is transported from point A to B along the $\operatorname{arc} \mathrm{AB}$ with centre at C as shown in figure near a long charged wire with linear density A. lying in the same plane. Find the work done in doing so.

48. Some equipotential surfaces are shown in figure . The magnitude and direction of electric field is

- Watch Video Solution

49. Calculate the potential due to a thin uniformly charged rod of
length L at the poiot P shown in figure. The lioear charge density of
the rod is $\lambda C / m$

D Watch Video Solution

50. Two charges $-2 Q$ abd Q are located at the points with coordinates $(-3 a, 0)$ and $(+3 a, 0)$ respectively in the $x-y$ plane. (i)

Show that all points in the x-y plane where the electric potential due to the charges is zero, on a circle. Find its radius and the location of its centre (ii) Give the expression $\mathrm{V}(\mathrm{x})$ at a general point on the x -axis and sketch the function $V(x)$ on the whole x-axis. (iii) If a particle of charge +q starts from rest at the centre of the circle, shown by a short quantitative argument that the particle eventually crosses the circule. Find its speed when it does so.

(b) Watch Video Solution

51. There is an infinite straight chain of alternating charges q and -q .

The distance between the two neighbouring charges is equal to a.
Find the interaction energy of any charge with all the other charges.

D Watch Video Solution

52. A uniform electric field of $100 \mathrm{~V} / \mathrm{m}$ is directed at 3° with the positive x-axis as shown in figure. Find the potential difference $V_{B A}$ if $O A=2 \mathrm{~m}$ and $O B=4 m$.

D Watch Video Solution

53. The potential at a point in space depends only upon the x coordinate and it is given as
$V=\frac{1000}{x}+\frac{1500}{x^{2}}+\frac{500}{x^{3}}$ Determine the electric field strength at point where $x=1 m$.

(D) Watch Video Solution

54. Determine the electric field strength vector in a region if in space the potential of this field depends on x and y coordinates as $V=a\left(x^{2}-y^{2}\right)$.

D Watch Video Solution

55. A charge Q is distributed over two concentric hollow spheres of radii r and $R(>r)$ such that the surface charge densities are equal. Find the potential at the common centre.

- Watch Video Solution

56. A conducting liquid bubble of radius a and thickness $t(t \ll a)$ is charged to potential V. If the bubble collapses to a droplet, find the potential on the droplet .

- Watch Video Solution

57. Find the electric field potentail and strength at the centre of a hemisphere fo raidus R ahcged uniformly with the the surface density σ.
58. On a thin rod oflength $l=1 \mathrm{~m}$, lying along the x -axis with one end at the origin $x=0$, there is uniformly distributed charge per unit length $\lambda=K x$, where $\mathrm{K}=$ constant $=10^{-9} \mathrm{~cm}^{-2}$ Find the work done in displacing a charge $q=1000 \mu C$ from a point $(0, \sqrt{0.44 m} \mathrm{to}(0, I m))$.

D Watch Video Solution

59. A spherical drop of water carrying a charge of $3 \times 10^{-10} \mathrm{C}$ has potential of 500 V at its surface. When two such drops having same charge and radius combine to from a single spherical drop, what is the potential at the surface of the new drop?

D Watch Video Solution

60. Find the potential of an isolated ball-shaped conductor with a charge q of radius R_{1} surrounded by an adjacent concentric layer of
dielectric with dielectric constant k and outer radius R_{2}

D Watch Video Solution

61. Three concentric spherical metallic shells A, B and C of radii a, b and c (a It b Itc) have surface charge densities $\sigma,-\sigma$ and σ respectively.
(i) Find the potential of the three shells A, B and C.
(ii) If the shells A and C are at the same potential, obtain the relation between the radii a, b and c .

- Watch Video Solution

62. A short electric dipole is situated at the origin of coordinate axis with its axis along x-axis and equator along y-axis. It is found that the magnitudes of the electric intensity and electric potential due to the
dipole are equal at a point distance $r=\sqrt{5} m$ from origin. Find the position vector of the point in first quadrant.

- Watch Video Solution

63. Prove that the frequency of oscillation of an electric dipole of moment p and rotational inertia I for small amplitudes about its equilibrium position in a uniform electric field strength E is $\frac{1}{2 \pi} \sqrt{\left(\frac{p E}{I}\right)}$

(D) Watch Video Solution

64. A particle of mass m and charge $+q$ is located midway between two fixed charged particles each having a charge $+q$ and at a distance 2 L apart. Assuming that the middle charge moves along the line joining the fixed charges, calculate the frequency of oscillation when it is displaced slightly.

Watch Video Solution

65. A water molecule is placed at a distance I from the line carrying linear charge density λ. Find the maximum force exerted on the water molecule. The shape of water molecule and the partial charges on Hand O atoms are shown in figure

66. Two thin parallel threads carry a uniform charge with linear densities λ and $-\lambda$. The distance between the threads is equal to l. Find the potential of the electric field and the magnitude of its strength vector at the distance $r \gg l$ at the angle θ to the vector 1 (fig).

D Watch Video Solution

67. Show that, for a given dipole, V \& E cannot have the same magnitude at distance less than 2 m from the dipole. Suppose that the distance is $\sqrt{5} m$, determine the directions along which $V \& E$ are equal in magnitude.
68. A closed cylinder is placed in uniform electric field E parallel to the axis of the cylinder. Find electric flux passing through cylinder.

D Watch Video Solution

69. The electric field in a region is given by $E=a \hat{i}+b \hat{j}$. Hence as and b are constants. Find the net flux passing through a square area of side I parallel to y-z plane.

D Watch Video Solution

70. Two mutually perpendicular infinite wires along x-axis and y-axis carry charge densities λ_{1} and λ_{2} (see figure). The 1 electric line of force at P is along the line $y=\frac{1}{\sqrt{3}} x$, where P is also a point lying on
the same line, then find $\lambda_{1} / \lambda_{2}$

- Watch Video Solution

71. Find the electric flux coming out from one race of a cube of edge a, centre of which a point charge q is placed
72. The cylinder of previous example is now tilted by an angle θ from vertica. Find the flux crossing the cylinder.

- Watch Video Solution

73. The electric fields in a region is given by $\vec{E}=E_{0} \frac{x}{L} \hat{i}$,Find the charge contained inside a cubical volume bounded by the surface $x=0, x=L, y=0, y=L, z=0, z=L$.

- Watch Video Solution

74. Figure shows an imaginary cube of side a. A uniformly charged rod of length a moves towards right at a constant speed v . At $t=0$ the right end of the just touches the left face of the cube. Plot a graph between electric flux passing through the cube versus time.

- Watch Video Solution

75. The field potentail in a certain region of space depends only on the x coordinate as $\varphi=-a x^{2}+b$, where a and b are constants. Find the distribution of the space charge $\rho(x)$.

(D) Watch Video Solution

76. The electrostatic potential inside a charged spherical ball is given by $\phi=a r^{2}+b$ where r is the distance from the centre and a, b are constants. Then the charge density inside the ball is:

D Watch Video Solution

77. The intensity of an electric field depends only on the coordinates x and y as follows,
$E=\frac{a(x \hat{i}+y \hat{j})}{x^{2}+y^{2}}$ where, a is constant and \hat{i} and \hat{j} are the unit vectors of the x and y axes. Find the charges within a sphere of radius R with the centre at the origin.
78. Electric field in a region is given by $\vec{E}=-4 x \hat{i}+6 y \hat{j}$. The charge enclosed in the cube of side $1 m$ oriented as shown in the diagram is given by $\alpha \in_{0}$. Find the value of α.

- Watch Video Solution

79. A point light source of $100 W$ is placed at a distance x from the centre ofa hole ofradius R in a sheet as shown in figure, Find the
power passing through the hole in sheet

- Watch Video Solution

80. A point charge q is placed at the centre of the cubical box. Find,
(a) total flux associated with the box (b) flux emerging through each
face of the box (c) flux throngh shaded area of surface

- Watch Video Solution

81. An infinity long uniform line charge distribution of charge per unit length λ lies parallel to the y-axis in the $y-z$ plane at $z=\frac{\sqrt{3}}{2}$ a(see figure). If the magnitude of the flux of the electric field through the rectangular surface $A B C D$ lying in the $x-y$ plane with its centre at the origin is $\frac{\lambda L}{\neq \psi l o n_{0}}\left(\varepsilon_{0}=\right.$ permittivity of free space $)$, then the
value of n is

- Watch Video Solution

82. Two charges $+q_{1}$ and $-q_{2}$ are placed at A and B respectively. A line of force emanates from q_{1} at an angle α with the line AB. At what
angle will it terminate at $-q_{2}$?

D Watch Video Solution

83. A point charge q is placed on the top of a cone of semi vertex angle θ. Show that the electric flux through the base of cone is $\frac{q(1-\cos \theta)}{2 \varepsilon_{0}}$
84. A soap bubble of radius r is formed inside another soap bubble of radius $R(>r)$. The atmospheric pressure is P_{0} and surface tension of the soap solution is T. Calculate change in radius of the smaller bubble if the outer bubble bursts. Assume that the axcees pressure inside a bubble is small compared to P_{0}.

85. A soap bubble of radius r and surface tension T is given a potential V . Show that the new radius R of the bubble is related with the initial radius by the equation
$P\left(R^{3}-r^{3}\right)+4 T\left(R^{2}-r^{2}\right)=\frac{\epsilon_{0} V^{2} R}{2} \quad$ where $\quad \mathrm{P} \quad$ is the atmospheric pressure.

D Watch Video Solution

86. The minimum strength of a uniform electric field which can tear a conducting uncharged thin-walled sphere into two parts is known to be E_{0}. Determine the minimum electric field strength E_{1} required to tear the sphere of twice as large radius if the thickness ofits walls is the same as in the former case.

D Watch Video Solution

87. The point charge q is within the cavity of an electrically neutral conducting shell whose outer surface has spherical shape. Find the potential V at a point P lying outside the shell at distance r from the center O of the outer sphere.

- Watch Video Solution

88. A charge Q is placed at the centre of an uncharged, hollow metallic sphere of radius a. (a) Find the surface charge density on the inner surface and on the outer surface. (b) If a charge q is put on the
sphere, what would be the surface charge densities on the inner and the outer surface? (c) Find the electric field inside the sphere at a distance x from the centre in the situations (a) and (b).

- Watch Video Solution

89. A charge q is distributed uniformly on the surface of a sold sphere of radius R. It covered by a concentric hollow conduction sphere of radius $2 R$. Find the charges inner and outer surface of hollow sphere
if it is earthed.

D Watch Video Solution

90. There are four concentric shells $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of radii $a, 2 a, 3 a$ and $4 a$ respectively. Shells B and D are given charges $+q$ and $-q$ respectively. Shell C is now earthed. The potential difference $V_{A}-V_{C}$ is $k=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)$
91. There are two uncharged identical metallic spheres of radius a, separated a distance d. A charged metallic sphere (charge q) of sarue radius is brought and touches sphere 1. After some time it is moved away to a far off distance. After this, the sphere 2 is earthed. Find the charge on sphere 2.

- Watch Video Solution

92. Figure (a) shows a shall of radius R having charge q_{1} uniformly distributed over it. A point charge q is placed at the centre of shell.

Find amount of work required to increase the radius of shell from R
to R_{1} as shown in figure (b).

(a)

(b)

D Watch Video Solution

93. Find the electrostatic energy stored in a cylindrical shell of length I, inner radius a and outer radius b, coaxial with a uniformly charged wire with linear charge density $\lambda C / m$.

D Watch Video Solution

94. Three shells are shown carrying charge q_{1}, q_{2} and q_{3} and of radii a, band c respectively. If the middle shell expands from radius b to
$b^{\prime}\left(b^{\prime}<c\right)$. Find the work done by electric field in process.

- Watch Video Solution

95. A point charge q is located at the centre O of a spherical uncharged coducting layer provided with small orifice. The inside and outside radii of the layer are equal to a and b respectively. The amount of work that has to be performed to slowly transfer the
charge q from teh point O through the orifice and into infinity is

(Watch Video Solution

Partice Exercise 1.1

1. Two identical pith balls are charged by rubbing against each other.

They are suspended from a horizontal rod through two strings of
length 20 cm each, the separation between the susjpension points being 5 cm . in equilibrium, the separation between the balls in 3 cm .

Find the mass of each ball and the tension in the strings. the charge on each ball gas a magnitude $2.0 \times 10^{-8} C$.

- Watch Video Solution

Partice Exercise

1. Two positively charged small particles, each of mass $1.7 \times 10^{-27} \mathrm{~kg}$ and carrying a charge of $1.6 \times 10^{-19} \mathrm{C}$ are placed apart at a separation r. If each one experiences a repulsive force equal to its weight find their separation. [0.117 m]

- Watch Video Solution

2. Two particles (free to move) with charges $+q$ and $+4 q$ are a distance L apart. A third charge is placed so that the entire system is in equilibrium.
(a) Find the location, magnitude and sign of the third charge.
(b) Show that the equilibrium is unstable.

- Watch Video Solution

3. A charge Q is to be divided on two objects. What shouold. be the values of the charges on the objects so that the. force between the objects can be maximum?.

D Watch Video Solution

4. Three charges q_{1}, q_{2} and q_{3} are shown in figure. Determine the net force acting on charge q_{1}. The charges and separation are given as

$$
q_{1}=-1.0 \times 10^{-6} C, q_{2}=+3.0 \times 10^{-6} C
$$

$q_{3}=-2.0 \times 10^{-6} C, r_{12}=15 \mathrm{~cm}, r_{13}=10 \mathrm{~cm}$ and $\theta=30^{\circ}$.

D Watch Video Solution

5. Three Charges of magnitude $100 \mu C$ are placed at the corners A , Band C ofan equilateral triangle of side 4 m . If the charge at A and Care positive and the one at point B is negative, what is the magnitude and direction of total force acting on charge at C ? [5.625N]
6. Two negative charges of a unit magnitude and a positive charge q are placed along a straight line. At what position and value of q will the system be in equilibrium? (Negative charges are fixed).

- Watch Video Solution

7. A charges Q is placed at each of the two opposite corners of a square. A charge q is placed to each of the other two corners. If the resultant force on each charge q is zero, then

D Watch Video Solution

8. Two balls of the same radius and weight are suspended on threads
so that their surface are in contact. A charge of $q_{0}=4 \times 10^{-7} C$ is given to the balls which makes them repel each other and diverge to an angle of 60°. Find the mass of the balls if the distance of balls from the point of suspension to the centre of ball is 20 cm . Find the
density of the material of the balls if the angle of divergence becomes 54° when the balls are immersed in kerosene of density $800 \mathrm{kgm}^{-3}$ dielectric constant ofkerosene is $\varepsilon_{r}=2\left[1.592 g, 255 K / \mathrm{gm}^{3}\right]$

D Watch Video Solution

9. Two equal positive point charges are separated by a distance 2a. A point test charge is located in a plane which is normal to the line joining these charges and midway between them.
(a) Calculate the radius r of the circle of symmetry in this plane for which the force on the test charge has a maximum value.
(b) What is the direction of this force, assuming a positive test charge ? [at $\sqrt{2}$, radial and away from the center]
10. Consider a fixed charge Q and another charge q is placed at a distance x_{0} from Q on a smooth plane surface. Find the velocity of charge q as a function of x .

$$
\left[\left[\frac{Q q}{2 \pi \in_{0} m}\left\{\frac{1}{x_{0}}-\frac{1}{x}\right\}\right]^{\frac{1}{2}}\right]
$$

(Watch Video Solution

11. A positive point charge $50 \mu C$ is located in the plane xy at a point with radius vector $\vec{r}_{0}=2 \hat{i}+3 \hat{j}$. The electric field vector \vec{E} at a point with radius vector $\vec{r}=8 \hat{i}-5 \hat{j}$, where r_{0} and r are expressed in meter, is

- Watch Video Solution

12. Four point charges, each of $+q$, are rigidly fixed at the four corners of a square planar soap film of side 'a'. The surface tension of
the soap film is γ. The system of charges and planar film are in equilibrium, and $a=k\left[\frac{q^{2}}{\gamma}\right]^{1 / N}$, where ' K ' is a constant. Then N is

- Watch Video Solution

13. Two identical beads each have a mass m and charge q. When placed in a hemispherical bowl of radius R with frictionless, nonconducting walls, the beads move, and at equilibrium they area distance R apart (figure). Determine the charge on each bead.

14. Two horizontal parallel conducting plates are kept at a separation $d=1.5 \times 10^{-2} m$ apart one above the other in air as shown in figure. The upper plate is maintained at a positive potential of 1.5 kV while the other plate is earthed which maintains it at zero potential.

Calculate the number of electrons which must be attached to a small oil drop of mass $m=4.9 \times 10^{-15} \mathrm{~kg}$ between the plates to maintain it at rest. Consider density of air is negligible in comparison with that ofoil. If the potential of above plate is suddenly changed to $-l .5 \mathrm{kV}$, what will be the initial acceleration of the charged drop? Also calculate the terminal velocity of the drop if its radius is $r=5.0 \times 10^{-6} m$ and the coefficient of viscosity of air is $\eta=1.8 x 10--5 N-s / m^{2}\left[3,2 g, 5.7 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}\right]$

15. A uniform electric field of intensity $E=10^{6} V / m$ exist in vertically downwards direction in a region. A particle of mass $m=0.01$ kg andcharge $q=10^{-6} C$ is suspended byan inextensible thread oflength $I=1 m$. The particle is displaced slightly from its mean position and released. Calculate the time period ofits oscillation. What minimum velocity should be given to the particle at rest from its equilibrium position so that it completes a full circle in vertical plane? Calculate the maximum and minimum tension in the thread in its circular motion in vertical plane. $[0.6 s, 23.42 \mathrm{~m} / \mathrm{s}, 6.59 \mathrm{~N}, 0]$

D Watch Video Solution

16. Figure shows an assembly of deflecting plates A and B ofan ink-jet printer which causes moving ink droplets to deflect at desired displacements by continuously varying electric field between the plates. An ink drop with a mass $m=1.3 \times 10^{-10} \mathrm{~kg}$ and a negative
charge of magnitude $q=1.5 \times x 10^{-13} C$ enters the region between the plates, initially moving along the x -axis with speed $v_{x},=18 \mathrm{~m} / \mathrm{s}$.

The length of plates is $L=1.6 \mathrm{~cm}$. The plates are connected with a varying voltage and thus produce an electric field at all points between them. Assume that field \vec{E} for some duration is constant and it is acting in downward direction as shown and has a magnitude of $E=I .4 \times 10^{6} N / C$, find the vertical deflection of the drop at the far edge ofthe plate? As the gravitational force on the drop is very small relative to the electrostatic force acting on the drop, it can be neglected for this analysis. $\left[6.4 \times 10^{-4} \mathrm{~m}\right]$

D Watch Video Solution

17. A uniform electric field E is established between two parallel charged plates as shown in figure. An electron enter the field symmetrically between the plates with a speed u. The length of each plate is I . if the electron does not stricke any of the plates, find the angle of deviation of the electron as it comes out of the field at the outer end of plates. $\left[\tan ^{-1}\left(\frac{e E l}{\mu^{2}}\right)\right]$

(D) Watch Video Solution

18. In a region an electric field is setu!l with its strength $E=15 \mathrm{~N} / C$ and it makes an angle of 30° with the horizontal plane as shown in figure. A ball having a charge 2 C , mass 3 kg and coefficient of
restitution with ground 0.5 is projected at an angle of 30° with the horizontal along the direction of electric field with speed $20 \mathrm{~m} / \mathrm{s}$. Find the horizontal distance travelled by ball from first hit with the ground to the second time when it hits the ground. $[70 \sqrt{3} m]$

(D) Watch Video Solution

19. In a hydrogen atom an electron of mass $9.1 \times 10^{-31} \mathrm{jg}$ revolves about a proton in circular orbit of radius $0.53 \AA$. Calculate the radial acceleration and angular velocity of electron.
$\left[8.9 \times 10^{22} \mathrm{~m} / \mathrm{s}^{2}, 4.1 \times 10^{16} s^{-1}\right]$
20. An electron is released with a velocity of $5 \times 10^{6} \mathrm{~ms}^{-1}$ in an electric field of $10^{3} \mathrm{NC}^{-1}$ which has been applied so as to oppose its motion. What distance would the electron travel and how much time could it take before it is brought to rest?

