© 'doubtnut

PHYSICS

BOOKS - GK PUBLICATIONS PHYSICS

(HINGLISH)

GEOMETRICAL OPTICS

Illustrative Example

1. A ray of light is incident on the $(y-z)$ plane mirror
along a unit vector $\hat{e}_{1}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$.
Find the unit vector along the reflected ray.

> A. $\hat{e}_{2}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$
> B. $\hat{e}_{2}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$
> C. $\hat{e}_{2}=-\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$
> D. $\hat{e}_{2}=\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

Answer: C

- Watch Video Solution

2. Two plane mirrors are combined to each other as
such one is in ($y-z$) plane and other is in ($x-z$)plane.A
ray of light along vector $\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$ is incident on the first mirror. Find the unit vector in
the direction of emergence ray after successive reflections through these mirros.

- Watch Video Solution

3. A ray of light is incident on a plane mirror along a vector $\hat{i}+\hat{j}-\hat{k}$.

The normal on incidence point is along $\hat{i}+\hat{j}$.Find a unit vector along the reflected ray.

$$
\begin{aligned}
& \text { A. } \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}} \\
& \text { B. } \frac{-\hat{i}-\hat{j}-\hat{k}}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{\hat{i}+\hat{j}+2 \hat{k}}{\sqrt{3}} \\
& \text { D. } \frac{\hat{i}-2 \hat{j}-2 \hat{k}}{\sqrt{3}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

4. Figure shows a mirror M on which a light ray incident at an angle 40° from normal. If the ray is rotated by 10° clockwise find the change in angle
of deviation of light after reflection.

- Watch Video Solution

5. A man is standing in aroom of length 20 m and height 3 m at a distance 5 m from one wall. On the facing wall a mirror is hanging. Find the minimum
size of mirror required in which man will be able to see complete height of wall behind him.

- Watch Video Solution

6. rays of light strike a horizontal plane mirror at an angle of 45°. At what angle should be a second plane mirror be placed in order that the reflected ray finally be reflected horizontally from the second mirror.

- Watch Video Solution

7.

Figure shows two plane mirrors and an object O placed between them what will be distance of the first three imgages from the mirror M_{2} ?

- Watch Video Solution

8. Demostrate that a light beam reflected from
three mutually perpendicular plane mirrors in
succession reverses its direction.

- Watch Video Solution

9. Figure shows a torch producing a straight light beam falling on a plane mirror at an angle 60° The reflected beam makes a spot P on the screen along
y-axis. If at $t=0$, mirror starts ratating about the hinge A with an angular velocity $(\omega)=1^{\circ}$ per second clockwise. Find the speed of the spot on
screen after time $t=15 \mathrm{~s}$.

D Watch Video Solution

10. Figure shows a plane mirror onto which a light rays is incident. If the incident light ray is rotated by 10° and the mirror by 20°, as show in figure
below, find the angle by which the reflected ray is rotated.

- Watch Video Solution

11. A point object is placed at a distance 30 cm in front of a concave mirror of focal length 20 cm .

Find the nature and location of image obtained.
12. A thin rod of length $d / 3$ is placed along the principal axis of a concave mirror of focal length = d such that its image, which is real and elongated, just touches the rod. Find the length of the image ?

- Watch Video Solution

13. In figure shown find the distance from pole P of the concave mirror shown in figure, at which when a plane mirror is placed, image produced by both
mirror for the object O will coincide.

- Watch Video Solution

14. An observer whose least distance of distinct vision is ' d ' views the his own face in a convex mirror of radius of curvature ' r ' .Prove that magnification produced can not exceed $\frac{r}{d+\sqrt{d^{2}+r^{2}}}$
15. An object is placed in front of a convex mirror at a distance of 50 cm . A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and the plane mirror is 30 cm , it is found that there is no parallax between the images formed by the two mirrors.

What is the radius of curvature of the convex mirror?

- Watch Video Solution

16. Using a certain concave mirror, the magnification is found to be 4 times as great when the object was 25 cm from the mirror as it was with the object at 40 cm from the mirror, the image, being real in each case.Find the focal length of the mirror.

- Watch Video Solution

17. A concave and a convex mirror each 30 cm in
radius are placed opposite to each other 60 cm apart on the same axis. An object 5 cm in height is
placed midway between them. Find the position
and size of the image formed by two successive reflections, consider first reflection at convex and then at the concave mirror.

- Watch Video Solution

18. A thief is running away in a car with velocity of
$20 \mathrm{~m} / \mathrm{s}$. A police jeep is following him, which is
sighted by thief in his rear view mirror, which is a convex mirror of focal length 10 m . He observes
that the image of jeep is moving towards him with
a velocity of $1 \mathrm{~cm} / \mathrm{s}$. if the magnification of mirror for the jeep at that time is $\frac{1}{10}$. Find
(a) the actual speed of jeep,
(b) rate at which magnification is changing.

Assume the police's jeep is on the axis of the mirror.

- Watch Video Solution

19. A Convex mirror of radius of curvature R is fixed on a standat rest with total mass m which is facing
a block of equal mass m as shown in figure and is
kept on a frictionless horizontal surfece. The
separation between the block and mirror is $2 R$ and
block is moving at a speed v toward the mirror.

Consider elastic collision between block and stand,
find the speed of image after time $3 R / v$.

- Watch Video Solution

20. A concave mirror of focal length 20 cm is cut into two parts from the middle and the two parts are moved perpendicularly by a distance 1 cm from the previous principal axis $A B$.find the distance
between the images formed by the two parts?

- Watch Video Solution

21. An object is located at a distance 30 cm on principal axis from the pole of a concave mirror of focal length 20 cm . Suddenly the mirror is displaced by a distance 1.5 cm in the direction normal to its
principal axis. Calculate the displacement of image produced by the mirror due to this.

- Watch Video Solution

22. A converging beam of light rays incident on a glasa-air interface as shown in figure. Find where these rays will meet after refraction.

- Watch Video Solution

23. A concave mirror is placed inside water its shining surface upwards and principal axis vertical as shown in figure. Rays are incient parallel to the principal axis of the concave mirror. Find the
position of the final image.

30 cm

$R=40 \mathrm{~cm}$

- Watch Video Solution

24. A bird in air is dividing vertically over a tank with speed $6 \mathrm{~cm} / \mathrm{s}$. The base of the tank is silvered.

The fish in the tank is rising upward along the
same line with speed $4 \mathrm{~cm} / \mathrm{s}$. (Take: $\mu_{\text {water }}=4 / 3$).
Find:
(a) The speed of the image of the fish asseen directly by the bird.
(b) The speed of the image of the bird relative to the fish looking upwards.

- Watch Video Solution

25. Figure shows a concave mirror of focal length F with its principal axis vertical. In mirror a
transparent liquid of refractive index μ is filled upto height d. Find where on axis of mirror a pin
should be placed so that its image will be formed on itself.

D Watch Video Solution
26. The $X Y$ plane is the boundary between two tranparednt media. Medium 1 with $z \geq 0$ has a
refraxtive index of $\sqrt{2}$ and medium 2 with $z \leq 0$
has a refractive index of $\sqrt{3}$. A ray of light in medium 1 given by the vector $6 \sqrt{3} \hat{i}+8 \sqrt{3} \hat{j}-10 \hat{k}$ is incident on teh plane of separation. Find the unit vector in the direction of teh refracted ray in medium 2.

- Watch Video Solution

27. Consider the situation shown in figure. A plane mirror is fixed at a height h above the bottom of a
beaker containing water (refractive index μ) up of a bottom formed by the mirror.

- Watch Video Solution

28. A rectangular glass block of thickness 10 cm and refractive index 1.5 placed over a small coin. A
beaker is filled with water of refractive index $4 / 3$ to
a height of 10 cm and is placed over the glass
block.
(a) Find the apparent position of the object when it is viewed at near normal incidence.
(b) if the eye is slowly moves away from the normal at a certain position, the object is found to disappear, due to total internal reflection. At what surface does this happen and why?

- Watch Video Solution

29. A glass slab of thickness 3 cm and refractive index 1.5 is placed in front of a concave mirror of focal length 20 cm . Where should a poing object be placed if it is to image on to itself?

- Watch Video Solution

30. A concave mirror has the form of a hemisphere
with a radius of $R=60 \mathrm{~cm}$ A thin layer of an
unknown transparent liquid is poured into the
mirror ,The mirror-liquids system forms one real
Image and another real image is formed by mirror
alone ,with the sources in a certain position .One of
them coincides with the source and the other is at distance of $l=30 \mathrm{~cm}$ from source.find the possible value(s) refractive index μ of the liquid.

- Watch Video Solution

31. In previous illustrations if image formed by the mirror coincides with the source and that produced by the combination is produced at a distance 30 cm from the source away from mirror then find the refractive index of the liquid.