D Watch Video Solution

21. A particle is unchanged and is thrown vertically upward from ground level with a speed of $5 \sqrt{5} \mathrm{~m} / / \mathrm{s}$ in a region of space having uniform electric field As a result, it attains a maximum height h. The particle is then given a positive charge $+q$ and reaches the same maximum height h when thrown vertically upward with a speed of
$13 m / s$ Finally the particle is given a negative charge -q Ignoring air resistance determine the speed (in $\mathrm{m} / / \mathrm{s}$) with which the negatively charged particle must be thrown vertically upward, so that it attains exactly the same maximum height h.
22. A particle of charge q and mass m is suspended from a point on the wall by a rigid massless rod oflength $L=3 / m$ as shown. Above the point of suspension another particle is clamped which has a charge -q at a distance L .from point of suspension. On slight displacement from the mean position, the suspended particle is observed to executes SHM. Find the time period of SHM. (For
calculations consider $K q^{2}=2 m g L^{2}$ and $\left.g=\pi^{2}\right)[4 s]$

23. A nonconducting ring of mass m and radius R, with charge per unit length λ is shown in fig. It is then placed on a rough nonconducting horizontal plane. At time $\mathrm{t}=0$, a uniform electric field $\vec{E}=E_{0} \hat{i}$ is switched on and the ring starts rolling without sliding. Determine the friction force (magnitude and direction) acting on the ring.

24. In the given arrangement find electric field at C . Complete wire is uniformly charged at linear charge density $\lambda .\left[\frac{\lambda}{2 \sqrt{2} \epsilon_{0} R}\right]$

- Watch Video Solution

25. A thin half ring of radius $R=20 \mathrm{~cm}$ is uniformly charged with a total charge $q=0.70 n C$. Find the magnitude of the electric field strength at the curvaite centre of this half-ring.
26. Three short electric dipoles, each of dipole moment P, are placed at the vertices of an equilateral triangle of side length L. Each dipole has its moment oriented parallel to the opposite side of the triangle as shown in the fig. Find the electric field and potential at the centroid of the triangle

27. A whin wire ring of radius r carries charge q. Find the magnitude of the electric field strength on the axis of the ring as a function of distance l from its centre. Investigate the obtained function at $l \gg r$. Find the maximum strength magnitude and the corresponding distance l. Draw the appoximate polt of the function. $E(l)$.

D Watch Video Solution

28. A circular wire-loop of radius a carries a total charge Q distributed uniformly over its length. A small length dL of the wire is cut off. Find the electric field at the centre due to remaining wire.

- Watch Video Solution

29. An electron is constrained to move along the central axis of a ring ofradius R having uniformly distributed charge q. Show that the
electrostatic force exerted on the electron can cause itto oscillate through the centre of the ring with an angular frequency of $\omega=\sqrt{\left(e q / 4 \pi \varepsilon_{0} m R^{3}\right)}$, where m is the mass of the electron $\left[\sqrt{\frac{q e}{4 \pi \in_{0} m R^{3}}}\right]$

D Watch Video Solution

30. Two point charges Q_{1} and Q_{2} are positioned at points I and 2. The field intensity to the right of the charge Q_{2} on the line that passes through the two charges varies according to a law that is represented in the figure. The field intensity is assumed to be positive if its direction coincides with the positive direction on the x-axis. The distance between the charges is I.

(a) Find the sign of each charge
(b) Find the ratio of the absolute values of the charges $\left|\frac{Q_{1}}{Q_{2}}\right|$
(c) Find the value of b where the field intensity is maximum
[(a) Q_{2} is negative and Q_{1} is positive (b) $\left(\frac{l+a}{a}\right)^{2}$,
$\left.\frac{l}{\left(\frac{l+a}{a}\right)^{2 / 3}-1}\right]$

- Watch Video Solution

31. Two wires $A B \& C D$, each $1 m$ length, carry a total charge of 0.2 microcoulomb each and are placed as shown in figure. The ends B \& C are separated 1 m distance. Determine the value of electric intensity at the point P in the vector form.Note P is the mid point of $B C$.

D Watch Video Solution

32. The diagram shows a uniformly charged hemisphere of radius R. It has volume charge density rho. If the electric field at a point $2 R$ distance above its center is E then what is the electric field at the point which is $2 R$ below its center?

33. An infinitely long solid cylinder of radius R has a uniform volume charge density ρ. It has a spherical cavity of radius $R / 2$ with its centre on the axis of cylinder, as shown in the figure. The magnitude of the electric field at the point P, which is at a distance $2 R$ form the axis of the cylinder, is given by the expression $\frac{23 r R}{16 k e_{0}}$. The value of k is.

34. There are two nonconducting spheres having uniform volume charge densities ρ and $-\rho$. Both spheres have equal radius R. The spheres are now laid down such that they overlap as shown in Fig.2.125. Take $\vec{d}=O_{1} \overrightarrow{O_{2}}$.

The electric field \vec{E} in the overlapped region is
35. Suppose the surface charge density over a sphere of radius R depends on a polar angle θ as $\sigma=\sigma_{0} \cos \theta$, where σ_{0} is a positive constant. Show that such a charge distribution can be represented $\sim s$ a result ofa small relative shift of two uniformly charged balls of radius R whose charges are equal in magnitude and opposite in sign. Resorting to this representation, find the electric field strength vector inside the given sphere. $\left[\frac{\sigma_{0}}{3 \epsilon_{0}}\right]$

D Watch Video Solution

36. The region between two concentric spheres of radii 'a' and ' b ', respectively (see figure), have volume charge density $\rho=\frac{A}{r}$, where A is a constant and r is the distance from the centre. At the centre of the spheres is a point charge Q. The value of A such that the electric
field in the region between the spheres will be constant, is:

D Watch Video Solution

37. A square loop of side 'l' each side having uniform linear charge density 'lambda' is placed in 'xy' lane as shown in the figure There exists a non uniform electric field $\vec{E}=\frac{a}{l}(x+l) \hat{i}$ where a and I are constants and x is the position of the point from origin along x -axis.

Find the resultant electric force on the loop (in Newtons) if
$l=10 \mathrm{~cm} \lambda=20 \mu C / m$ and $a=5 \times 10^{5} \mathrm{~N} / \mathrm{C}$.

D Watch Video Solution
38. Two concentric rings, one of radius a and the other of radius b, have the charges +q , and $-(2 / 5)^{-3 / 2} q$, respectively as shown in fig.

Find the rario b / a if a charge particle palaced on the axis at $\mathrm{z}=\mathrm{a}$ is i equilibrium.

D Watch Video Solution

39. An infinite dielectric sheet having charge density σ has a hole of radius R in it. An electron is released from point P on the axis of the hole at a distance $\sqrt{3} R$ from the center. Find the speed with which it
crosses the plane of the sheet.

- Watch Video Solution

40. A uniform rod AB of mass m and length l is hinged at its mid point C . The left half (AC) of the rod has linear charge density $-\lambda$ and the right half (CB) has $+\lambda$ where λ is constant. A large non conducting sheet of uniform surface charge density σ is also present
near the rod. Initially the rod is kept perpendicular to the sheet. The end A of the rod is initialy at a distance d. Now the rod is rotated by a small angle in the plane of the paper and released. Prove that the rod will perform SHM and find its time period.

41. Two particles each charged with a charge $+q$ are clamped on they axis at the points $(0, a)$ and $(0,-a)$. If a positively charged particle of
charge q_{0} and mass m is slightly displaced from origin in the direction ofnegativex-axis.
(a) What will be its speed at infinity?
(b) If the particle is projected towards the left along the x-axis from a point at a large distance on the right of the origin with a velocity half that acquired in part (a), at what distance from origin will it come to rest ?
$\left[\sqrt{\frac{2 K q q_{0}}{m a}}, \sqrt{15 a}\right]$

D Watch Video Solution

42. An infinite number of charges each equal to q are placed along the x-axis at $x=1 m, x=2 m, x=4 m, x=8 m, \ldots$ and so on. Find the potential and electric field at the point $x=0$ due to this set of charges. What will be potential and electric field ifin the above set up if the consecutive charge have opposite sign?

$$
\left[\frac{q}{2 \pi \epsilon_{0}}, \frac{q}{3 \pi \epsilon_{0}}, \frac{q}{6 \pi \epsilon_{0}}, \frac{q}{5 \pi \epsilon_{0}}\right]
$$

43. A particle having a charge of $1.6 \times 10^{-19} \mathrm{C}$ enters midway between the two plates of a parallel plate capacitor. The initial velocity of particle is parallel to the plates. A potential difference of300 Vis applied between the two plates. Ifthe length of the plates is 10 cm and they are separated by 2 cm , calculate the greatest initial velocity for which the particle will not be able to come out of the plates. The mass of the particle is $12 \times 10^{-24} \mathrm{~kg}$ $\left[10^{4} m / s\right]$

D Watch Video Solution

44. A circular ring of radius R with uniform positive charge density λ per unit length is located in the y-z plane with its centre at the origin O. A particle of mass m and positive charge q is projected from the point $\mathrm{P}(R \sqrt{3}, 0,0)$ on the positive x -axis directly towards O , with an
initial speed v. Find the smallest (non-zero) value of the speed v such that the particle does not return to P.

D Watch Video Solution

45. Two thin wire rings each having radius R are placed at distance d apart with their axes coinciding. The charges on the two are $+Q$ and $-Q$. The potential difference between the centre so the two rings is

D Watch Video Solution

46. A positive charge Q is uniformly distributed throughout the volume of a dielectric sphere of radius R. A point mass having charge $+q$ and mass m is fired toward the center of the sphere with velocity v from a point at distance $r(r>R)$ from the center of the sphere. Find the minimum velocity v so that it can penetrate $(R / 2)$ distance of the sphere. Neglect any resistance other than electric interaction.

Charge on the small mass remains constant throughout the motion.

D Watch Video Solution

47. The electric potential at surface of thin non-conducting sheet with charge density σ is V_{0}. Show that the electric potential at a distance x from infinite sheet can be written as
$V=V_{0}-\frac{\sigma}{2 \epsilon_{0}} x$

D Watch Video Solution

48. Two identical circular rings A and B of radius 30 cm are placed coaxially with their axes horizontal in a uniform electric field E. $=10^{5} N / C$ directed vertically upward as shown in figure. Distance between centres ofthese rings A and B is 40 cm . Ring A has a positive charge $10 \mu C$ while ring B has a negative charge of magnitude $20 \mu C$. A particle of mass $100 g$ and carrying a positive charge $10 \mu C$ is released from rest at the centre of the ring A. Calculate its velocity when it has moved a distanceof40cm. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

$[6 \sqrt{2} m / s]$

D Watch Video Solution

49. A non-conducting disc of radius a and uniform positive surface charge density σ is placed on the ground, with its axis vertical. A particle of mass m and positive charge q is dropped, along the axis of the disc, from a height H with zero initial velocity. The particle has $q / m=4 \in_{0} g / \sigma$
(a) Find the value of H if the particle just reaches the disc.
(b) Sketch the potential energy of the particle as a function of its height and find its equilibrium position.

D Watch Video Solution

50. Determine the potential $\phi(x, y, z)$ of an electrostatic field $\vec{E}=a y \hat{i}+(a x+b z) \hat{j}+b y \hat{k}$, where a and b are constants, \hat{i}, \hat{j} are the unit vectors of the axes $\mathrm{x}, \mathrm{y}, \mathrm{z}$. $[-y(a x+b z)+$ constant $]$

- Watch Video Solution

51. Find the potential difference between points a and b in and electric field of which strength in the region is given by the vector as $\vec{E}=(2 \hat{i}+3 \hat{j}+4 \hat{k}) N / C$

The position vectors of points a and b are given as

$$
\vec{r}_{a}=(\hat{i}-2 \hat{j}+\hat{k}) m \text { and } \vec{r}_{b}=(2 \hat{i}+\hat{j}-2 \hat{j} k) m[-1 V]
$$

D Watch Video Solution

52. Consider a spherical surface of radius 4 m cenred at the origin.

Point charges $+q$ and $-2 q$ are fixed at points $A(2 m, 0,0)$ and $B(8 m, 0$,
0), respectively. Show that every point on the shperical surface is at zero potential.

(D) Watch Video Solution

53. A plastic rod has been formed into a circle of radius R. It has a positive charge $+Q$ uniformly distributed along one-quarter of its
circumference and a negative charge of $-6 Q$ uniformly distributed along the rest of the circumference (figure). With $\mathrm{V}=0$ at infinity, what is the electric potential $-6 Q$
(a) at the centre C of the circle and
(b) at point P , which is on the central axis of the circle at distance z from the centre?

(D) Watch Video Solution

54. A ring of radius R is having two charges q and $2 q$ distributed on its two half parts. The electric potentiasl at a point on its axis at a distance of $2 \sqrt{2} R$ from its centre is $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$

- Watch Video Solution

55. A spherical oil drop, radius $10^{-4} \mathrm{~cm}$ has on it at a certain a total charge of 40 electrons. Calculate the energy that would be required to place an additional electron on the drop.

D Watch Video Solution

56. Three charges 0.1 coulomb each are placed on the corners of an equilateral triangle of side 1 m . If the energy is supplied to this
system at the rate of $1 k W$ how much time would be required to move one to the charges on to the midpoint of the line joining the two?

Watch Video Solution

57. A system consists of two concentric spheres, with the inside sphere of radius a carrying a positive charge q_{1}. What charge q_{2} has to be diposited on the outsie sphere of radius b to reduce the potentail φ depend in this case on a distance r from the centre of the system ? Draw teh appoximate plot of this dependence.

- Watch Video Solution

58. At the end points of a line sigment of a length of $d=\frac{\sqrt{337}}{84} m$ there are two identical positive electric charges q. What is the ratio of the electric field strength and the electric potential magnitudes is

SI units at a point located by an angle $a=37^{\circ}$ on the circle drawn around the line segment as a diameter?

D Watch Video Solution

59. A conducting sphere S_{1} of radius r is attached to an insulating handle. Another conduction sphere S_{2} of radius R is mounted on an insulating stand. S_{2} is initially uncharged. S_{1} is given a charge Q brought into contact with S_{2} and removed. S_{1} is recharge such that the charge on it is again Q and it is again brought into contact with
S_{2} and removed. This procedure is repeated n times.
a. Find the electrostatic energy of S_{2} after n such contacts with S_{1}.
b. What is the limiting value of this energy as $n \rightarrow \infty$?
60. A uniform disc of radius R is charged with a uniform surface charge density σ. Find the electric potential due to the charges on the disc at a point on its edge. $\left[\frac{\sigma R}{\pi \in_{0}}\right]$

D Watch Video Solution

61. A dielectric cylinder of radius a is infinitely long. It is non-uniformly charged such that volume charge density ρ varies directly as the distance from the cylinder. Calculate the electric field intensity due to it at a point located at a distance r from the axis of the cylinder. Given that ρ is zero at the axis and it is equal to ρ on the surface of cylinder. Also calculate the potential difference between the axis and
the surface. $\left[\frac{\rho r^{2}}{3 \in_{0} a}, \frac{\rho a^{2}}{9 \in_{0}}\right]$
62. In figure-, an electric dipole is placed at a distance \times from an infinitely long rod of linear charge density λ.
(a) Find the net force acting on the dipole
(b) What is the work done in rotating the dipole through 180°
(c) If the dipole is slightly rotated about its equilibrium position, find the time period of oscillation. Assume that the dipole is linearly restrained.
$\left[(a) \frac{\lambda a q}{\pi \epsilon_{0} x^{2}},(b) \frac{2 \lambda a q}{\pi \epsilon_{0} x},(c) 2 \pi \sqrt{\frac{2 \pi \in_{0} m x^{2} a}{\lambda q}}\right]$

(- $-2 a--1$
63. Two point dipoles $p \hat{k}$ and $\frac{P}{2} \hat{k}$ are located at ($0,0,0$) and ($1 \mathrm{~m}, 0$, 2 m) respectively. Find the resultant electric field due to the two dipoles at the point $M(1 m, 0,0)$

$$
\left[-\left(\frac{7 P}{32 \pi \epsilon_{0}}\right) \hat{k}\right]
$$

D Watch Video Solution

64. Find the magnitude of the electric field at the point P in the configuration shown in figure- 1.219 (a), (b) and (c) for $d \gg a$ take $2 q a=P$.
$\left[(a) \frac{q}{4 \pi \epsilon_{0} d^{2}}\right.$,
(b) $\frac{2 q}{2 \pi \in_{0} d^{3}}$,
(c) $\left.\frac{q}{4 \pi \in_{0} d^{2}} \sqrt{1+\frac{4 a^{2}}{d^{2}}}\right]$

(a)

(b)

(c)
65. The graph in figure-shows the potential energy of an electric dipole that oscillates between $\pm 60^{\circ}$. What is the kinetic energy of dipole when it is aligned with the field?
$[1 \mu J]$

- Watch Video Solution

66. An electric dipole with dipole moment P oriented in the positive direction of z-axis is located at the origin of a three dimensional
coordinate system. Find the projections of electric field E_{x} and E_{y} of the electric field strength vector at a point $P(r, \theta)$. Aslo find out the angle θ at which electric field vector is perpendicular to the dipole moment.

$$
\left[\frac{P}{4 \pi \epsilon_{0} r^{3}}\left(3 \cos ^{3} \theta-1\right), \frac{3 p \sin \theta \cos \theta}{4 \pi \in_{0} r^{3}}, \cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\right]
$$

D Watch Video Solution

67. An electric dipole is placed at a distance x from centre O on the axis of a charged ring of radius R and charge Q uniformly distributed over it.
(a) Find the net force acting on the dipole
(b) What is the work done in rotating the dipole through 180° ?

$$
\left[(a) \frac{a q Q}{2 \pi \varepsilon_{0}}\left(\frac{R^{2}-2 x^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}}\right),(b) \frac{a q Q x}{\pi \varepsilon_{0}\left(R^{2}+x^{2}\right)^{3 / 2}}\right]
$$

D Watch Video Solution

68. A dipole with an electric moment p is located at a distance r from a along thread charge uniformly with a linear density λ. Find the force F acting on the dipole if the vector p is oriented
(a) along the thread
(b) along the radius vector r
(c) at the right angles to the thread and the radius vector r.
69. Two short electric dipoles are placed as shown in figure. Find the potential energy of electric interaction between these dipoles.

$$
\left[-\frac{K p_{1} p_{2} \cos \theta}{r^{3}}\right]
$$

- Watch Video Solution

70. In the figure shown S is a large nonconducting sheet of uniform charge density σ. A rod R of length I and mass ' m ' is parallel to the sheet and hinged at its point. The linear charge densities on the upper and lower half of the rod are shown in the figure. Find the angular acceleration of the rod just after it is released

- Watch Video Solution

71. Point charges q and $-q$ located at the vertices of a square with diagonals 21 as shown in figure. Find the magnitude of the electric
field at a point located symmetrically with respect to the vertices of the square at a distance x from its centre. Consider $x \gg l_{0}$

$$
\left[-\frac{q l}{\sqrt{2} \pi \varepsilon_{0} x^{3}}\right]
$$

- Watch Video Solution

72. Two point charges q and $-q$ are separated by a distance $2 l$. Find the flux strength vector across the circle of radius R placed with its centre coinciding with the of line joining the two charges in the perpendicular plane.
73. A charge q_{0} is distributed uniformly on a ring of radius R. A sphere of equal radius R constructed with its centre on the circumference of the ring. Find the electric flux through the surface of the sphere.