- Watch Video Solution

32. A person looking through a telescope T just sees the points on the rim at the bottom of a cylindrical vessel when the vessel is empty. When the vessel is completely filled with a liquid ($\mu,=1.5$), he observes a mark at the centre B,of the bottom without moving the telescope or the vessel. What is the height of the vessel if the diameter of it scross section is 10 cm .

- Watch Video Solution

33. An object is placed 20 cm in front of a block of
glass 10 cm thick having its farther side silvered.

The image is formed 23.2 cm behind the silvered face. The refractive index of glass is

- Watch Video Solution

34. A light ray from air is incident on a glass plate of thickness t and refractive index μ at an angle of incidence equal to the angle of total internal reflection of glass. Compute the displacement of the ray due to this plate in terms of thickness and refractive index of glass μ.

- Watch Video Solution

35. A concave mirror of radius 40 cm lies on a horizontla tale and wateis filled in it up t a heightof
5.00 cm . A small dust particle floats on the water
surface at a point P vertically above tge pointof contact of the miror with the table. Locate the image of the dust particle as seen from a point directly above it. tEh refractie index of water is 1.33 .

36. Figure shows a glass sphere of radius 10 cm .
along its diameter $A B$ from one side a parallel
beam of paraxial rays incident on it. What should be the refractive index of glass so that after refraction all rays will converge at opposite end B.

37. Figure shows a glass hemisphere M of $\mu=\frac{3}{2}$ and radius 10 cm . a point object O is placed at a distance 20 cm behind the flat face which is viewed by an observer from the curved side. Find location of final image after two refractions as seen by observer.

- Watch Video Solution

38. A ray of light passes through a transparent sphere of refractive index μ and radius R. If \boldsymbol{b} is the distance between the incident ray and diameter of the sphere which is parallel to that ray, What is the value of the deviation?

- Watch Video Solution

39. A parallel beam of light travelling in water
(refractive index $=4 / 3$) is refracted by a spherical
air bublle of radius 2 mm situated in water.

Assuming the light rays to be paraxial,
a. Find the position of image due to refraction at
first surface and position of the final image.
b. Draw a ray diagram showing the position of both images.

- Watch Video Solution

40. Figure shows a small object M of length 1 mm which lies along a dimentrical line of a glass sphere of radius 1-

- Watch Video Solution

41. A long cylindrical tube containing water in closed by an equinvex lens of local length 10 cm in
air. A point source is placed along the axis of the tube outside it at a distance of 21 cm from the lens.

Locate the final image of the source. Refractive index of the materials of the lens $=1.5$ and that of water $=1.33$.
42. A cylindrical glass rod of radius 0.1 m and refractive index $\sqrt{3}$ lies on horizontal plane mirror.

A horizontal ray of light moving perpendicular to the axis of the rod is incident on it. At what height
from the mirror should the ray be incident so that
it leaves the rod at a height of 0.1 m above the plane mirror ? At what distance a second similar rod, parallel to the first, be placed on the mirror,
such that the emergent ray from the second rod is in line with the incident ray on the first rod ?

43.

A quarter cylinder of radius R and refractive index 1.5 is placed on a table.A point object P is kept at a distance of $m R$ from it. Find the value of m for whicha ray from P will emerge parallel to the table as shown in the figure.

- Watch Video Solution

44. Find at what angle a fish inside a lake will see a rising sun. (Take $\mu_{\omega}=4 / 3$)

- Watch Video Solution

45. Light falls from glass $(\mu=1.5)$ to air. Find the
angle of incidence for which the angle of deviation is 90°.
46. Light is incident at an angle α on one planar end of a transparent cylindrical rod of refractive index μ. Determine the least value of μ so that the light entering the rod does not emerge from the curved surface of rod irrespective of the value of α

- Watch Video Solution

47. A rod made of glass $(\mu=1.5)$ and of square cross-section is equal is bent into the shape shown in figure. A parallel beam of light falls perpendicurly on the plane flat surface . A. Referring to the diagram, d is the width of a side \&
R is radius of inner semicircle. find the maximum
value of ratio $\frac{d}{R}$ so that all light entering the glass
through surface A emerge from the glass through
surface B.

- Watch Video Solution

48. A prism has refracting angle 30° and $\mu=2$.

One of the mat surface of the prism is polished to make it reflecting. Find the incidence angle of a light ray on other mat surface of prism so that after reflection the ray will retrace the path of incident ray.

- Watch Video Solution

49. Find the variation of Refractive index assuming
it to be a function of y such that a ray entering
origin at grazing incident follows a parabolic path
$y=x^{2}$ as shown in figure.

- Watch Video Solution

50. Find the angle of incidence of a light ray on an equilateral prism of refractive index $\mu=\sqrt{2}$ for
which light will suffer minimum deviation also find this minimum deviation angle.

- Watch Video Solution

51. The angle of incidence of a ray of light entering
a 60° prism is 42°. If ray is just totally reflected at the second face of the prism, determine the refractive index of the prism material for the light.
52. Figure shows a small angles prism angle 4° and $\mu=\frac{3}{2}$. A light ray almost normally incident on the prism is refracted and falls on a vertical mirror as shown. Find the total deviation of the ray after reflection from the mirror.

53. A right angles prism $\left(45^{\circ}, 90^{\circ}, 45^{\circ}\right)$ of refractive index n has a plate of refractive index
$\left(n_{1}<n\right)$ cemented to its diagonal face. The assembley is in air. A ray is incident on AB.
a. Calculate the angle of incidence at $A B$ for which the ray strikes the diagonal face at the critical angle.
b. Assuming $n=1.351$, calculate the angle of incidence at $A B$ for which the refracted ley passes
through the diagonal face undeviated.

- Watch Video Solution

54. In figure, light refracts from material 1 into a thin layer of material 2, crosses that layer, and then is incident at the critical angle on the interface between materials 2 and 3 .
farman

(a) What is the angle θ ?
(b) If θ is decreased, is there refraction of light into material 3 ?

- Watch Video Solution

55. Find the co-ordinates of image of the point object 'O' formed after reflection from
concavemirror as shown in figure assuming prism to be thin and small in size and of prism angle 2°. Refractive index of the prism material is $3 / 2$

- Watch Video Solution

56. A monochromatic light is incident on the plane interface $A B$ between two media of refractive indices μ_{1} and $\left(\mu_{2}>\mu_{1}\right)$ at an angle of incidence
θ as shown in Fig.
The angle θ is infinitesimally greater than the critical angle for the two media so that total internal reflection takes place. Now, if a transparent slab DEFG of uniform thickness and of refractive index μ_{3} is introduced on the interface (as shown in the figure), show that for any value of μ_{3} all light will ultimately be reflected back into medium II.

- Watch Video Solution

57. For a prism, $A=60^{\circ}, n=\sqrt{7 / 3}$. Find the minimum possible angle of incidence, so that the light ray is refracted from the second surface. Also, find $\delta_{\text {max }}$.

- Watch Video Solution

58. Focal length of a thin lens in air, is 10 cm . Now medium on one side of the lens is replaced by a medium of refractive index $\mu=2$. The radius of curvature of surface of leng, in contact with the medium, is 20 cm . Find the point on principal axis where parallel rays incident on lens from air
parallel to axis will converge.

- Watch Video Solution

59. A biconvex lens has focal length 50 cm and the radius of curvature of one surface is double that of
other. Find the radii of curvature if refractive index of lens material is 2 .

- Watch Video Solution

60. A convex lens of focal length 20 cm is placed at
a distance 5 cm from a glass plate $\left(\mu=\frac{3}{2}\right)$ of thickness 3 cm . an object is placed at a distance 30 cm from lens on the other side of glass plate.

Locate the final image produced by this optical setup.
61. A diverging lens of focal length 20 cm is placed coaxially 5 cm toward left of a converging mirror of
focal length 10 cm . Where would an object be placed toward left of the lens so that a real image is formed on object itself.

- Watch Video Solution

62. A convex lens is held 45 cm above the bottom of
an empty tank. The image of a point at the bottom
of a tank is formed 36 cm above the lens. Now, a
liquid is poured into the tank to a depth of 40 cm .
It is found that the distance of the image of the
same point on the bottom of the tank is 48 cm above the lens. Find the refractive index of the liquid.

D Watch Video Solution

63. An object of height 4 cm is kept to the left of and on the axis of a converging lens offocal length

10 cm at a distance of 15 cm from lens. A plane mirror is placed inclined at 45° to the lens axis, 10
cm to the right of the lens.Find the position and
size of the image formed by the lens and mirror
combination. Trace the path ofthe rays forming the image.

- Watch Video Solution

A point object is placed at a distance of 0.3 m from a convex lens (focal length 0.2 m) cut into two
halves each of which is displaced by 0.0005 m as shown in the figure. Find the position of the image
. If more than one image is formed find their number and the distance between them.

- Watch Video Solution

65. A thin converging lens with focal length
$f=25 \mathrm{~cm}$ projects the image of an object on a screen removed from the lens by a distance $l==5.0 \mathrm{~m}$. Then the screen was draws closer to the lens by a distance $\Delta l=18 \mathrm{~cm}$. By what
distance should the object be shifted for its image to become sharp again ?