D Watch Video Solution

74. An electric field given by $\vec{E}=4 \hat{i}+3\left(y^{2}+2\right) \hat{j}$ pierces a gaussian cube of side 1 m placed at origin such that one of its corners is at origin and rest of sides are along positive side of coordinate axis. Find the magnitude of net charge enclosed within the cube $\left[3 \in_{0}\right]$

- Watch Video Solution

75. A point charge q is located on the axis of a disc of radius R at a distance b from the plane of the disc as shown in figure 1.295 What should be the radius of the disc if one fourth of the total electric flux
form the charge passes through the disc.

D Watch Video Solution
76. Find the electric flux through a cubical surface due to a point charge q placed (a) at centre of one face (b) corner of the cubical box as shown in figures -1.296 below in case (b) find the flux through each face of the cube

(a)

(b)

$$
\left[\frac{q}{2 \epsilon_{0}}, \frac{q}{8 \epsilon_{0}}, \frac{q}{24 \epsilon_{0}}, 0\right]
$$

D Watch Video Solution

77. A cube has sides of length $\mathrm{L}=0.2 \mathrm{~m}$ It is placed with one corner at the origin as shown in figure The electric field in uniform and given by $\vec{E}=(2.5 \hat{i}-4.2 \hat{j}) N / C$.Find the electric flux through the
entire cube.

D Watch Video Solution

78. For a spherically symmetrical charge distribution electric field at a distance r from the centre of sphere is $\vec{E}=k r^{2} \hat{r}$ where k is a constant what will be the volume charge density at a distance r from the centre of sphere?

- Watch Video Solution

79. A non-conducting spherical ball of radius R contains a spherically symmetric charge with volume charge density $\rho=k r^{2}$ where r is the distance form the centre of the ball and n is a constant what should be n such that the electric field inside the ball is directly proportional to square of distance from the centre?

- Watch Video Solution

80. An infinite, uniformly charged sheet with surface charge density σ cuts through a spherical Gaussian surface of radius R at a distance
X from its center, as shown in the figure. The electric flux Φ through
the Gaussian surface is .

Watch Video Solution
81. Initially the spheres A and B are at potentials V_{A} and V_{B}. Find the potential of A when sphere B is earthed.

D Watch Video Solution

82. Figure shows three concentric thin conducting spherical shells A , B and C of radii $R, 2 R$ and $3 R$. The shell B is earthed A and C are given charges q and $2 q$ respectively. Find the charges appearing on all the surface of A, B and C.

[inner surface $(A) 0,(B)-q,(C) \frac{4}{3} q$
Outer surface $\left.(A) q,(B)-\frac{4}{3} q,(C) \frac{2}{3} q\right]$

- Watch Video Solution

83. Three identical metallic plates are kept parallel to one another at a separation of a and b The outer plates are connected by a thin conducting wire and a charge Q is placed on the central plate Find final charges on all the surfaces of the three plates.

$\left[\right.$ faces $(1) \frac{Q}{2}$,
(2) $-\frac{Q b}{a+b}$,
(3) $\frac{Q b}{a+b}$,
(4) $\frac{Q a}{a+b}$,
(5) $-\frac{Q a}{a+b}$,
(6) $\left.\frac{Q}{3}\right]$

D Watch Video Solution

84. There are two concentration conducting spherical shells of radii r and $2 r$ initially a charge Q is given to the inner shell Now, switch S_{1} is closed and opened then S_{2} is closed and opened and the process is repeated n times for both the keys alternatively. Find the final potential difference between the shells.

$$
\left[\frac{1}{2^{n+1}}\left[\frac{Q}{4 \pi \varepsilon_{0}} r\right]\right]
$$

- Watch Video Solution

85. An electrometer is charged to 3 kV . Then the electrometer is touched with a neutral metal ball, mounted on an isulating rod and then the metal ball is taken away and earthed The process is done for

10 times and finally the electrometer reads 1.5 kV . After this, at least how many times must the above process be repeated in order that the electrometer reads less than 1 kV ?
86. When an uncharged conducting ball of radius R is placed in an external uniform electric field, a surface charge densityh $\sigma=\sigma_{0} \cos \theta$ is induced on the ball's surface charge (here σ_{0} is a constant, θ is a polar angle). Find the magnitude of the resultant electric force acting on an induced charge of the same sign.

- Watch Video Solution

87. A point charge q is located at the centre of the spherical layers of uniform isotropic dielectric with relative permittivity K. The inside radius of the layer is equal to a and the outside radius is equal to b .The electrostatic energy inside the dielectric layer is

- Watch Video Solution

88. A solid conducting sphere of radius a having a charge q is surrounded by a concentric conducting spherical shell of inner radius
$2 a$ and outer radius $3 a$ as shown in figure. Find the amount of heat porduced when switch is closed $\left(k=\frac{1}{4 \pi \varepsilon_{0}}\right)$

89. The figure shows a conducting sphere ' A ' of radius 'a' which is surrounded by a neutral conducting spherical shell B of radius ' b ' ($>a$) Initially switches S_{1}, S_{2} and S_{3} are open and sphere 'A' carries a charge Q .

First the switch ' S_{1} ' is closed to connect the shell B with the ground and then opened Now the switch ' S_{2} ' is closed so that the sphere ' A ' is grounded and then S_{2} is opened Finally, the switch ' S_{3} ' is closed to connect the spheres together. Find the heat(in Joule) which is produced after closing the switch S_{3} [Consider

$$
b=4 c m a=2 c m \text { and } Q=8 \mu c]
$$

90. A long cylindrical shell of length I and radius a is given a uniformly distributed charge Q on its surface. If the shell is expanded uniformly to a radius b , find the work done by electrical forces in the process of expansion. $\left[\frac{\lambda^{2} l}{4 \pi \in_{0}} \ln \left(\frac{b}{a}\right)\right]$

- Watch Video Solution

91. In a system of two concentric spherical conducting shells charge q is given to both inner and outer shells as shown in figure 1.361. Inner shell is connected to earth by a switch Find the amount of heat produced when switch is closed

$\left[\frac{5 K q^{2}}{8 a}\right]$

(D) Watch Video Solution

92. Two uniformly charged solid spheres A and B of radii a and b with charges q_{1} and q_{2} are kept at a separation r. Find the work done in disassembling the whole system into very small particles and displace the particles to infinite separation.

$$
\left[\frac{3}{5} \frac{K q_{1}^{2}}{a}+\frac{3}{5} \frac{K q_{2}^{2}}{b}+\frac{K q_{1} q_{2}}{r}\right]
$$

93. Two uniformly charged concentric sperical shells are of radii a and b respectively. The charges on the two shells are q_{1} and q_{2} Find the work required in expanding the outer shell of radius b to increase its radius to infinity

$$
\left[-\frac{K q_{2}^{2}}{2 b}+\frac{K q_{1} q_{2}}{b}\right]
$$

- Watch Video Solution

Partice Exercise 1.2

1. A block of mass m containing a net positive charge q is placed on a smooth horizontal table which terminates in a vertical wall as shown in figure(29-E2). The distance of the bolck from the wall is d. A horizontal electric field E to towards right is switched on. Assuming elastic collisions find the time period of the resulting oscillatory

motion. Is it a simple harmonic motion?

(Watch Video Solution

Partice Exercise 1.3

1. In the given arrangement find the electric field at C in the figure.

Here the U-shaped wire is uniformly charged with linear charge
density λ. [0]

- Watch Video Solution

Partice Exercise 1.4

1. A solid sphere of radius R has a charge Q distributed in its volume with a charge density $\rho=k r^{a}$, where k and a are constants and r is the distance from its centre. If the electric field at $r=\frac{R}{2}$ is $\frac{1}{8}$ times that $r=R$, find the value of a.

D Watch Video Solution

Partice Exercise 1.5

1. Four particles with charges $+q,+q,-q,-q$ are placed respectively at the comers. A, B, C, D of a square of side 'a' arranged in given order. Calculate the electric potential and intensity at point 0 , the center of the square. If E and Fare the midpoints of the sides $B C$ and CD respectively, what will be the work done in displacing a charge Qfrmil OtoE and from Oto F?
$\left[0,-\frac{4 K q Q}{a}\left(\frac{\sqrt{5}-1}{\sqrt{5}}\right)\right] 1$

Partice Exercise 1.6

1. Two concentric spheres of radii R and $2 R$ are charged. The inner sphere has a charge if $1 \mu C$ and the outer sphere has a charge of $2 \mu C$ of the same sigh. The potential is 9000 V at a distance $3 R$ from the common centre. The value of R is

D Watch Video Solution

Partice Exercise 1.7

1. A dipole is placed at origin of coordinate system as shown in figure,
find the electric field at point $\mathrm{P}(0, \mathrm{y})$.

$$
\left[\frac{K P}{\sqrt{2} y^{3}}(-\hat{i}-2 \hat{j})\right]
$$

- Watch Video Solution

Partice Exercise 1.8

1. Find flux through the hemispherical cup due to the charge q placed as shown in figure -

- Watch Video Solution

Partice Exercise 1.9

1. Figure - shows two conducting thin concentric shells of radii r and $3 r$ The outer shell carries charge q where as inner shell is uncharged.

Find the charge that will flow from inner shell to earth after the switch S is closed.

$\left[+\frac{q}{3}\right.$ charge will flow inner shell to earth $]$

D Watch Video Solution

Partice Exercise 1.10

1. One thousand similar electrified raindrops merge into one so that
their total charge remains unchanged Find the change in the total electric energy of the drops, assuming that the drops are spherical and that small drops are at large distance from one another [Energy increase by 100 times]

Discussion Question

1. Two identical metallic spheres of exactly equal masses are taken. One is given a poistive charge Q coulombs and the other an equal negative charge. Their masses after charging are different.

(D) Watch Video Solution

2. It is said that the separaton between the two charges forming an electric dipole should be small. Small compered to what?
3. A point charge q is placed in a cavity in a metal block. If a charge Q is brought outside the metal, will the charge q feel an electric force?

(D) Watch Video Solution

4. An electron and a proton are freely situated in an electric field. Will the electric forces on them be equal? Will their acceleration be equal? Explain with reason.

- Watch Video Solution

5. Is there any lower limit to the electric force between two
. particles placed at a separation of 1 cm ?

- Watch Video Solution

6. Can two equipotential surfaces cut each other?

D Watch Video Solution

7. Why the electric field at the outer surface of a hollow charged conductor is normal to the surface?

D Watch Video Solution

8. Can a gravitational field be added vectorially to an
. electric field to get a total field?

- Watch Video Solution

9. Why does a phonograph record attract dust particles just after it is cleaned?
10. A spherical shell made of plastic, contains a charge Q distributed uniformly over its surface. What is the electric field inside the shell? If the shell is hammered to deshape it without altering the charge. Will the field inside be changed? What happend if the shell is made of a metal?

D Watch Video Solution

11. How can the whole charge ofa conductor be transferred to another isolated conductor ?

D Watch Video Solution

12. Does the force on a charge due to another charge depend . on the charges present nearby?
13. A charged particale is free to move in an electric field. Will it always move along an electric line of force?

D Watch Video Solution

14. Two point charges+ q and- q are placed at distanced apart. What are the points at which the resultant field is parallel to the line joining the two charges ?

- Watch Video Solution

15. A point charge is taken from a point A to a point B in an electric field. Does the work done by the electric field depend on the path of the charge ?
16. A positive charge $+q$ is located at a point. What is the work done if a unit positive charge is carried once around this charge along a circle ofradius r about :

D Watch Video Solution

17. A rubber balloon is given a charge. Q distributed uniformly over its surface. Is the field inside the balloon zero everywhere if the balloon does not have a spherical surface?

D Watch Video Solution

18. Two small balls having equal poistive charges Q (coulomb) on each are suspended by two insulating strings of equal length L (metre) from a hook fixed to a stand. The whole set up is taken in a satellite
into space where there is no gravity (state of weightlessness). The angle between the two strings is \qquad and the tenison in each string is. \qquad newtons.

Watch Video Solution

19. The number of electrons in an insulator is of the same order as the number of electrons in a conductor. What is then the basic difference between a conductor and an insulator ?

- Watch Video Solution

20. No work is done in taking a positive charge from one point to other inside a positive charged metallic sphere, while outside the sphere work is done in taking the charge from one point to other (towards the sphere). Explain.
21. A small plane area is rotated in an electric field. In which orientation of the area is the flux of electric field through the area maximum? In which orientation is it zero.?

D Watch Video Solution

22. When a charged comb is brought near a small piece of paper, it attracts the piece. Does the paper, it attracts the piece. Does the paper become charged when the conb is brought near it ?

(D) Watch Video Solution

23. A circular ring of radius r made of a nonconducting material is placed with its axis parallel to a uniform electric field. The ring is rotated about a diameter through 180°. Does the flux of electric field change? If yes, does it decrease of increase?
24. A charge Q is uniformly distributed on a thin spherical shell. What is the field at the centre of the shell? If a point charge is brought close to the shell, will the field at the centre change? Does your answer depend on whether the shell is conducting or nonconducting?

D Watch Video Solution

25. One going away from a point charge, the electric field due to the charge decreases. This is also true for a small electric-dipole. Does the electric field decreases at the same rate in both cases ?

D Watch Video Solution

1. A soap bubble is given a negative charge, then its radius
A. Decrease
B. Increase
C. Remains unchanged
D. Nothing can be predicted as information is insufficient

- Watch Video Solution

2. A given charge is situated at a certain distance from an electric dipole in the end-on position experiences a force F If the distance of the charge is doubled, the force acting on the charge will be
A. 2 F
B. F/2
C. F/4
D. F/8

- Watch Video Solution

3. The electric field on two sides of a thin sheet of charge is shown in the figure. The charge density on the sheet is

$$
\xrightarrow{E_{1}=8 \mathrm{~V} / \mathrm{m}}\left[\begin{array}{c}
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{array}\right] \xrightarrow{E_{2}=12 \mathrm{~V} / \mathrm{m}}
$$

A. $2 \varepsilon_{0}$
B. $4 \varepsilon_{0}$
C. $10 \varepsilon_{0}$
D. Zero

D Watch Video Solution

4. Three identical charges are placed at corners of a equilateral triangel of side I. If force between any two charges is F , the work required to double the dimensiions of triangle is
A. $-3 F l$
B. 3FI
C. $(-3 / 2) F l$
D. $(3 / 2) F l$
5. Three concentric conducting sphereical shells carry charges $+4 Q$ on the inner shell $-2 Q$ on the middle shel and $+6 Q$ on the outer shell. The charge on the inner surface of the outer shell is
A. 0
B. 4 Q
C. $-Q$
D. $-2 Q$

- Watch Video Solution

6. A and B are two concentric spherical shells. If A is given a charge $+q$ while B is earthed as shown in figure then

A. Charge on the outer surface of shell B is zero
B. The charge on B is equal and opposite to that of A
C. The field inside A and outside B is zero
D. All of the above

Answer: D

7. Two concentric conducting thin spherical shells A and B having radii rA and $r 8\left(r_{8}>r_{A}\right)$ are charged to Q_{A} and $-Q_{B}\left(\left|Q_{B}\right|>\left|Q_{A}\right|\right)$. The electric field strength along a line passing through the centre varies with the distance x as :
A.

B.

C.

D. None of these
8. Electric potential at a point P, r distance away due to a point charge q kept at point A is V. If twice of this charge is distributed uniformly on the surface of a hollow sphere of radius $4 r$ with centre at point A the potential at P now is
A. V
B. $\mathrm{V} / 2$
C. $\mathrm{V} / 4$
D. $\mathrm{V} / 8$

D Watch Video Solution

9. There is a point charge +q inside a hollow sphere and a point charge -q just outside its surface. The total flux passing through the surface of sphere is :
A. $-\frac{q}{\epsilon_{0}}$
B. $\frac{q}{\epsilon_{0}}$
C. $\frac{2 q}{\epsilon_{0}}$
D. zero

- Watch Video Solution

10. The figure shows three non condncting rods, one circular and two straight. Each has a uniform charge of magnitude Q distributed on its one half and -Q on its other half as shown in the figure-1.364. Which of these correctly represents the direction of field at point P :

(I)

(II)
$-2{ }_{-2}^{+Q}$
(III)
A. 1
B. II
C. III
D. I and II

- Watch Video Solution

11. A conducting spherical shell having inner radius a and outer radius b carries a net charge Q. If a point charge q is placed at the centre of this shell, then the surface charge density on the outer surface of the shell is given as:
A. $\frac{Q-p}{4 \pi b^{2}}$
B. $\frac{Q+q}{4 \pi b^{2}}$
C. $\frac{Q-q}{4 \pi b^{2}}$
D. Zero

D Watch Video Solution

12. If a unit positive charge is taken from one point to another over an equipotential surface ,then
A. Work is done on the charge
B. Work is done by the charge
C. Work on the charge is constant
D. No work is done

(D) Watch Video Solution

13. Ten electrons are qually spaced and fixed around a circle of radius R. Relative to $V=0$ at infinity, the electrostatic potential V and the electric field E at the centre C are
A. $V \neq 0 \operatorname{and} \vec{E} \neq 0$
B. $V \neq 0 \operatorname{and} \vec{E}=0$
C. $V=0$ and $\vec{E}=0$
D. $V=0$ and $\vec{E} \neq 0$

- Watch Video Solution

14. Let $P(r)=\frac{Q}{\pi R^{4}} r$ be the charge density distribution for a solid sphere of radius R and total charge Q. For a point ' p ' inside the sphere at distance r_{1} from the centre of the sphere, the magnitude of electric field is:
A. $\frac{Q}{4 \pi \in_{0} r_{1}^{2}}$
B. $\frac{Q r_{1}^{2}}{4 \pi \in_{0} R^{4}}$
C. $\frac{Q r_{1}^{2}}{3 \pi \epsilon_{0} R^{4}}$
D. 0

- Watch Video Solution

15. A hollow conducting sphere is placed in an electric field produced by a point charge placed at P as shown in figure.

Let V_{A}, V_{B}, V_{C} be the potentials at points A, B and C respectively.

Then

A. $V_{C}>V_{B}$
B. $V_{B}<V_{C}$
C. $V_{A}>V_{B}$
D. $V_{A}=V_{C}$

(D) Watch Video Solution

16. Two very large thin conducting plates having same cross sectional area are placed as shown in figure. They are carrying chaerges Q and $3 Q$, respectivley. The variation of electric field as as function at x (for $x=0$ to $x=3 d$) will be best represented as by

(A)

A.
B.
(B)

C.
(C)

D.
(D)

- Watch Video Solution

17. A conducting shell S_{1} having a charge Q is surrounded by an uncharged concentric conducting spherical shell S_{2}.

Let the potential difference between S_{1} and that S_{2} be V. If the shell S_{2} is now given a charge $-3 Q$, the new potential difference between the same two shells is
A. V
B. 2 V
C. 4 V
D. $-2 V$

D Watch Video Solution

18. For a given surface the Gauss's law is stated as $\oint \vec{E} \cdot d \vec{A}=0$. From this we can conclude that
A. E is necessarily zero on the surface
B. E is perpendicular to the surface at every point
C. The total flux through the surface is zero
D. The flux is only going out of the surface
19. The potential field depends on the x - and y-coordinates as $V=x^{2}-y^{2}$. The corresponding electric field lines in x y plane are aS.
(A)

A.
(B)

B.
C.

D.

20. Conisder a neutral conducting sphere. A poistive point charge is placed outisde the sphere. The net charge on the sphere is then
A. Negative and distributed uniformly over the surface of the sphere
B. Negative and appears only at the point on the sphere closest
to the point charge
C. Negative and distributed non-uniformly over the entire surface
of the sphere
D. Zero

- Watch Video Solution

21. One metallic sphere A is given positive charge whereas another identical metallic sphere B of exactly same mass as of A is given
equal amount of negative charge. Then
A. Mass of A and mass of B still remain equal
B. Mass of A increases
C. Mass of B decreases
D. Mass of B increases

- Watch Video Solution

22. Two point charges a and b whose magnitude are same, positioned at a certain distance along the positive x -axis from each other a is at origin. Graph is drawn between electrical field strength and distance x from a. E is taken positive if it is along the line joining from a to b

Fro the graph it ca be decided that

A. a is positive, b is negative
B. a and b both are positive
C. a and b boih are negative
D. a is negative, b is positive

- Watch Video Solution

23. Two spheres A and B of radius 'a' and ' b ' respectively are at same electric potential. The ratio of the surface charge densities of A and
B is
A. $\frac{a}{b}$
B. $\frac{b}{a}$
C. $\frac{a^{2}}{b^{2}}$
D. $\frac{b^{2}}{a^{2}}$

- Watch Video Solution

24. A long, hollow conducting cylinder is kept coaxially inisde another long, hollow conducting cylinder of larger radius. Both the cylinders are initially electrically neutral.
A. A potential difference appears between the two cylinders when a charge,density is given to the inner cylinder
B. A potential difference appears between two cylinders when a charge density is given to the outer cylinder.
C. No potential difference appears between the two cylinders
when a uniform line charge is kept along the axis of the cylinders.
D. No potential difference appears between the two cylinders when same charge density is given to both the cylinders.

D Watch Video Solution

25. The figure shows the path of a positively charged particle 1 through a rectangualr region of unifrom electric field as shown in the figure. What is the direction of electric field and the direction of
deflection

A. Top, down, top, down
B. Top, down, down, top
C. Down, top, top, down
D. Down, top, down, down

(D) Watch Video Solution

26. The force experienced by a unit positive point charge when placed in an electric field is called?
A. Potential of electric field at that point
B. Moment of electric field at that point
C. Intensity of electric field at that point
D. Capacity of electric field at that point

- Watch Video Solution

27. A square surface of side $L m$ is in the plane of the paper. A uniform electric field $\vec{E}(V / m)$, also in the plane of the paper, is limited only to the lower half of the square surface (see figure). The electric flux in $S I$ units associated with the surface is:

A. Zero
B. $E L^{2}$
C. $E L^{2} / 2 \in_{0}$
D. $E L^{2} / 2$

- Watch Video Solution

28. A positively charged disc is placed on a horizontal plane. A charged particle is released from a certain height on its axis. The particle just reaches the centre of the disc. Select the correct alternative.
A. Particle has negative charge on it
B. Total potential energy (gravitational+ electrostatic) of the particle first increases then decreases
C. Total potential energy of the particle first decreases then increases
D. Total potential energy of the particle continuously decreases

D Watch Video Solution

29. The electric field intensity at the center of a uniformly charged hemispherical shell is E_{0}. Now two portions of the hemisphere are cut from either side, and the remaining portion is shown in fig. If $\alpha=\beta=\pi / 3$, then the electric field intensity at the center due to
the remaining portion is

A. $\frac{E_{0}}{3}$
B. $\frac{E_{0}}{6}$
C. $\frac{E_{0}}{2}$
D. Information insufficient
30. A wooden block performs SHM on a frictionless surface with frequency, v_{0}. The block carries a charge $+Q$ on its surface. If now a uniform electric field \vec{E} is switched on as shwon in figure., then the SHM of the block will be

A. Of the same frequency and with shifted mean position
B. Of the same frequency and with the same mean position.
C. Of changed frequency and with shifted mean position.
D. Of changed frequency and with the same mean position.
31. Two equal positive charges are kept at points A and B. The electric potential at the points between A and B (exculding these points) is studid while moving from A to b . The potential
A. Continuously increases
B. Continuously decreases
C. Increases then decreases
D. Increases then decreases

D Watch Video Solution

32. Consider a system of three charges $\frac{q}{3}, \frac{q}{3}$ and $-\frac{2 q}{3}$ placed ar point A, B and C respectively, as shown in the figure. Take O to be the centre of the circle of radius R and angle $C A B=60^{\circ}$. Choose the incorrect options

(1) The electric field at point O is $\frac{q}{8 \pi \varepsilon_{0} R^{2}}$ directed along the negative x-axis
(2) The potential energy of the system is zero
(3) The potential at point O is $\frac{q}{12 \pi \varepsilon_{0} R}$
(4) The magnitude of the force between the charges at C and B is $\frac{q^{2}}{54 \pi \varepsilon_{0} R^{2}}$
A. The electric field at point O is $\frac{q}{8 \pi \epsilon_{0} R^{2}}$ directed along the negative x-axis.
B. The potential energy of the system is zero.
C. The magnitude of the force between the charges at C and B is $\frac{q^{2}}{54 \pi \in_{0} R^{2}}$
D. The potential at point O is $\frac{q}{12 \pi \epsilon_{0} R}$

D Watch Video Solution

33. A solid conducting sphere having a charge Q is surrounded by an uncharged concentric conducting hollow spherical shell. Let the potential difference between the surface of the solid sphere and that of the outer surface of the hollow shell be V. If the shell is now given a charge of $-3 Q$, the new potential difference between the same two surfaces is :
A. V
B. 2 V
C. 4 V
D. $-2 V$
34. Charges Q and $-2 Q$ are placed at some distance. The locus of points in the plane of the charges where the potential is zero will be :
A. A Strainght line
B. A circle
C. A parabola
D. An ellispse
35. Three infinite long charged sheets of charge densities $-\sigma,-2 \sigma$ and σ are placed parallel to, y -plane at $\mathrm{z}=0, \mathrm{z}=\mathrm{a}, \mathrm{z}=3 \mathrm{a}$.

Electric field at point Pis given as :

A. $-\frac{2 \sigma}{\epsilon_{0}} \hat{k}$
B. $\frac{2 \sigma}{\epsilon_{0}} \hat{k}$
C. $\frac{-4 \sigma}{\epsilon_{0}} \hat{k}$
D. $\frac{4 \sigma}{\epsilon_{0}} \hat{k}$
36. A spherical insulator of radius R is charged uniformly with a charge Q throughout its volume and contains a point charge $\frac{Q}{16}$ located at its centre. Which of the following graphs best represent quanlitatively, the variation of electric field intensity E with distance r from the centre.
(A)

A.
B.
(B)

(C)

C.
(D)

D.
37. Figure shown an imaginary cube of edge $\mathrm{L} / 2$. A uniformly Charged rod of length L moves towards left at a small but constant speed v. At $\mathrm{t}=0$, the left end just touches the centre of the cube opposite it. Which of the graphs shown in figure represents the flux of the electic field through the cube as the rod goes through it?

A. I
B. II
C. III
D. IV
38. The curve represents the distribution of potential along the staight line joining the two charges Q_{1} and Q_{2} (separated by a distance r) then which of the following statements are correct?

1. $\left|Q_{1}\right|>\left|Q_{2}\right|$
2. Q_{1} is positive in nature
3. A and B are equilibrium points
4. C is a point of unstabkle equilibrium
A. I and 2
B. I,2 and 3
C. 1,2 and 4

- Watch Video Solution

39. Four similar point charges q are located at the vertices of (C) a tetrahedron with an edge a. The energy of the interaction of Four similar point charges q are located at the vertices of (C) a tetrahedron with an edge a. The energy of the interaction of

A. $\frac{6 q^{2}}{4 \pi \varepsilon_{0} a}$
B. $\frac{4 q^{2}}{4 \pi \varepsilon_{0} a}$
C. $\frac{3 q^{2}}{4 \pi \varepsilon_{0} a}$
D. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}$

- Watch Video Solution

40. A positively charged ball hangs from a long silk thread. Electric filed at a certain point (at the same horizontal level of ball) due to this charge is E . Let us put a positive test charge q_{0} at this point and measure F / q_{0} on this charges. then E
A. $>F / q_{0}$
B. $=F / q_{0}$
C. $<F / q_{0}$
D. Can not be estimated

- Watch Video Solution

41. A particle of charge $-q$ and mass m moves in a circular orbits of radius r about a fixed charge $+Q$. The relation between the radius of the orbit r and the time period T is
A. $r=\frac{Q q}{16 \pi^{2} \varepsilon_{0} m} T^{2}$
B. $r^{3}=\frac{Q q}{16 \pi^{3} \varepsilon_{0} m} T^{2}$
C. $r^{2}=\frac{Q q}{16 \pi^{3} \varepsilon_{0} m} T^{3}$
D. $r^{2}=\frac{Q q}{4 \pi^{3} \varepsilon_{0} m} T^{3}$
42. Two concentric spherical shells of radii r and $R(r<R)$ have surface charge densities $-\sigma$ and $+\sigma$ respectively. The variation ofelectric potential V with distance x from the centre O of the shells plotted. Which of the following graphs best depict the variation qualitatively?
(A)

B.

(C)

C.
D.
(D)

43. In figure $+Q$ charge is located at one of the edge of the cube as shown in figure-1.376. Then electric flux through cube due to $+Q$ charge is given as

A. $\frac{+Q}{\varepsilon_{0}}$
B. $\frac{+Q}{2 \varepsilon_{0}}$
C. $\frac{+Q}{4 \varepsilon_{0}}$
D. $\frac{+Q}{8 \varepsilon_{0}}$
44. Two equal negative charges $-q$ are fixed at points $(0,-a)$ and
$(0, a)$ on y -axis. A poistive charge Q is released from rest at point
$(2 a, 0)$ on the x -axis. The charge Q will
A. Execute simple harmonic motion about the origin
B. Move to the origin and remains at rest
C. Move to infinity
D. Execute oscillatory but not simple harmonic motion.

D Watch Video Solution

45. The adjacent diagram shows a charge $+Q$ held on an insulating support S and enclosed by a hollow spherical conductor, O represent the center of the spherical conductors and P is a point such that
$O P=x$ and $S P=r$.The electric field at point P will be

Charge $+Q$

A. $\frac{Q}{4 \pi \in_{0} x^{2}}$
B. $\frac{Q}{4 \pi \in_{0} r^{2}}$
C. 0
D. None of these
46. A charge q is placed at O in the cavity in a sphereical uncharged conductor. Points S is outside the conductor. If q is displaced from O towards S (still remaining within the cavity)

A. Electric field at S will increase
B. Electric field at S will decrease
C. Electric field at S will first increase and then decrease
D. Electric field at S will not change

Answer: D

- Watch Video Solution

47. Two pith balls having charge 3_{q} and 2_{q} are placed at distance of a from each other. For what value of charge transferred from $1^{\text {st }}$ ball to $2^{\text {nd }}$ ball, force between balls becomes maximum?
A. $\frac{q}{2}$
B. $\frac{5 q}{2}$
C. $7 q$
D. q
48. The insulated spheres of radii R_{1} and R_{2} having charges Q_{1} and Q_{2} respectively are connected to each other. There is
A. No change in the energy of the system
B. An increase in the energy of the system
C. Always a decrease in the energy of the system
D. A decrease in energy of the system unless $Q_{1} R_{2}=Q_{2} R_{1}$

D Watch Video Solution

49. A uniformly charged thin spherical shell of radius R carries uniform surface charge denisty of isgma per unit area. It is made of two hemispherical shells, held together by presisng them with force

F (see figure). F is proportional to

A. $\alpha^{2} R^{2}$
B. $\alpha^{2} R$
C. $\frac{\alpha^{2}}{R}$
D. $\frac{\alpha^{2}}{R^{2}}$
50. A sphere of radius R carries charge density p proportional to the square of the distance from the centre such that $p=C r^{2}$, where C is a positive constant. At a distance $R / 2$ from the centre, the magnitude of the electric field is :
A. $A /\left(4 \in_{0}\right)$
B. $A R^{3} /\left(40 \in_{0}\right)$
C. $A R^{3} /\left(24 \in_{0}\right)$
D. $A R^{3} /\left(5 \in_{0}\right)$

(D) Watch Video Solution

51. Two point charges, each with a charge of $+1 \mu C$, lie at some finite distance apart. On which of the segments of an infinite line going through the charges is there a point, a finite distance away from the
charges, where the electric potential is zero, assuming that it vanishes at infinity?
A. Between the charges only
B. On either side outside the system
C. Impossible to tell without knowing the distance between to tell
without knowing the distance between
D. Nowhere

D Watch Video Solution

52. In normal cases thin stream of water bends toward a negatively charged rod. When a positively charged rod is placed near the
stream, it will bend in the

A. opposite direction
B. same direction
C. It won't bend at all
D. Can't be predicted

Answer: B
53. How does the electric field strength vary when we enter and move inside a uniformly charged spherical cloud?
A. Increases inversely as the square of the distance from the center.
B. Decreases inversely as the square of the distance from the center
C. Increases directly as the distance from the center.
D. Decreases directly as the distance from the centre

D Watch Video Solution

54. On an imaginary planet the acceleration due to gravity is same as that on Earth but there is also a downward electric field that is uniform close to the planet's surface. A ball of mass m carrying a
charge q is thrown upward at a speed v and hits the ground after an interval t, What is the magnitude of potential difference between the starting point and top point of the trajectory?
A. $\frac{m v}{2 q}\left(v-\frac{\mathrm{gt}}{2}\right)$
B. $\frac{m v}{q}\left(v-\frac{\mathrm{gt}}{2}\right)$
C. $\frac{m v}{2 q}(v-\mathrm{gt})$
D. $\frac{2 m v}{q}(v-\mathrm{gt})$

- Watch Video Solution

55. A uniform electric field of $400 \frac{\mathrm{~V}}{\mathrm{~m}}$ is directed at 45° above the x axis as shown in the figure. The potential difference $V_{A}-V_{B}$ is given
by

A. 0
B. 4 V
C. 6.4 V
D. 2.8 V
56. A continuous line of charge oflength 3d lies along the x-axis, extending from $x+d$ to $x+4 d$. the line carries a uniform linear
charge density λ.

In terms of d, λ and any necessary physical constants, find the magnitude of the electric field at the origin:
A. $\lambda / 5 \pi \in \in_{0} d$
B. $\lambda / 4 \pi \in \in_{0} d$
C. $3 \lambda / 16 \pi \in_{0} d$
D. $3 \lambda / 8 \pi \in_{0} d$
57. Electric charge are distributed in a small vouume. The flux of the electric field through a spherical surface of rasius 10 cm surrounding
the total charge is 25 V m . The flux over a concentric sphere of radius 20 cm will be
A. $25 \mathrm{~V}-m$
B. $50 \mathrm{~V}-\mathrm{m}$
C. $I 00 \mathrm{~V}-m$
D. $200 \mathrm{~V}-m$

D Watch Video Solution

58. Three concentric metallic spherical shells A, B and C of radii a, b and $c(a<b<c)$ have surface charge densities $-\sigma,+\sigma$ and $-\sigma$ respectively, the potential of shell A is
A. $(a+b+c) \frac{\alpha}{\varepsilon_{0}}$
B. $\left(\frac{a^{2}}{b}-b+c\right) \frac{\alpha}{\varepsilon_{0}}$
C. $\left(\frac{a^{2}}{b}-\frac{b^{2}}{c}+c\right) \frac{\alpha}{\varepsilon_{0}}$
D. $\frac{\alpha c}{\varepsilon_{0}}$

- Watch Video Solution

59. A particle of mass m and charge q is attached to a light rod oflength L. The rod cau rotate freely in the plane of paper about the other end, which is hinged at P, the.entire assembly lies in an uniform electric field E acting in the plane of paper as shown in the figureThe rod is released from rest when it makes an angle 9 with the electric field direction. Determine the speed oft he particle when the
rod becomes parallel to the electric field:

A. $\left(\frac{2 q E L(1-\cos \theta)}{2 m}\right)^{1 / 2}$
B. $\left(\frac{2 q E L(1-\sin \theta)}{m}\right)^{1 / 2}$
C. $\left(\frac{q E L(1-\cos \theta)}{2 m}\right)^{1 / 2}$
D. $\left(\frac{2 q E L \cos \theta}{m}\right)^{1 / 2}$

- Watch Video Solution

60. A positively charged sphere of radius r_{0} carries a volume charge density ρ_{E} (Figure). A spherical cavity of radius $r_{0} / 2$ is then scooped
out and left empty, as shown. What is the direction and magnitude of the electric field at point B ?

A. $\frac{17 \rho r_{0}}{54 \epsilon_{0}}$ left
B. $\frac{\rho r_{0}}{6 \in_{0}}$ left
C. $\frac{17 \rho r_{0}}{54 \epsilon_{0}}$ right
D. $\frac{\rho r_{0}}{6 \epsilon_{0}}$ right
61. Using Thomson's model of the atom, consider an atom consisting of two electrons, each of charge $-e$, embedded in a sphere ofcharge $+2 e$ and radius R. In equilibrium each electron is at distanced from the centre of the atom. What is equilibrium separation between electrons?

A. R
B. $\mathrm{R} / / 2$
C. $\mathrm{R} / / 3$
D. $\mathrm{R} / / 4$

- Watch Video Solution

62. If the electric potential of the inner shell is 10 V and that of the outer shel is $5 V$, then the potential at the centre will be

A. 10 V
B. 5 V
C. 15 V
D. zero

- Watch Video Solution

63. A nonconducting sphere with radius a is concentric with and surrounded by a conducting spherical shell with inner radius b and outer radius c. The inner sphere has a negative charge uniformly distributed throughout its volume, while the spherical shell has no net charge. The potential $V(r)$ as a function of distance from the
center is given by

(D) $V(r)$
D.

D Watch Video Solution

64. A charged particle q is shot from a large distance twoards another charged particle Q which is fixed, with speed v. It approaches Q up to as closed distance r and then returns. If q were given a speed 2 v , the distasnce of approach would be

A. r
B. $2 r$
C. $r / 2$
D. $r / 4$

- Watch Video Solution

65. A sphere carrying a charge of Q having weight w falls under gravity between a pair of vertical plates at a distance of d from each other. When a potential difference V is applied between the plates the acceleration of sphere changes as shown in the figure, to along
line $B C$. The value of Q is

A. $\frac{w}{V}$
B. $\frac{w}{2 V}$
C. $\frac{w d}{V}$
D. $\frac{\sqrt{2} w d}{V}$

- Watch Video Solution

66. Let $E_{1}(r), E_{2}(r)$ and $E_{3}(r)$ be the respectively electric field at a distance r from a point charge Q, an infinitely long wire with constant linear charge density λ, and an infinite plane with uniform surface charge density σ. If $E_{1}\left(r_{0}\right)=E_{2}\left(r_{0}\right)=E_{3}\left(r_{0}\right)$ at a given distance r_{0}, then
A. $Q=4 \sigma \pi r_{0}^{2}$
B. $r_{0}=\frac{\lambda}{2 \pi \sigma}$
C. $E_{1}\left(r_{0} / 2\right)=2 E_{3}\left(r_{0} / 2\right)$
D. $E_{2}\left(r_{0} / 2\right)=4 E_{3}\left(r_{0} / 2\right)$

- Watch Video Solution

67. Consider a uniform spherical charge distribution of radius R_{1} centred at the origin O. In this distribution a spherical cavity of radius R_{2}, centred at P with distance $O P=a=R_{1}-R_{2}(\mathrm{fig})$ is made.lf the electric field inside the cavity at position \vec{r}, then the

correct statement is

A. E is uniform, its magnitude is independent of R_{2} but its direction depends on r.
B.E is uniform, its magnitude depends on R_{2} and its direction depends on r
C. E is uniform, its magnitude is independent of a but its direction depends on a.
D. Eis uniform and both its magnitude and direction depend on magnitude and direction of a

D Watch Video Solution

68. Figure shown a closed surface which intersects a conducting sphere. If a positive charge is placed at the point P, the flux of the electric field through the closed surface

A. Will remain zero
B. Will become positive
C. Will becomes negative
D. Data insufficient

D Watch Video Solution

69. A positive point charge $+Q$ is fixed in space .A negative point charge $-q$ of mass m revolves around a fixed charge in elliptical orbits .The fixed charge $+Q$ is at one focus of the ellipse.The only force acting on negative charge is the electrostatic force due to positive charge is the electrostatic force due to positive charge.Then
which of the following statement is true

A. Linear momentum of negative point charge is conserved
B. Angular momentum of negative point charge about fixed positive charge is conserved
C. Total kinetic energyofnegative point charge is conserved
D. Electrostatic potential energy of system of both point charges is conserved
70. An irregular shaped non conductor has some charge distribution.

The potential difference between the two points A and B in it is V. If it
is now enveloped in an spherical non conducting shell having uniform charge distribution in it, the new potential difference between the points (neglect any induction due to presence of charge)

A. Is greater than V
B. Is less than V
C. Is equal to V
D. Depends on the relative position of inner nonconductor vis-avis outer nonconducting shell

Answer: C

D Watch Video Solution

Numerical MCQs Single options Correct

1. A particle of charge $-q$ and mass m moves in a circle of radius r around an infinitely long line charge of linear charge density $+\lambda$. Then, time period will be

where
$\left.k=\frac{1}{4} \pi \varepsilon_{0}\right)$
A. $T=2 \pi r \sqrt{\frac{m}{2 K \lambda q}}$
B. $T^{2}=\frac{4 \pi^{2} m}{2 K \lambda q} r^{3}$
C. $T=\frac{1}{2 \pi r} \sqrt{\frac{2 K \lambda q}{m}}$
D. $T=\frac{1}{2 \pi r} \sqrt{\frac{m}{2 K \lambda q}}$
2. Electric charge is uniformly distributed along a along straight wire of radius 1 mm . The charge per centimeter length of the wire is Q coulomb. Another cyclindrical surface of radius 50 cm and length 1 m symmetrically enclose the wire ask shown in figure. The total electric flux passing through the cyclindrical surface is

A. $\frac{Q}{\varepsilon_{0}}$
B. $\frac{100 Q}{\varepsilon_{0}}$
C. $\frac{10 Q}{\left(\pi \varepsilon_{0}\right)}$
D. $\frac{100 Q}{\left(\pi \varepsilon_{0}\right)}$

- Watch Video Solution

3. A copper(density of $\mathrm{Cu}=p_{c}$) ball of diameter dis innnersed in oil of density p_{0}. What is the charge on the ball if, in a homogeneous elecltric field E directed vertically upward, it is suspended in the oil ? $\left(k=\pi d^{3} \frac{p_{c} g}{E}\right):$
A. $\frac{1}{6} k\left(1-\frac{p_{0}}{p_{c}}\right)$
B. $\frac{1}{3} k\left(1-\frac{p_{0}}{p_{c}}\right)$
C. $\frac{1}{2} k\left(1-\frac{p_{0}}{p_{c}}\right)$
D. $k\left(1-\frac{p_{0}}{p_{c}}\right)$

D Watch Video Solution

4. A particle of mass m and charge q is fastened to one end of a string of length. The other end of the string is fixed to the point 0 . The whole sytem liles on as frictionless horizontal plane. Initially, the mass is at rest at A. A uniform electric field in the direction shown in
then switfched on. Then

A. The speed of the particle when it reaches B is $\sqrt{\frac{2 q E l}{m}}$
B. The speed of the particle when it reaches B is $\sqrt{\frac{q E l}{m}}$
C. The tension in the string when the particle reaches at B is qE .
D. The tension in the string when the particle reaches at B is zero
5. A small ball of masss m and charge $+q$ tied with a string of length I, rotating in a veticle circle under gravity and a uniform horizontal electric field E as shown. The tension in the string will be minimum for

A. $\theta=\tan ^{-1}\left(\frac{q E}{m g}\right)$
B. $\theta=\pi$
C. $\theta=0^{\circ}$
D. $\theta=\pi+\tan ^{-1}\left(\frac{q E}{m g}\right)$
6. If unifrom electric filed $\vec{E}=E_{0} \hat{i}+2 E_{0} \hat{j}$, where E_{0} is a constant, exists in a region of space and at $(0,0)$ the electric potential V is zero, then the potential at $\left(x_{0}, 0\right)$ will be.
A. Zero
B. $-E_{0} x_{0}$
C. $-2 E_{0} x_{0}$
D. $-\sqrt{5} E_{0} x_{0}$

- Watch Video Solution

7. Two metal pieces having a potential difference of 800 V are 0.02 m apart horizontally. A particle of mass $1.96 \times 10^{-15} \mathrm{~kg}$ is suspended in
equilibrium between the plates. If the e is the elementary charge, then charge on the particle is
A. e
B. 3 e
C. 6e
D. 8 e

D Watch Video Solution

8. A sphere of radius $2 R$ has a uniform charge density p. The difference in the electric potential at $r=R$ and $r=0$ from the centre is:
A. $\frac{-p R^{2}}{\varepsilon_{0}}$
B. $\frac{-2 p R^{2}}{\varepsilon_{0}}$
C. $\frac{p R^{2}}{3 \varepsilon_{0}}$
D. $\frac{-p R^{2}}{6 \varepsilon_{0}}$

- Watch Video Solution

9. A sphere of radius R carries charge density p proportional to the square of the distance from the centre such that $p=C r^{2}$, where C is a positive constant. At a distance $R / 2$ from the centre, the magnitude of the electric field is :
A. $\frac{C R^{2}}{20 \varepsilon_{0}}$
B. $\frac{C R^{2}}{10 \varepsilon_{0}}$
C. $\frac{C R^{2}}{5 \varepsilon_{0}}$
D. None of these
10. The work done in bringing a 20 coulomb charge from point A to point B for disatnce $0.2 m$ is $2 J$. The potential difference between the two points will be (in volt)
A. 0.2 V
B. 8 V
C. 0.1 V
D. 0.4 V

D Watch Video Solution

11. In an electric field region, the electric potential varies along the x axis as shown in the graph. The x components of the electirc field in the regions for the intervals $P Q$ and $Q R$ as market in the garph, in
N / C, are respectively:

A. $5.0 \mathrm{~N} / \mathrm{C}$ along negative x -direction and $20.0 \mathrm{~N} / \mathrm{C}$ along positive x-direction
B. $5.0 \mathrm{~N} / \mathrm{C}$ along positive x -direction and $20.0 \mathrm{~N} / \mathrm{C}$ along negative x-direction
C. $5.0 \mathrm{~N} / \mathrm{C}$ along negative x -direction and $20.0 \mathrm{~N} / \mathrm{C}$ along negative x -direction
D. $5.0 \mathrm{~N} / \mathrm{C}$ along positive x -direction and $20.0 \mathrm{~N} / \mathrm{C}$ along positive x-direction
12. Two spheres A and B of radii 17 cm each and having charges of 1 and 2 coulombs respectively are separated by a distance of SO cm . The electric field at a point on the line joining the centres of two spheres is approximately zero at some distance from the sphere A.

The electric potential at this point is:
A. $6.56 \times 10^{10} V$
B. $8.12 \times 10^{7} V$
C. $2.03 \times 10^{9} V$
D. $1.2 \times 10^{11} V$
13. Electric potential at any point in a region is given as
$V=5 x+3 y+\sqrt{15} z$
In this region the magnitude of the electric field is:
A. $3 \sqrt{2}$
B. $4 \sqrt{2}$
C. $5 \sqrt{2}$
D. 7

- Watch Video Solution

14. A charge $+Q$ is uniformly distributed in a spherical volume of radius R. A particle of charge $+q$ and mass m projected with velocity v_{0} the surface of the sherical volume to its centre inside a smooth tunnel dug across the sphere. The minimum value of v_{0} such tht it
just reaches the centre (assume that thee is no resistance on the particle except electrostatic force) of he sphericle volume is
A. $\sqrt{\frac{Q q}{2 \pi \varepsilon_{o} m R}}$
B. $\sqrt{\frac{Q q}{\pi \varepsilon_{o} m R}}$
C. $\sqrt{\frac{2 Q q}{\pi \varepsilon_{o} m R}}$
D. $\sqrt{\frac{Q q}{4 \pi \varepsilon_{o} m R}}$

D Watch Video Solution

15. A charge $+q$ is fixed at each of the points $x=x_{0}, x=3 x_{0}$, $x=5 x_{0}, \ldots \ldots x=\infty$ on the x axis, and a charge $-q$ is fixed at each of the points $x=2 x_{0}, x=4 x_{0}, x=6 x_{0}, \ldots x=\infty$. Here x_{0} is a positive constant. Take the electric potential at a point due to a charge Q at a distance r from it to be $Q /\left(4 \pi \varepsilon_{0} r\right)$. Then, the potential at the origin due to the above system of
A. 0
B. $\frac{q}{8 \pi \varepsilon_{0} x_{0} \operatorname{in} 2}$
C. ∞
D. $\frac{q \mathrm{in} 2}{4 \pi \varepsilon_{0} x_{0}}$

D Watch Video Solution

16. The displacement of a chrage Q in the electric field
$E=e_{1} \hat{i}+e_{2} \hat{j}+e_{3} \hat{k}$ is $\vec{r}=a \hat{i}+b \hat{j}$. The work done is
A. $Q\left(a e_{1}+b e_{2}\right)$
B. $Q \sqrt{\left(a e_{1}\right)^{2}+\left(b e_{2}\right)^{2}}$
C. $Q\left(e_{1}+e_{2}\right) \sqrt{a^{2}+b^{2}}$
D. $Q\left(e_{1}^{2}+e_{2}^{2}\right)(a+b)$
17. A non-conducting ring ofradius 0.5 m carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$ distributed non-uniformly on its circumference producing an electric field \vec{E} everywhere in space. The value of the line integral $\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}$ ($\mathrm{I}=0$ being centre of the ring) is
A. $+2 V$
B. $-1 V$
C. $-2 V$
D. zero

D Watch Video Solution

18. Three semi-infinite rods uniformly charged out of which one is negatively charged and other two are positively charged are kept
perpendicular to plane of paper outward such that the finite ends of the rods are located at points A, B and C on a circle of radius R as shown in figure. The net electric field at centre of circle O is :

$O=$ Centre of circlo
A. $\frac{2 K \lambda}{R}$, along OC
B. $\frac{K \lambda}{R}$, perpendicular to plane of paper and inward direction
C. $\frac{\sqrt{5} K \lambda}{R}$ at an angle $\tan ^{-1} \cdot \frac{1}{2}$ with OC
D. $\frac{\sqrt{2} K \lambda}{R}$ at an angle 45° with OC
19. Two small balls of mass Meach carrying charges $+Q$ and $-Q$, connected by a massless rigid non-conducting rod of length L lie along x-axis as shown. A uniform electric field $\vec{E}=3 \hat{k}+3 \hat{j}$ has been switched on. The angular velocity vectorof the dipole when dipole nioment aligns with the electric field is :

A. $\sqrt{\frac{3 \sqrt{2 Q}}{2 M L}}(-\hat{j}+\hat{k})$
B. $\sqrt{\frac{6 \sqrt{2 Q}}{M L}}(-\hat{j}+\hat{k})$
C. $\sqrt{\frac{3 \sqrt{2 Q}}{M L}}(-\hat{j}-\hat{k})$
D. $\sqrt{\frac{3 \sqrt{2 Q}}{M L}}(-\hat{j}+\hat{k})$

D Watch Video Solution

20. A particle of mass m and charge $-q$ is projected from the origin with a horizontal speed v into an electric field of intensity E directed downward. Choose the wrong statement. Neglect gravity

A. The kinetic energy after a displacement y is $q E y$
B. The horizontal and vertical components of acceleration are

$$
a_{x}=q E / m, a_{y}=0
$$

C. The equation of trajectory is $y^{2}=\frac{1}{2}\left(\frac{q E x^{2}}{m v^{2}}\right)$
D. The horizontal and vertical displacements x and y after a time t are $x=v t^{2}$ and $y=\frac{1}{2} a_{y} t^{2}$

D Watch Video Solution

21. The grid (each square of $1 m \times 1 m$), represents a region in space containing a uniform electric field. If potentials at point $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ are respectively $0,-1,-2,1,2,0,-1,1$ and 0 volts. Find the
electric field intensity :

A. $(\hat{i}+\hat{j}) V / m$
B. $(\hat{i}-\hat{j}) V / m$
C. $(-\hat{i}+\hat{j}) V / m$
D. $(-\hat{i}-\hat{j}) V / m$
22. At a certain distance from a point charge, the field intensity is $500 \mathrm{~V} / \mathrm{m}$ and the potentil is -3000 V . The distance to the charge and the magnitude of the charge respectively are
A. $6 m$ and 6 muC
B. $4 m$ and 2 muC
C. $6 m$ and $4 \mathrm{muC}^{\prime}$
D. $6 m$ and $2 \mathrm{muC}^{`}$

- Watch Video Solution

23. Two insulting plates are both uniformly charged in such a way that the potential difference between them is $V_{2}-V_{1}=20 \mathrm{~V}$. (i.e., plate 2 is at a higher potential). The plates are separated by $d=0.1 m$ and can be treated as infinity large. An electron is released from rest on the inner surface of plate 1 . What is its speed when it
hits plate 2 ? $\left(e=1.6 \times 10^{-19} C, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}\right)$

A. $7.02 \times 10^{12} \mathrm{~m} / \mathrm{s}$
B. $1.87 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $32 \times 10^{-19} \mathrm{~m} / \mathrm{s}$
D. $2.65 \times 10^{6} \mathrm{~m} / \mathrm{s}$
24. Q charge is uniformaly distributed over the same surface of a right circular cone of semi -vertical angle theta and height h The cone is uniformly rotated about its axis at angular velocity omega Calculated associated magnetic dipole moment

A. $\frac{3 Q h^{2} \omega \cot ^{2} \theta}{20}$
B. $\frac{Q h^{2} \omega \cot ^{2} \theta}{20}$
C. $\frac{Q h^{2} \omega \tan ^{2} \theta}{20}$
D. $\frac{3 Q h^{2} \omega \tan ^{2} \theta}{20}$

- Watch Video Solution

25. A conducting rod of length I rotates about its one end with angolar velocity ro. Potential difference between A and B points ofrod as shown in figore $-1.404 i s V A B$ Find VAB Taken as mass of electron and e is the charge of electron:

A. $\frac{m \omega^{2} l^{2}}{e}$
B. $\frac{3 m \omega^{2} l^{2}}{4 e}$
c. $\frac{3 m \omega^{2} l^{2}}{8 e}$

- Watch Video Solution

26. A tiny spherical oil drop carrying a net charge q is balanced in still air with a vertical uniform electric field of strength $\frac{81 \pi}{7} \times 10^{5} \mathrm{Vm}^{-1}$. When the field is switched off, the drop is observed to fall with terminal velocity $2 \times 10^{-3} \mathrm{~ms}^{-1}$. Given $g=9.8 \mathrm{~ms}^{-2}$, viscoisty of the air $=1.8 \times 10^{-5} \mathrm{Nsm}^{-2}$ and the denisty of oil $=900 \mathrm{kgm}^{-3}$, the magnitude of q is
A. $1.6 \times 10^{-1} C$
B. $3.2 \times 10^{-19} C$
C. $4.8 \times 10^{-19} C$
D. $7.8 \times 10^{-19} C$
27. The two ends of a rubber string of negligible mass and having unstretched length 24 cm are fixed at the same height as shown. A small object is attached to the string in its midpoint due to which the depression h of the object in equilibrium is 5 cm . Then the small object is charged and a vertical electric field E_{1} is switched on in the region. The equilibrium depression of the object increases to 9 cm , now the electric field is changed to E_{2} and the depression of object in equilibrium increases to 16 cm . What is the ratio of electric field in the second case to that of in the first case?

A. 4.25
B. 4.2
C. 4.3
D. 4.35

- Watch Video Solution

28. Let there be a spherically symmetric charge distribution with charge density varying as $\rho(r)=\rho\left(\frac{5}{4}-\frac{r}{R}\right)$ upto $r=R$, and $\rho(r)=0$ for $r>R$, where r is the distance from the origin. The electric field at a distance $\mathrm{r}(\mathrm{rltR})$ from the origin is given by
A. $\frac{\rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
B. $\frac{4 \pi \rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
C. $\frac{4 \pi \rho_{0} r}{4 \varepsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
D. $\frac{\rho_{0} r}{3 \varepsilon_{0}}\left(\frac{5}{4}-\frac{r}{R}\right)$

- Watch Video Solution

29. The ratio of the electric force between two electrons to the gravitational force between them is of the order of
A. $10^{8}: 1$
B. $10^{28}: 1$
C. $10^{31}: 1$
D. $10^{42}: 1$
30. Two points charges q_{1} and q_{2} are placed at a distance of 50 m from each each other in air, and interact with a certain force. The
same charges are now put in oil whose relative permittivity is 5 . If the interacting force between them is still the same, their separation now is
A. 16.6 m
B. 22.3 m
C. 28.4 m
D. 25.0 m

- Watch Video Solution

31. An electric field is uniform, and in the positive x-direction for positive x , and uniform with the same magnitude, but in the negative x-direction for negative x. It is given that

$$
\vec{E}=200 \hat{i} N / C f \text { or } x>0 \text { and } \vec{E}=-200 \hat{i} N / C \text { for x gt } 0 \text {. A }
$$

right circular cylinder of length 20 cm and raidus 5 cm has its center
at the origin and its axis along the x-axis so that one face is at $x=+10 \mathrm{~cm}$ and the other is at $x=-10 \mathrm{~cm}$.
(a) What is the net outward flux through the side of the cylinder? (b)

What is the net outward flux through the cyclinder ? (c) what is net charge inside the cylinder?
A. zero
B. $1.86 \times 10^{-5} \mathrm{C}$
C. $1.77 \times 10^{-11} C$
D. $35.4 \times 10^{-8} C$

- Watch Video Solution

32. A solid conducting sphere ofradius 5.0 cm has a charge of 0.25 nC distributed uniformly on its surface. If point A is located at the centre of the sphere and a point Bis 15 cm from the center, what is the
magnitude of the electric potential difference between these two points?
A. 23 V
B. 30 V
C. 15 V
D. 45 V

(D) Watch Video Solution

33. An electric dipole is placed perpendicular to an infinite line of charge at same distance as shown in figure. Identify the correct statement.
A. The dipole is attracted towards the line charge
B. The dipole is repelled away from the line charge
C. The dipole does not experience a force
D. The dipole experiences a force as well as a torque

- Watch Video Solution

34. S is a solid neutral conducting sphere. A point charge q of $1 \times 10-6$
C is placed at point A. C is the centre of sphere and $A B$ is a tangent.
$B C=3 \mathrm{~m}$ and $A B=4 m$.
(1) The electric potential of the conductor is 1.8 kV
(2) The electric potential of the conductor is 2.25 kV
(3) The electric potential at B due to induced charges on the sphere is -0.45 kV
(4) The electric potential at B due to induced charges on the sphere

A. The electric potential at B due to induced charge on the sphere is 1.2 kV
B. The electric potential at B due to induced charge on the sphereis $-1.2 k V$
C. The electric potential at B due to induced charge on the sphere is $-0.45 k V$
D. The electric potential at B due to induced charge on the sphere is 0.45 kV

- Watch Video Solution

35. If the potential at the centre of a uniformly charged hollow sphere of radus R is V, then electric field at a distance r from the centre of sphere will be $(r>R)$.

A. $\frac{V R}{r^{2}}$
B. $\frac{V_{r}}{R^{2}}$
C. $\frac{V R}{r}$
D. $\frac{V R}{R^{2}+r^{2}}$

D Watch Video Solution

36. An isolated conduction sphere sphere whose radius $R=1 \mathrm{~m}$ has a charge $q=\frac{1}{9} n C$. The energy density at the surfasce of the sphere is
A. $\frac{e_{0}}{2} \mathrm{~J} / \mathrm{m}^{3}$
B. $e_{0} J / m^{3}$
C. $2 e_{0} \mathrm{~J} / \mathrm{m}^{3}$
D. $\frac{e_{0}}{3} \mathrm{~J} / \mathrm{m}^{3}$
37. A charged rod have continuous charge distribution having density $\lambda=2 x C / m$. If rod is of length I then find ratio $\frac{q_{1}}{q_{2}}$. where q_{1} is charge on half ofrod $\& q_{2}$ is charge on $2^{\text {nd }}$ half of rod"
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{3}{1}$

- Watch Video Solution

38. Three concentric spherical metallic shells A, B and C of radii a, b and c (a lt b ltc) have surface charge densities $\sigma,-\sigma$ and σ respectively.
(i) Find the potential of the three shells A, B and C .
(ii) If the shells A and C are at the same potential, obtain the relation between the radii a, b and c .
A. $a+b+c=0$
B. $a+b=b$
C. $a+b=c$
D. $a=b+c$

- Watch Video Solution

39. A and B are two concentric spherical shells. If A is given a charge $+q$ while B is earthed as shown in figure then

A. The charge density of A and Bare same
B. The field inside and outside A is zero
C. The field between A and B is not zero
D. All of these

Answer: D

40. The electrostatic potential due to the charge configuration at point P as shown in figure for bltta is

A. $\frac{2 q}{4 \pi \varepsilon_{0} a}$
B. $\frac{2 q b^{2}}{4 \pi \varepsilon_{0} a^{3}}$
C. $\frac{q b^{2}}{4 \pi \varepsilon_{0} a^{3}}$
D. zero

(D) Watch Video Solution

41. Two thin wire rings each having radius R are placed at distance d apart with their axes coinciding. The charges on the two are $+Q$ and $-Q$. The potential difference between the centre so the two rings is
A. zero
B. $\frac{Q}{4 \pi \varepsilon_{0}}\left[\frac{1}{4}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]$
C. $\frac{Q}{4 \pi \varepsilon_{0} d^{2}}$
D. $\frac{Q}{2 \pi \varepsilon_{0}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]$

(D) Watch Video Solution

42. In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction. At the rate of $10^{5} \mathrm{NC}^{-1} \mathrm{~m}^{-1}$. What are the force and torque experienced by system having a total dipole moment equal to $10^{-7} \mathrm{Cm}$ in the negative z-direction?
A. 0.01 N
B. 0.02 N
C. 0.04 N
D. zero

D Watch Video Solution

43. There are two uncharged identicasl metallic spheres 1 and 2 of radius r separated by a distance $d(d \gg r)$. A charged metalllic
sphere of same radius having charge q is touched with one of the sphere. After some time it is moved away fom the system. Now, the uncharged sphere is earthed. Charge on earthed sphere is
A. $+\frac{q}{2}$
B. $-\frac{q}{2}$
C. $-\frac{q r}{2 d}$
D. $-\frac{q d}{2 r}$

- Watch Video Solution

44. Two small identical metal balls of radius rare at a distance a ($a \ll r$) from each other and are charged, one with a potential V_{1} and the other with a potential V_{2}. The charges on the balls are:

$$
\text { A. } q_{1}=V_{1} a, q_{2}=V_{2} a
$$

B. $q_{1}=V_{1} r, q_{2}=V_{2} r$
C. $q_{1}=\left(\frac{V_{1}+V_{2}}{2}\right) a, q_{2}=\left(\frac{V_{1}+V_{2}}{2}\right) r$
D. $q_{1}=-\frac{r}{a}\left(r V_{2}-a V_{1}\right), q_{2}=-\frac{r}{a}\left(r V_{1}-a V_{2}\right)$

D Watch Video Solution

45. In the diagram shown the charge $+Q$ is fixed. Another charge $+2 q$ and mass M is projected from a distance R from the fixed charge. Minimum separtion between the two charge if the velocity becomes $\frac{1}{\sqrt{3}}$ time of the projected velocity, at this moment is (Assume gravity to be absent)

R
A. $\frac{\sqrt{3}}{2} R$
B. $\frac{1}{\sqrt{3}} R$
C. $\frac{1}{2} R$
D. None of these

- Watch Video Solution

46. A bullet of mass m and charge q is fired towards a solid uniformly charge sphere of radius R and total charge $+q$. If it strikes the surface of sphere with speed u, find the minimum value of u so that it can penetrate through the sphere. (Neglect all resistance force or friction
acting on bullet except electrostatic forces)

A. $\frac{Q}{\sqrt{2 \pi \epsilon_{0} m R}}$
B. $\frac{Q}{\sqrt{6 \pi \epsilon_{0} m R}}$
C. $\frac{Q}{\sqrt{4 \pi \epsilon_{0} m R}}$
D. $\frac{3 Q}{\sqrt{4 \pi \epsilon_{0} m R}}$
47. A charged particle of mass m and charge q is released from rest in an electric field of constant magnitude E. The kinetic energy of the particle after time t is
A. $\frac{2 E^{2} t^{2}}{m q}$
B. $\frac{q^{2} m}{2 t^{2}}$
C. $\frac{E^{2} q^{2} t^{2}}{2 m}$
D. $\frac{E q m}{2 t}$

- Watch Video Solution

48. Consider the shown uniform solid insulating sphere of mass m with a short and light electric dipole moment $p \hat{j}$ embedded at its centre placed at rest on a horizontal surface. An electric field $E \hat{i}$ is suddenly switched on in the region such that the sphere starts ro/ling without sliding. Speed of the sphere when the dipole
becomes horizontal for the first time is given as:

A. $\sqrt{\frac{5 p R}{m}}$
B. $\sqrt{\frac{10 p E}{7 m}}$
C. $\sqrt{\frac{5 p E}{2 m}}$
D. zero

- Watch Video Solution

49. A ring of diameter d is rotated in a uniform electric field until the position of maximum electric flux is found. The flux is found to be ϕ.

What is the electric field strength?
A. $\frac{4 \phi}{\pi d^{2}}$
B. $\frac{2 \phi}{\pi d^{2}}$
C. $\frac{\phi}{\pi d^{2}}$
D. $\frac{\pi \phi d^{2}}{4}$

D Watch Video Solution

50. A block of mass m and charge q is connected to a point 0 with help ofan inextensible string. The system in on a horizontal table. An electric field is switched on in direction perpendicular to string. What
will be tension in string when it become parallel to electric field?

A. $\frac{q E}{2}$
B. $3 q E$
C. $\frac{q E}{l}$
D. $\frac{3 q E}{5}$
51. The electric potential V at any point (x, y, z), all in meters in space is given by $V=4 x^{2}$ volt. The electric field at the point $(1,0,2)$ in volt//meter is
A. $8 \mathrm{~V} / \mathrm{m}$ along negative x -axis
B. 8 Vim along positive x-axis
C. 16V/malongnegativex-axis
D. $16 \mathrm{~V} / \mathrm{m}$ along positive z -axis

D Watch Video Solution

52. A solid sphere having uniform charge density ρ and radius R is shown in figure. A spherical cavity ofradius $\frac{R}{2}$ is made in it. What is
the potential at point O ?

A. $\frac{11 R^{2} \rho}{24 \varepsilon_{0}}$
B. $\frac{5}{12} \frac{R^{2} \rho}{\varepsilon_{0}}$
C. $\frac{7 \rho R^{2}}{12 \varepsilon_{0}}$
D. $\frac{3}{2} \frac{R^{2} \rho}{\varepsilon_{0}}$

Answer: B
53. Initially the spheres A and B are at potentials V_{A} and V_{B}. Find the potential of A when sphere B is earthed.

A. 0
B. V_{A}
C. $V_{A}-V_{B}$
D. V_{B}^{A}
54. A charge q is placed at the centre of the line joining two equal charges Q . The system of the three charges will be in equilibrium if q is equal to:
A. $-\frac{Q}{2}$
B. $-\frac{Q}{4}$
C. $+\frac{Q}{4}$
D. $+\frac{Q}{2}$

- Watch Video Solution

55. A thin non-conducting ring or radius a has a linear charge density $\lambda=\lambda_{0} \sin \phi$. A uniform electric field $E_{0} \hat{i}+E_{0} \hat{j}$ exist in the region.
.Net torque acting on ring is given as :

A. $E_{0} \sqrt{2} \pi a^{2} \lambda_{0}$
B. $E_{0} \pi a^{2} \lambda_{0}$
C. $2 E_{0} \pi a^{2} \lambda_{0}$
D. Zero
56. The locus of the points (in the $x y$-plane) where the electric field due to a dipole (dipole axis is along x-axis and its equatorial is along y-axis) is perpendicular to its axis, is
A. Straight line perpendicular to the axis
B. Circle
C. Parabola
D. Straight line having inclination $\theta=\tan ^{-1} \sqrt{2}$ with the axis.

D Watch Video Solution

57. A ring of radius R having a linear charge density λ moves towards a solid imaginary sphere of radius $\frac{R}{2}$, so that the centre of ring passes through the centre of sphere. The axis of the ring is perpendicular to the line joining the centres of the ring and the
sphere. The maximum flux through the sphere in this process is

A. $\frac{\lambda R}{\varepsilon_{0}}$
B. $\frac{\lambda R}{2 \varepsilon_{0}}$
C. $\frac{\lambda \pi R}{4 \varepsilon_{0}}$
D. $\frac{\lambda \pi R}{3 \varepsilon_{0}}$

Answer: D

D Watch Video Solution

58. A semi-infinite insulating rod has linear charge density λ. The electric field atthe pointPshown in figure-1.418 is:

A. $\frac{2 \lambda^{2}}{\left(4 \pi \varepsilon_{0} r\right)^{2}}$ at 45° with AB
B. $\frac{\sqrt{2 \lambda}^{2}}{4 \pi \varepsilon_{0} r^{2}}$ at 45° with AB
C. $\frac{\sqrt{2} \lambda}{4 \pi \varepsilon_{0} r}$ at 45° with AB
D. $\frac{\sqrt{2} \lambda}{4 \pi \varepsilon_{0} r}$ at 135° with AB

D Watch Video Solution

59. Two spherical conductors B and C having equal radii and cayying equal charges on them repel each other with a force F when kept apart at some distance. A third spherical conductor having same radius as that B but uncharged is brought in contact with B, then
brought in contact with C and finally removed away from both. The new force of repulsion between B and C is
A. $F / 4$
B. $3 F / 4$
C. $F / 8$
D. $3 F / 8$

Answer: D

D Watch Video Solution

60. Two insulated charged spheres of radii 20 cm and 25 cm respectively and having an equal charge Q are connected by a copper wire, they are separated
A. Both the spheres will have the same charge
B. Charge on the 20 cm sphere will be greater than that on the 25 cm sphere
C. Charge on the 25 cm sphere will be greater than that on the 20 cm sphere
D. Charge on each of the spheres will be $2 Q$

D Watch Video Solution

61. A uniform electric field of strength E exists in region. A electron enters a point A with velocity v as shown. It moves through the electric field and reaches at point B. Velocity particle at B is $2 v$ at 30° with x-axis .

Then

A. Electric field $\vec{E}=-\frac{3 m v^{2}}{2 e a} \hat{i}$
B. Rate of doing work done by electric field at B is $\frac{3 m v^{2}}{2 e a}$
C. Both (A) and (B) are correct
D. Both (A) and (B) are wrong

D Watch Video Solution

62. The potential at a point x (measured in $\mu \mathrm{m}$) due to some charges situated on the x-axis is given by
$V(x)=20 /\left(x^{2}-4\right)$ volt
A. $5 / 3 \mathrm{~V} / \mu \mathrm{m}$ and in the-vex direction
B. $5 / 3 \mathrm{~V} / \mu \mathrm{m}$ and in the+ve direction
C. $10 / 9 \mathrm{~V} / \mu \mathrm{m}$ and in the-ve direction
D. $10 / 9 \mathrm{~V} / \mu \mathrm{m}$ and in the +ve direction

- Watch Video Solution

63. Four charges $+q,-1,+q$ and $-q$ are placed in order on the four consecutive corners of a square of side a. The work done in interchanging the positions of any two neighbouring charges of the opposite sign is
A. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}(-4+\sqrt{2})$
B. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}(4+2 \sqrt{2})$
C. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}$
D. $\frac{q^{2}}{4 \pi \varepsilon_{0} a}(4+\sqrt{2})$

D Watch Video Solution

64. A particle of mass m and charge $+q$ approaches from a very large distance towards a uniformly charged ring ofradius Rand charge, mass same as that of particle, with initial velocity v_{0} along the axis of the ring as shown in the figure-1.420. What is the closest distance of approach between the ring and the particle? Assume the space to be gravity free and frictionless :

A. $\sqrt{\frac{q^{4}}{\pi^{2} \varepsilon_{0}^{2} m^{2} v_{0}^{4}}-R^{2}}$
B. $\sqrt{\frac{3 q^{4}}{2 \pi^{2} \varepsilon_{0}^{2} m^{2} v_{0}^{4}}+R^{2}}$
C. $\sqrt{\frac{m^{2} v_{0}^{4}}{2 \pi^{2} q^{4} \varepsilon_{0}^{2}}-R^{2}}$
D. $\sqrt{\frac{q^{4}}{4 \pi^{2} \varepsilon_{0}^{2} m^{2} v_{0}^{4}}-R^{2}}$

D Watch Video Solution

Advance MCQs

1. A ring with a uniform charge Q and radius R, is placed in the $y z$ plane with its centre at the origin
A. The field at the origin is zero
B. The field at the origin is $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}$
C. The field at the point $(x, 0,0)$ is $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R}$
D. The field at the point $(x, 0,0)$ is $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{2}+x^{2}}$

- Watch Video Solution

2. Two concentric shells have radii R and $2 R$ charges q_{A} and q_{B} and potentials $2 V$ and $\left(\frac{3}{2}\right) V$ respectively. Now, shell B is earthed and let charges on them become $q_{A}{ }^{\prime}$ and $q_{B}{ }^{\prime}$. Then,

A. $q_{A} / q_{B}=1 / 2$
B. $q_{A}{ }^{\prime} / q_{B}{ }^{\prime}=1$
C. Potential of A after earthing becomes (3/2) V
D. None of these

Answer: A

- Watch Video Solution

3. Which of the following statement(s) is/are correct?
A. If the. electric field due to a point charge varies as r^{25} instead of r^{-2}, then the Gauss law will still be valid
B. The Gauss law can be used io calculate the field distribution around and electric dipole
C. If the electric field between two point charges is zero somewhere, then the sign of the two charges is the same
D. The work done by the external force in moving unit positive charge from p'ointA at potential V_{A} to point B at potential V_{B} is $(V B-V)$

D Watch Video Solution

4. A few electric field lines for a system of two charges Q_{1} and Q_{2} fixed at two different points on the x-axis are shown in the figure.

These lines suggest that
(i) $\left|Q_{1}\right|>\left|Q_{2}\right|$
(ii) $\left|Q_{1}\right|<\left|Q_{2}\right|$
(iii) At a finite distance to the left of Q_{1} the electric field is zero
(iv) At a finite distance to the right of Q_{2} the electric field is zero

A. $\left|Q_{1}\right|>\left|Q_{2}\right|$
B. $\left|Q_{1}\right|<\left|Q_{2}\right|$
C. At a finite distance to the left of Q_{1} the electric field is zero
D. At a finite distance to the right of Q_{2} the electric field is zero

- Watch Video Solution

5. A spherical metal shell A of radius R_{A} and a solid metal sphere B of radius $R_{B}\left(<R_{A}\right)$ are kept far apart and each is given charge
$+Q^{\prime}$. Now they are connected by a thin metal wire. Then
A. Inside shell A at every point electric field is zero:
B. After connections $Q_{A}>Q_{B}$
C. After connections $\frac{\sigma_{A}}{\sigma_{B}}=\frac{R_{B}}{R_{A}}$
D. After connections electric field strength on surface of A is less
than that on the surface of B.

D Watch Video Solution

6. A particle of mass 2 kg chrge 1 mC is projected vertially with velocity $\mathrm{k} 10 \mathrm{~ms}^{-1}$. There is as uniform horizontal electric field of $10^{4} N / C$, then
A. The horizontal range of the particle is 10 m
B. The time offlight of the particle is 2 s
C. The maximum height reached is 5 m
D. The horizontal range of the particle is 5 m

- Watch Video Solution

7. A cubical region of side a has its centre at the origin. It encloses three fixed point charges, $-q$ at $(0,-a / 4,0),+3 q$ at $(0,0,0)$ and $-q$ at $(0,+a / 4,0)$. Choose the correct options(s)

A. The net electric flux crossing the plane $x=+a / 2$ is equal to the net electric flux crossing the plane $x=-a / 2$
B. The net electric flux crossing the plane $y=+a / 2$ is more than the net electric flux crossing the plane $y=-a / 2$
C. The net electric flux crossing the entire region is $\frac{q}{\epsilon_{0}}$
D. The net electric flux-crossing the plane $z=+a / 2$ is equal to the net electric flux crossing the plane $x=+a / 2$

- Watch Video Solution

8. The figure- shows, two point charges $q_{1}=+2 Q$ and $q_{2}=-Q$.

The charges divide the line joining them in three parts I, II and III as shown in figure-1.424 then which_ofthe following statements is/are

correct

I

A. Region III has a local maxima of electric field
B. Region I has a local minima of electric field
C. Equilibrium position for a test charge lies in region II
D. The equilibrium for constrained motion along the line joining the charges is stable for a negative charge

(D) Watch Video Solution

9. At distance of 5 cm and 10 cm outwards from the surface of a uniformly charged solid sphere, the potentials are 100 V and 75 V respectively. Then:
A. Potential at its surface is 150 V
B. The charge on the sphere is $\frac{50}{3} \times 10^{-10} C$
C. The electric field on the surface is $1500 \mathrm{~V} / \mathrm{m}$
D. The electric potential at its centre is 250 V

D Watch Video Solution

10. Six point charges are kept at the vertices of a regular hexagon of side L and centre O , as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{L^{2}}$,
which of the following statements is incorrect?

A. The electric field at O is 6 C along OD
B. The potential at O is zero
C. The potential at all points on the line PR is same
D. The potential at all points on the line ST is same

Answer: D

D Watch Video Solution

11. Point charges are located on the comer of a square as shown below. Find the component of electric field at any point on the z-axis which is the axis of symmetry of the square :

A. $E_{z}=0$
B. $E_{x}=0$
C. $E_{y}=0$
D. None of these
12. Charges Q_{1} and Q_{2} lie inside and outside, respectively, of a closed surface S . Let E be the field at any point on S and ϕ be the flux of E over S.
A. If Q_{1} changes, both E and ϕ will change
B. If Q_{2} changes, E will change but ϕ will not change
C. If $Q_{1}=0$ and $Q_{2} \neq 0$ then $E \neq 0$ but $\phi=0$
D. If $Q_{1} \neq 0$ and $Q_{2}=0$ then $E=0$ but $\phi \neq 0$

D Watch Video Solution

13. In an uniform electric field, when we move from origin to $\mathrm{x}=\mathrm{Im}$, the potential changes by 10 V . Which of the following can be a possible magnitude of the electric field?
A. $10 \mathrm{~V} / \mathrm{m}$
B. $15 \mathrm{~V} / \mathrm{m}$
C. $5 \mathrm{~V} / \mathrm{m}$
D. $20 \mathrm{~V} / \mathrm{m}$

- Watch Video Solution

14. An electric dipole is placed at the centre of a sphere. Mark the correct options:
A. The flux of the electric field through the sphere is zero
B. The electric field is zero at every point of the sphere
C. The electric field is not zero at any where on the sphere
D. The electric field is zero on a circle on the.sphere
15. Two point charges Q each are placed at $(0, y)$ and $(0,-y) \mathrm{A}$ point charge q of the same polarity can move along the x-axis. Then
A. The forceonq is maximuma at $x= \pm y / \sqrt{2}$
B. The charge q is in equilibrium at the origin
C. The charge q pe~forrns an oscillatory motion about the origin
D. For any position of q other then origin the force is directed away from origin

D Watch Video Solution

16. Mark the correct options about electric field and Gauss's law in a region of space :
A. Gauss's law is valid only foruniform charge distributions
B. Gauss's law is valid only for charges placed iu vacuum
C. The elec.tric field calculated by Gauss's law is the field due to all the charges
D. The flux of the electric field through a closed surface due to all the charges is equal to the flux due to the charges enclosed by the surface

D Watch Video Solution

17. The following figure-I .427 shows a block of mass m suspended from a fixed point by means ofa vertical spring. The block is oscillating simple harmonically and carries a charge q . There also exists a uniform electric field in the space. Consider four different cases. The electric field is zero, in case-I, $E=m g / q$ downward in case-2, $E=m g / q$ upward in case-3 and $E=2 m g / q$ downward in
case-4. The speed at mean position of block is same in all cases.
Select which of the following statements is/ are correct :

A. Time periods ofoscillation are equal in case-I and case-3
B. Amplitudes of displacement are same in case-2 and case-3
C. The maximum elongation (increment in length from natural length) is maximum in case-4
D. Time periods of oscillation are equal in case-2 and case-4

- Watch Video Solution

18. Two concentric spherical shells have charges $+q$ and $-q$ as shown in figure. Choose the incorrect option.

A. At A electric field is zero, but electric potential is non-zero
B. At B electric field and electric poteniial both are non-zero
C. At C electric field is zero but electric potential is non-zero
D. At C electric field and electric potential both are zero

Answer: C

D Watch Video Solution

19. An insulating rod of uniform linear charge density A and uniform
linear mass density μ lies on a smooth table whose surface is $x y$ -
plane. A uniform electric field E is switched on in the space:

A. If electric field is along x-axis, the speed of the rod when it has travelled a distance d is $\sqrt{\frac{2 \lambda E d}{\mu}}$
B. If electric field Eis at an angle $\theta\left(<90^{\circ}\right)$ with x-axis along the table surfa~e then the speed of the rod when it has travelled a distance d is $\sqrt{\frac{2 \lambda E d \cos \theta}{\mu}}$
C. A non zero torque acts on the rod due to the field about centre of mass in case electric field is into the plane of paper.
D. A non zero torque acts on the rod due to the field about centre
of mass in case electric field is along the surface of table.

- Watch Video Solution

20. A rod is hinged (free to rotate) ast its centre O as shown in figue.

Two point charge $+q$ and $+q$ are kept at its two ends. Rod is placed in uniform electric field E as shown. Space is gravity free. Choose the correct options.

A. Net force from the hinge on the rod is zero
B. Net force from the hinge on the rod is left wards
C. Equilibrium of rod is neutral
D. Equilibrium of rod is stable

Answer: C

D Watch Video Solution

21. Figure- shows three spherical shells is separate situations, with each shell having the same uniformly distributed positive charge. Points I, 4 and 7 are at the same radial distances from the centre of the their respective shells so are points 2,5 and 8 and so are points 3 , 6 and 9. With the electric i:otential taken equal to zero at an in finite
distance, which of the following statements is/are correct:

A. Point 3 has highest potential
B. Point I, 4 and 7 are at same potential
C. Point 8 has lowest potential
D. Point 5 and 8 are at same potential

- Watch Video Solution

22. Which of the following quantites do not depend on the choice of zero potential or zero potential energy?
A. Potential at a point
B. Potential difference between two points
C. Potential energy of two-charge system
D. Change in potential energy of a two-charge system

- Watch Video Solution

23. A charge q is revolving aroW1d another charge q as shown in a conical pendulum. The motion is in a horizontal plane. Which of the following statements is/are correct about this situation :

A. Tension in the string is greater than the weight of the ball
B. The tension in the string is greater than the electrostaticrepulsive force
C. If the charge is removed, the speed of the ball has to be increased to maintain the angle
D. If the charge is removed, the speed of ball has to be decreased to maintain the angle

D Watch Video Solution

24. An electric dipole is placed in an electric field generated by a point charge
A. The net force on the dipole never be zero.
B. The net force on the dipole may be zero.
C. The torque on the dipole due to the field must be zero.
D. The torque on the dipole due to the field may be zero.

D Watch Video Solution

25. Two large thin conducting plates with a small gap in between are placed in a uniform electric field E (perpendicular to the plates.)The area of each plate is A , and charges $+Q$ and $-Q$ are given to these plates as shown in figure. If R,S, and T are three points in space, then

A. field at point R is E
B. field at point Sis E
C. field at point Tis $\left(E+\frac{Q}{\varepsilon_{o}} A\right)$
D. fieid at point S is $\left(E+\frac{Q}{A \varepsilon_{o}}\right)$

D Watch Video Solution

26. The electric potential decreases Wliforrnly from 100 V to 50 V as one moves on the y-axis from $y=-I m$ toy $=+I m$. The electric field at the origin :
A. Must be equal to $25 \mathrm{~V} / \mathrm{m}$
B. May be equal to $25 \mathrm{~V} / \mathrm{m}$
C. May be less than $25 \mathrm{~V} / \mathrm{m}$
D. May be greater than $25 \mathrm{~V} / \mathrm{m}$
27. A large insulating thick sheet of thickness 2 d is charged with a Wliforrn volume charge density p . A particle of mass m, carrying a charge q having a sign opposite to that of the sheet, is released from the surface of the sheet. The sheet does not offer any mechanical resistance to the motion of the particle. Find the oscillation frequency v of the particle inside the sheet
A. $v=\frac{1}{2 \pi} \sqrt{\frac{q p}{m \varepsilon o}}$
B. $v=\frac{1}{2 \pi} \sqrt{\frac{2 q p}{m \varepsilon o}}$
C. $v=\frac{1}{4 \pi} \sqrt{\frac{2 q p}{m \varepsilon o}}$
D. $v=\frac{1}{2 \pi} \sqrt{\frac{2 q p}{m \varepsilon o}}$

- Watch Video Solution

28. If the flux of the electric field through a closed surface is zero,
A. The electric field must be zero everywhere on the surface.
B. The electric field may be zero everywhere on the surface.
C. The charge inside the surface mustbe zero.
D. The charge in the vicinity of the surface must be zero.

D Watch Video Solution

29. Three non-conducting infinite planar sheets are parallel to the $y-z$ plane. Each sheet has an unifomi surface charge density. The first sheet, with a negative surface charge density σ, passes through the x-axis at $x=I m$. The second sheet has an unknown surface charge density and passes through the x - axis at $x=2 m$. The third sheet has a negative surface charge density-3cr and passes through the x -axis at $x=4 \mathrm{~m}$. The net electric field due to the sheets is zero at $x=1.5 \mathrm{~m}$.

Which of the following is/are correct :
A. The surface charge density on the second sheet is $+2 \sigma$
B. The electric field at $\mathrm{x}=-2 \mathrm{~m}$ is $\frac{\sigma}{\varepsilon} \hat{i}$
C. The electric field atx $=3 \mathrm{~m}$ is $\frac{\sigma}{\varepsilon} \hat{i}$
D. The electric fieldatx $=6 \mathrm{~m}$ is $\frac{-\sigma}{\varepsilon} \hat{i}$

- Watch Video Solution

30. An ellipsoidal cavity is carved within a perfect conductor. A positive charge q is placed at the centre of the cavity. The points A
and B are on the cavity surface as shown in the figure. Then

A. Electric field near A in the cavity= Electric field near Bin the cavity
B. Total electric field flux through the surface of the cavity is q / ε_{o}
C. Potential at $A=$ Potential atB
D. Both (b) and (c)

Answer: D

31. A positive charge q is fixed at the origin. An electric dipole withe dipole moment vecP is placed, iong th ex-axis faraway from the origin with vecP pointing along thepositivex-axis and it is set free to move. The kinetic energy when it reaches a distance x from the origin is Kand the magnitude of the force experienced by charge q at this moment is F. Then :
A. K varies as $1 / x$
B. F varies as l / x^{2}
C. K varies as $1 / x^{2}$
D. F varies as l / x^{3}

- Watch Video Solution

32. A positively charged thin metal ring of radius R is fixed in the $x y$ plane with its centre at the origin O. A negatively charged particle P is
released from rest at the point $\left(0,0, z_{0}\right)$ where $z_{0}>0$. Then the motion of P is
A. Periodic for all values of z_{o} satisfying $0<z_{o}<\infty$
B. Simple harmonic for all values of satisfying $0<z_{o}<R$
C. Approximately simply harmonic provided $z_{o} \ll R$
D. Such that P crosses O and continues to move along the negative z-axis towards $z=-\infty$

D Watch Video Solution

33. A spherical symmetric charge system is centered at origin. Given, Electric potential

$$
V=\frac{Q}{4 \pi \varepsilon_{0} R_{0}}\left(r \leq R_{0}\right), V=\frac{Q}{4 \pi \varepsilon_{0} r}\left(r>R_{0}\right)
$$

Choose the incorrect statement.
A. Electric field due to the charge system is discontinuous at

$$
r=r_{o}
$$

B. The net charge enclosed-in a sphere ofradi us $r=2 r_{o}$ is Q
C. No charge exists at any point in a spherical region of radius

$$
r<r_{o}
$$

D. Electrostatic energy inside the sphere of radius $r=r_{o}$ is zero

Answer: C

34. A non conducting ring of radius R is charged as shown in figure :

Figure
A. The electric field is zero at the centre of the ring
B. The electric potential is zero at centre of the ring
C. The electric poteotial atthe centre is, $V=\frac{2 q}{4 \pi \varepsilon_{o} R}$
D. The elcotric field at the centre is, $E=\frac{q}{\pi_{2} \varepsilon_{o} R^{2}}$
35. Under the influence of the Coulomb field of charge $+Q$, a charge $-q$ is moving around it in an elliptical orbit. Find out the correct statement(s).
A. The angular momentum of the charge $-q$ is constant
B. The linear momentum of the charge $-q$ is constant
C. Tlie angular velocity of the charge $-q$ is constant
D. The linear speed of the charge $-q$ is constant

D Watch Video Solution

36. Figure shows a cross-section ofa spherical metal shell of inner radius R and out radius $Z R$. A point charge q is located at a distanceR/2 from the centre of the shell. If the shell is electrically
neutral, then which of the following statements is/are correct :

A. The electric field at some point inside shell is zero
B. The electric field at all the point inside shell is non-zero
C. The electric field at the outer surface of the shell is $E \frac{1}{4 \pi \varepsilon}$ q
$\overline{(3 R / 2)^{2}}$
D. The electrical field at the outer surface is $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{o}}$ $=\frac{q}{(2 R)^{2}}$
37. Two non-conducting solid spheres of radii R and $2 R$, having uniform volume charge densities ρ_{1} and ρ_{2} respectively, touch each other. The net electric field at a distance $2 R$ from the centre of the smaller sphere, along the line joining the centres of the spheres, is zero. The ratio $\frac{\rho_{1}}{\rho_{2}}$ can be
A. -4
B. $-\frac{32}{25}$
C. $+\frac{32}{25}$
D. 4
38. Two non-conducting spheres of radii R_{1} and R_{2} and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region

A. The electric field is zero
B. The electric poteotialis constant
C. The electric field is constant in magnitude
D. The electric field has same direction
39. X and Y are large, parallel conducting plates close to each other.

Each face has an area $A . X$ is given a charge $Q . Y$ is without any charge. Points A, B and C are as shown in the figure.

A. The field at B is $\frac{Q}{2 \varepsilon_{o} A}$
B. The field at B is $\frac{Q}{\varepsilon_{o} A}$
C. The field at A, Band Care of the same magnitude
D. The fields at A and Care of the same magnitude, but in opposite directions

D Watch Video Solution

40. A particle of charge $+q$ and mass m moving under the influence of a uniform electric field $E \hat{i}$ and uniform magnetic field $B \hat{k}$ follows a trajectory from $P \rightarrow Q$ as shown in fig. The velocities at P and Q
are $v \hat{i}$ and $-2 v \hat{j}$. which of the following statement(s) is/are correct?

A. $E=\frac{3}{4}\left(\frac{m v^{2}}{q a}\right)$
B. Ratc of work done by the electric field at P is $\frac{3}{4}\left(\frac{m v^{3}}{a}\right)$
C. Rate of work done by the electric field at Pis zero
D. Rate of work done by both the fields at Q is zero
41. A small sphere is charged uniformly and placed at point $A(u, v)$ so that at point $\mathrm{B}(8,7)$ electric field strength is $\vec{E}=(54 \hat{i}+72 \hat{j}) \mathrm{N} / \mathrm{C}$ and potential is+ 900V. Calculate:
(a) Magnitude of charge,
(b) Co-ordinates of point A, and
(c) If di-electric strength ofair is $3 \times I 0^{6} \mathrm{~V} / \mathrm{m}$, minimum possible radius of the sphere.

D Watch Video Solution

2. The electric intensity Eat a point on the axis ofa ring of radius a at a distance x from its centre is given by
$\frac{1}{4 \pi \varepsilon_{0}} \frac{q x}{\left(a^{2}+x^{2}\right)^{3 / 2}}$
where q is charge on ring.
An electron is constrained to move along the axis of this ring. Show that the electron can perform oscillations whose frequency is given by
$\omega=\left(\frac{e q}{4 \pi \varepsilon_{0} m a^{3}}\right)^{1 / 3}$
Where e is the charge on electron:

D Watch Video Solution

3. Two long wires each oflength I are placed on a smooth horizontal table. Wires have equal but opposite charges. Magnitude oflinear charge density on each wire is λ. Calculate the work required to increase the separation between the wires from a to 2 a :

- Watch Video Solution

4.

Four charges
$+50 \times I 0^{-9} C,-12 \times I 0^{-19} C,+36 \times I 0^{-9} C$ and $+90 x 10^{-9} C$
are placed respectively at the corners of a rectangula: $A B C D, A B$ being equal to 5 cm and BC being 12 cm . Find:
(a) the force on the charge at A , and
(b) the field strength at the point of intersection of the two diagonals

D Watch Video Solution

5. A solid conducting sphere of radius R is placed in a uniform electric field E as showo in figure. Due to electric field non uniform surface charges are induced on the surface of the sphere. Consider a point A on the surface of sphere at a polar angle θ from the direction of electric field as shown in figure. Find the surface density of induced charges at point A in terms of electric field and polar angle θ : It brgt

6. Suppose in an insulating medium, having di-electric constant $k=1$, volume density of positive charge varies with y-coordinate according to law $\rho=a y$. A particle of mass m having positive charge q is placed in the medium at point $\mathrm{A}\left(0, y_{0}\right) \mathrm{J}$ and projected with velocity $\vec{v}=v_{0} \hat{i}$ as shown in figure. Neglecting gravity and frictional resistance of the medium and assuming electric field strength to be zero at $y=0$, calculate slope of trajectory of the particle as a function of y :

7. Two short dipoles $p \hat{k}$ and $\frac{P}{2} \hat{k}$ are located at $(0,0,0)$ \& $(1 m, 0,2 m)$ respectivley. The resultant electric field due to the two dipoles at the point $(1 m, 0,0)$ is

D Watch Video Solution

8. Two long straight parallel wires carry charges λ_{1} and λ_{2} per unit length. The distance between them is d. Calculate the magnitude of force externed on the length of one due to charge on the other.

D Watch Video Solution

9. Find the magnitude of uniform electric field E of which the direction is shown in figure if an electron entering with velocity $100 \mathrm{~m} / \mathrm{s}$ making 30° comes out making 60°, after a time numerically equal to m / e ofelectron where m is mass ofelectron and e is
electronic charge :

D Watch Video Solution

10. Two short electric dipoles having dipole moment p_{1} and p_{2} are placed co-axially and uni-directionally, at a distance r apart. Calculate nature and magnitude of force between them :

D Watch Video Solution

11. Three identically charged, small spheres each of mass m are suspended from a common point by insulated light strings each of length I. The spheres are always on vertices of an equilateral triangle
of length of the sides $x(\ll l)$. Calculate the rate $\mathrm{dq} / \mathrm{dt}$ with which charge on each sphere increases if length of the sides of the equilateral triangle increases slowly according to law $\frac{d x}{d t}=\frac{a}{\sqrt{x}}$

D Watch Video Solution

12. Two horizontal parallel conducting plates are kept at a separation $d=1.5 \times 10^{-2} \mathrm{~m}$ apart one above the other in air as shown in figure. The upper plate is maintained at a positive potential of 1.5 kV while the other plate is earthed which maintains it at zero potential.

Calculate the number of electrons which must be attached to a small oil drop of mass $m=4.9 \times 10^{-15} \mathrm{~kg}$ between the plates to maintain it at rest. Consider density of air is negligible in comparison with that ofoil. If the potential of above plate is suddenly changed to $-l .5 k V$, what will be the initial acceleration of the charged drop? Also calculate the terminal velocity of the drop if its radius is $r=5.0 \times 10^{-6} m$ and the coefficient of viscosity of air is
$\eta=1.8 x 10--5 N-s / m^{2}\left[3,2 g, 5.7 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}\right]$

- Watch Video Solution

13. A small cork ball A of mass m is suspended by a thread of length I.

Another ball B is fixed at a distance I from point of suspension and distance $\mathrm{I} / 2$ from thread when is vertical, as shown in figure-1.444. Balls A and B have charges (+ q) each. Ball A is held by an external force such that the thread remains vertical.

When ball A is released from rest, thread deflects through a. maximum angle of $\beta=30^{\circ}$, calculate m in terms of other parameters

D Watch Video Solution

14. A particle of mass m having negative charge q moves along an ellipse around a fixed positive charge Q so that its maximum and minimum distances from fixed charge are equal to r_{1} and r_{2} respectively. Calculate angular momentum L of this particle:
15. Two concentric spheres of radii R and $2 R$ are charged. The inner sphere has a charge if $1 \mu C$ and the outer sphere has a charge of $2 \mu C$ of the same sigh. The potential is 9000 V at a distance $3 R$ from the common centre. The value of R is

D Watch Video Solution

16. A charged particle of radius $5 \times 10^{-7} m$ is located in a horizontal electric field of intensity $6.28 \times 10^{5} \mathrm{Vm}^{-1}$. The surrounding medium has the coefficient of viscosity $\eta=1.6 \times 10^{5} \mathrm{Nsm}^{-2}$. The particle starts moving under the effect of electric field and finally attains a uniform horizontal speed of $0.02 \mathrm{~ms}^{-1}$. Find the number of electrons on it. Assume gravity free space.

D Watch Video Solution

17. Two small balls having the same mass and charge and located on the same vertical at heights h_{1} and h_{2} are thrown in the same direction along the horizontal at the same velocity v . The first ball touches the ground at a horizontal distance R from the initial vertical position. At what height h_{2} will the second ball be at this instant? Neglect any frictional resistance of air and the effect of any induced charge on the ground.

- Watch Video Solution

18. What is the percentage change in distance if the force of attraction between two point charges increases to 4 times keeping magnitude of charges constant ?
19. two concentric rings of radii r and $2 r$ are placed with centre at origin. Tow charges $+q$ each are fixed at the diametrically opposite points of the rings as shown in figure. Smaller ring is now rotated by an angle 90° about Z-axis then it is again rotated by 90° about Y-axis . Find the work done by electrostatic forces in each step. If finally larger ring is rotated by 90° about X -axis, find the total work required to perform all three steps .

20. Find the electric field strength vector at the centre of a ball of raiduius R with volume charge density $\rho \Rightarrow a r$, where a is a constant vector, and r is a radius vector drawn from the ball's centre.

D Watch Video Solution

21. A positively charged sphere of mass $m=5 \mathrm{~kg}$ is attached by a spring of force constant $K=10^{4} \mathrm{~N} / \mathrm{m}$. The sphere is tied with a thread so that spring is in its natural length. Another identical, negatively charged sphere is fixed with floor, vertically below the positively charged sphere as shown in fignre. If initial separation between sphere is $r_{0}=50 \mathrm{~cm}$ and magnitnde ofcharge on each sphere is $q=100 \mu C$, calculate maximum elongation of spring when the thread is burnt. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$:

- View Text Solution

22. The figure shows thrednfinite non-conducting plates of charge perpendicular to the plane of the paper with charge per unit area $+\sigma,+2 \sigma$ and $-\sigma$. Find the ratio of the net electric field atthat point A to that at point B. The points A and Bare located midway between the plates:

D Watch Video Solution

23. A ball of radius R is uniformly charged with the volume density ρ.

Find the flux if the electric field strength vector across the balls section formed by the plane located at a distance $r_{0}<R$ from the centre of the ball.

D Watch Video Solution

24. Small identical balls with equal charges are fixed at vertices of regular 2009 -gon with side a. At a certain instant, one of the balls is released \& a sufficiently long time interval later, the ball adjacent to the first released ball is freed. The kinetic energies of the relased balls are found to differ by K at a sufficiently long distance from the polygon. Determine the charge q of each part.
25. An infinitely long cylindrical surface density $\sigma=\sigma_{0} \cos \varphi$. Where φ is the polar angle of the cylindrical coordinate system whose z axis coincides with the axis of the given surface. Find the magnitude and direction of the electric field strength vector on the z axis.

- Watch Video Solution

26. A non-conducting hollow sphere having inner and outer radii a and b respectively is made ofa material having di-electric constant K and has uniformly distributed charge over its entire solid volume.

Volume density of charge is ρ. Calculate potential at a distance r from its centre when :

(a) $r>b$,
(b) $r<a$,
(c) $a<r<b$

D Watch Video Solution

27. Two thin parallel threads carry a uniform charge with linear densities λ and $-\lambda$. The distance between the threads is equal to l.

Find the potential of the electric field and the magnitude of its strength vector at the distance $r \gg l$ at the angle θ to the vector

D Watch Video Solution

28. A positive charge Q is uniformly distributed throughout the volume of a dielectric sphere of radius R. A point mass having charge $+q$ and mass m is fired toward the center of the sphere with velocity v from a point at distance $r(r>R)$ from the center of the sphere.

Find the minimum velocity v so that it can penetrate $(R / 2)$ distance of the sphere. Neglect any resistance other than electric interaction.

Charge on the small mass remains constant throughout the motion.

(Watch Video Solution

29. Distance between centres of two spheres A and B, each of radius R is r as shown in figure-1.450. SphereB has a spherical cavity of radius $R / 2$ such that distance of centre of cavity is ($r-R / 2$) from the centre of sphere A and $R / 2$ from the centre of sphere B . Di-electric constant of material of each sphere is $\mathrm{K}=\mathrm{I}$ and material of each sphere has a uniform charge density p per unit volume. Calculate interaction energy of the two spheres:

D Watch Video Solution

30. A clock face has charges $-q,-2 q,, \ldots .-12 q$ fixed at the position of the corresponding numerals on the dial. The clock hands
do not disturb the net field due to point charges. At what time does the hour hand point in the direction of the electric field at the centre of the dial.

- Watch Video Solution

31. A semi-circular ring of mass m and radius R with linear charge ilensity λ, hinged at its centre. is placed in a uniform electric field as shown in the figure -1.451 . Ifthe ring is slightly rotated about O and released find the time period (in sec) of oscillation. Take $m=8 k g, \lambda=2 C / m$ and $E=2 N / c$. Assume that coil is rotated in
its own plane

- Watch Video Solution

32. A charge $+10^{-9} C$ is located at the origin in free space $\&$ another charge Q at $(2,0,0)$. If the X -component of the electric field at $(3,1,1)$ is zero , calculate the value of Q, Is the Y -component zero at $(3,1,1)$?
33. Two coaxial rings, each of radius R, made of thin wire are separated by a small distance $l(l \ll R)$ and carry the charges q and $-q$. Find the electric field potential and strength at the axis of the system as a function of the x coordinate (see figure). Investigate these functions at $|x| \gg R$

34. On a thin rod oflength $l=1 m$, lying along the x-axis with one end at the origin $\mathrm{x}=0$, there is uniformly distributed charge per unit length $\lambda=K x$, where $\mathrm{K}=$ constant $=10^{-9} \mathrm{~cm}^{-2}$ Find the work done in displacing a charge $q=1000 \mu C$ from a point $(0, \sqrt{0.44 m} \mathrm{to}(0, I m))$.

D Watch Video Solution

35. Find the interaction force between two water molecules separated by a distance $l=10 \mathrm{~mm}$ if their electric moments are oriented along the same straight line. The moment of each molecule equals $p=0.62 .10^{-29} C . m$.

D Watch Video Solution

36. A nonconducting sphere of radius $R=5 \mathrm{~cm}$ has its center at the origin O of the coordinate system as shown in (Fig. 3.112). It has two
spherical cavities of radius $r=1 \mathrm{~cm}$, whose centers are at $0,3 \mathrm{~cm}$ and
$0,-3 \mathrm{~cm}$, respectively, and solid material of the sphere has uniform positive charge density $\rho=1 / \pi \mu \mathrm{Cm}^{-3}$. Calculate the electric potential at point $P(4 c m, 0)$.

- Watch Video Solution

37. Positive and negative charges of $1 \mu C$ each are placed at two points as shown in the figure. Find the potential difference between A and B

D Watch Video Solution

38. Three particles, each of mass m and carrying a charge q each, are suspended from a common point by insulating mass-less strings each of length L. If the particles are in equilibrium and are located at the corners of an equilateral triangle of side a, calculate the charge q on each particle. Assume $L \gg a$.

D Watch Video Solution

39. A uniformly distributed space charge fills up the space between two large parallel plates separated by a distance d. The potential difference between the plates is equal to zero ? What will then be the field strength near the other plate?

D Watch Video Solution

40. Consider three identical metal spheres A, B and C. Sphere A carries charge $+6 q$, sphere B carries charge $-3 q$ and sphere C carries no charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it . Finally the sphere C is touched to sphere B and separated from it . Find the final charge on the sphere C.
41. A copper atom consists of copper nucleus surrounded by 29 electrons. The atomic weight of copper is $63.5 \mathrm{~mole}^{-1}$. Let us now take two pieces of copper each weighing 10 g . Let us trandfer one elcetron from one piece to another for every 100 atoms in that piece. What will be the Coulomb force between the two pieces after the trandfer of electrons, if they are 1 cm apart? Avogadro number $=6 \times 10^{23} \mathrm{~mole}^{-1}$, charge on an electron $=-1.6 \times 10^{-19} \mathrm{C}$.

- Watch Video Solution

42. A solid non-conducting hemisphere ofradius R has' a uniformly distributed positive charge of density p per unit volume. A negatively charged particle having charge q is transferred from centre of its base to infinity. Calculate workperformed.in the processc Di-electric constant of material of hemisphere is unity:
43. Show that, for a given dipole, V \& E cannot have the same magnitude at distance less than 2 m from the dipole. Suppose that the distance is $\sqrt{5} m$, determine the directions along which $\vee \& E$ are equal in magnitude.

D Watch Video Solution

44. In a conducting hollow sphere of inner and outer radii 5 cm and

10 cm respectively, a point charge $1 \mu \mathrm{C}$ is placed at point A , thaUs 3 cm from the centre C of the hollow sphere. An external uniform electric field of magnitude $20 \mathrm{~N} / \mathrm{C}$ is also applied. Net electric force on the this. charge is 15 N , away from the away from the centre of the sphere as shown in figure-1.455. Find magnitude of force exerted by the charge placed at point A on the sphere:

centre of the
sphere as shown in figure. Find magnitude

- View Text Solution

45. Two circular rings A and B, each of radius $a=30 \mathrm{~cm}$, are placed coaxiallywith their axes vertical as shown in figure-1.456. Distance between centres of these rings is $h=40 \mathrm{~cm}$. Lower ring A has a positive charge of $10 \mu \mathrm{C}$, while upper ringB has a negative charge of $20 \mu C$. A particle of mass $m=100 \mathrm{gm}$ carrying a positive charge of $q=10 \mu \mathrm{C}$ is released from rest at the centre of the ring Itbergt (a)

Calculate initial acceleration of the particle.
(b) Calculate velocity of particle when it reaches at the centre ofupper ring B. $\left(g=10 m s^{-2}\right)$

D Watch Video Solution

46. A hollow charged conductor has a tiny hole cut into its surface.

Show that the electric field in the holes is ($\sigma / 2 \in_{0} \widehat{n}$, where \widehat{n} is the unit vector in the outward normal direction, and σ is the surface charge density near ther hole.
47. Two point charges $q_{1}=20 \mu C$ and $q_{2}=25 \mu C$ are placed at (-1, 1 , 1) m and (3, 1, -2)m, with respect to a coordinate system. Find the magnitude and unit vector along electrostatic force on q_{2} ?

D Watch Video Solution

48. A spherical balloon of radius R charged uniformly on its surface with surface density σ. Find work done against electric forces in expanding it upto radius 2 R .

D Watch Video Solution

49. Two similar helium-filled spherical balloons tied to a 5 g weight with strings and each carrying a charge q floats in equilibrium as
shown in figure -1.457 . Find (a) the magnitude of q, assuming that the charge on each balloon acts as ifit were concentrated at the centre and (b) the volume of each balloon. Neglect weight of the unfilled balloons and take density ofair $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ and the density of helium in the balloons $0.2 \mathrm{~kg} / \mathrm{m}^{3}$:

- View Text Solution

50. A simple pendulum of length l and bob mass m is hanging in front of a large nonconducting sheet having surface charge density σ . If suddenly a charge $+q$ is given to the bob $\&$ it is released from the position shown in figure. Find the maximum angle through which the string is deflected from vertical .

51. The electric field in a region is given by $E=\alpha x \hat{i}$. Here α is a constant of proper dimensions. Find
a. the total flux passing throug a cube bounded by the surface $x=l, x=2 l, y=0, y=l, z=0, z=l$.
b. the charge contained inside in above cube.

D Watch Video Solution

52. The electric field in a region is given by $\vec{E}=E_{0} \frac{x}{\iota} \vec{i}$. Find the charge contained inside a cubical volume bounded by the curfaced $x=0, x=\alpha, y=0, y=\alpha, z=0$ and $z=\alpha$.
$E_{0}=5 \times 10^{3} N C^{-1}, l=2 \mathrm{~cm}$ and $\alpha=1 \mathrm{~cm}$.

D Watch Video Solution

53. When an uncharged conducting ball of radius R is placed in an external uniform electric field, a surface charge densityh $\sigma=\sigma_{0} \cos \theta$
is induced on the ball's surface charge (here σ_{0} is a constant, θ is a polar angle). Find the magnitude of the resultant electric force acting on an induced charge of the same sign.

D Watch Video Solution

54. Two identical balls of charge $q_{1} \& q_{2}$ initially have equal of the same magnitude and direction. After a ubiform electric field is applied for some time, the direction of the velocity of the first ball charges by 60° and the magnitude is reduced by half. The direction of the velocity of the second ball charges there by 90°. In what proportion will the velocity of the second ball changes?

D Watch Video Solution

55. A positive charge $+Q$ is fixed at a poibt A. Another positively charged particle of mass m and charge $+q$ is projected from a point B
with velocity u as shown in (Fig. 3.103). Point B is at a large distance from A and at distance d from the line A C. The initial velocity is parallel to the line A C. The point C is at a very large distance from A.

Find the minimum distance (in meter) of +q from +Q during the motion. Take $Q q=4 \pi \varepsilon_{0} m u^{2} d$ and $d(\sqrt{2}-1) m$.

D Watch Video Solution

56. Figure shown a section through two long thin concentric cylinders of radii a \& b with $a>b$. The cylinders have equal and opposite per unit length λ. Find the electric field at a distance r from
the axis for (i) $r<a$ (ii) $a<r<b$ (iii) $r>b$

- Watch Video Solution

57. A point charge Q is located on the axis of disc of a radius R at a distance a from the plane of the disc. If one fourth $(1 / 4 t h)$ of the flux from the charge passes through the disc, then find the relation
between a \& R.

- Watch Video Solution

58. A very long uniformly charged thread oriented along the axis of a a circle of radius R rests on its centre with one of the ends. The charge of the thread per unit length is equal to λ. Find the flux of the vector E across the circle area.
59. Three point charges of $1 \mathrm{C}, 2 \mathrm{C}$ and 3 C are placed at the . corners of an equilateral triangle of side 1 m . Calculate the work required to move these charges to the corners of a smaller equilateral triangle of side 1.5 m .

- Watch Video Solution

60. Two small metallic balls of radii $R_{1} \& R_{2}$ are kept in vacuum at a large distance compared to the radii. Find the ratio between the charges on the two balls at which electrostatic energy of the system is minimum. What is the potential difference between the two balls? total charge of balls is constant.

D Watch Video Solution

61. Two concentric spheres of radii R and $2 R$ are charged. The inner sphere has a charge if $1 \mu C$ and the outer sphere has a charge of
$2 \mu C$ of the same sigh. The potential is 9000 V at a distance $3 R$ from the common centre. The value of R is

D Watch Video Solution

62. A charge Q is uniformly distributed over a rod of length l. Consider a hypothetical cube of edge l with the centre of the cube at one end of the rod. Find the minimum possible flux of the electric field through the entire surface of the cube.

- Watch Video Solution

63. A particle having a charge of $q=8.85 \mu C$ is placed on the axis of a circular ring of radius $R=30 \mathrm{~cm}$ at a point P at a distance of $a=40 \mathrm{~cm}$ from the centre of the ring.The electric flux passing through the ring is $x \times 10^{5} \mathrm{~N} / \mathrm{C}$. Find the value of x ?
64. Electrically charged drops of mercury fall from an altitude h into a spherical metal vessel of radius R. There is a small opening in the upper part of the vessel. The mass of each drop is m, and the charge on the drop is Q . What will be the number n of the last drop that can still enter the sphere?

- Watch Video Solution

65. A non-conducting sphere ofradius R has a positive charge which is distributed over its volume with density $\rho=\rho_{0}\left(1-\frac{x}{R}\right)$ per unit volume, wherex is distance from the centre. If dielectric constant of material of the sphere is $\mathrm{k}=\mathrm{I}$, calculate energy stored in surrounding space and total self energy of the sphere:
66. Two identical charges, $5 \mu C$ each are fixed at a distance 8 cm and a charged particle of mass $9 \times 10^{-6} \mathrm{~kg}$ and charge $-10 \mu \mathrm{C}$ is placed at a distance 5 cm from each of them and is released. Find the speed of the particle when it is nearest to the two charges.

(D) Watch Video Solution

67. A particle of mass m and charge $-q$ moves along a diameter of a uniformly charged sphere of radius R and carrying a total charge $+Q$. Find the frequency of S.H.M. of the particle if the amplitude does not exceed R.

D Watch Video Solution

68. Two concentric conducting thin shells of radius R and $2 R$ carry charges $+Q$ and $+3 Q$ respectively. The magnitude of electric field at a distance x outside and inside from the surface of outer sphere is
same. Then the value of x is

- Watch Video Solution

69. The electric field strength depends only on the x and y coordinates according to the law $\mathrm{E}=\frac{a(x \hat{i}+y \hat{j})}{x^{2}+y^{2}}$, where a is a
constant \hat{i} and \hat{j} are unit vectors of the x and y axes. Find the potential difference between $\mathrm{x}=1$ and $\mathrm{x}=5$:

(D) Watch Video Solution

70. A very long charged wire (lying in the xy plane) which is having a linear charge density λ is having one of its end at a point P as shown in figure. What is electric field intensity at point Q :

71. A solid sphere ofradius ' R ' is uniformly charged with charge density ρ in its volume. A spherical cavity of radius $\frac{R}{2}$ is made in the sphere as shown in the figure. It is given that $\frac{\rho R^{2}}{\epsilon_{0}}=48 \mathrm{~V}$. Find the electric potential at the centre C of the sphere:

- Watch Video Solution

72. Find the electric field at the origin due to the line charge (ABCD) of linear charge density λ,

- Watch Video Solution

73. A point charge $+q$ \& mass 100 gm experiences a force of 100 N at a point of distance 20 cm from a long infinite uniformly charged wire, If it is released find its speed when it is at a distance 40 cm from wire .