- Watch Video Solution

66. Determine the position of the image produced
by an optical system consisting of a concave mirror with a focal length of 10 cm and a convergent lens
with a focal length of 20 cm . The distance from the mirror to the lens is 30 cm and from the lens to the
object is 40 cm . Consider only two steps. Plot the image.
67. A strong source of light when used with a convex lens produces a number of images of the source owing to feeble internal reflections and refraction called flare spots as shown in figure.

These extra images are F_{1}, F_{2}. If F_{n} is the position of $n^{\text {th }}$ flare spot, then show that

- Watch Video Solution

68. A small fish, 0.4 m below the surface of a lake, is
viewed through a simple converging lens of focal
length 3 m . The lens in kept at 0.2 m above the water surface such that the fish lies on the optical axis of the lens. Find the image of the fish seen by the observer. The refractive index of water is $4 / 3$.

- Watch Video Solution

69. A point object is placed at a distance of 15 cm
from a convex lens. The image is formed on the other side of lens at a distance 30 cm from lens.

When a concave lens is placed in contact with
convex lens, image is shifted away further by 30 cm . calculate the focal lengths of the two lenses.

- Watch Video Solution

70. The figure below shows a thin plano-convex
lens of refractive index μ_{1} and a thin plano-concave
lens of refractive index μ_{2}, both having same radius
of curvature R of their curved surfaces. Another
thin lens of refractive index μ_{3} has same radius of
curvature R on the two surface between the plano-
convex and plano-concae lenses that the plane
surfaces are parallel to each other. Find the focal
length of the combination.

- Watch Video Solution

71. The convex surface of a thin concave-convex
lens of glass of refractive index 1.5 has a radius of
curvature 20 cm . The concave surface has a radius
of curvature 60 cm . The convex side is silvered and placed on a horizontal surface as shown in figure.
(a) Where should a pin be placed on the axis so that its image is formed at the same place ? (b) If the concave part is filled with water ($\mathrm{mu}=4 / 3$), find the distance through which the pin should be moved so that the image of the pin again coincides with the pin.
72. The radius of curvature of the curved surfaces
of an equiconvex lens is 32 cm and its refractive index is $\mu=1.5$. One of its side is silvered and placed 14 c away from an object as shown in figure.

At what distance x should a second convex lens of
focal length 24 cm be placed so that the image coincides with the object.

- Watch Video Solution

73. A point source of light is placed inside water and a thin converging lens ofrefractive index μ_{2} is placed just outside the plane surface of water. The image of the source is formed at a distance x from the surface of water. If the lens is now placed just inside water and the image is now formed at a distances' from the surface of water, show that
$\frac{1}{x}-\frac{1}{x_{1}}=\frac{\mu_{1}-1}{\mu_{2}-1} \times \frac{1}{f}$,
Where f is the focal length of the lens and μ_{1} is the refractive index of water.

- Watch Video Solution

74. A thin plano-convex lens of focal length f is split into two halves. One of the halves is shifted along the optical axis as shown in figure. The separation between object and image planes is 1.8 m . The magnification of the image, formed by one of the ball lens is 2 . Find the focal length of the lens and separation between the two halves. Draw the ray diagram for image formation.

75. A thin converging lens is placed between an object and a screen whose position are fixed. There are two positions of the lens at which the sharp image of the object is formed on the screen. Find the transverse dimension of the object if at one position of the lens the image dimension equal $h^{\prime}=2.0 \mathrm{~mm}$ and at the other, $h^{\prime \prime}=4.5 \mathrm{~mm}$.

- Watch Video Solution

76. A thin equiconvex lens of glass of refractive index $\mu=3 / 2 \&$ of focal length 0.3 min air is sealed into an opening at one end of a tank filled
with water $(\mu=4 / 3)$. On the opposite side of the
lens ,a mirror is placed inside the tank on the tank
wall perpendicular to the lens axis ,as shown in
figure the separation between the lens and the
mirror is 0.8 mA small object is placed outside the
tank in front of the lens at a distance of 0.9 m form
the lens along its axis .Find the position (relative to
the lens)of the image of the object fromed by the
stsyem.

- Watch Video Solution

77. Bottom of a glass beaker is made of a thin equiconvex lens having bottom side silver polished as shown in the figure. Water is filled in the beaker upto a height 4 m . The image of poin to bject,floating at middle point of beaker at the
surface of water coincides with it. Find out ther adius of curvature of the lens.Given that refractive index of glass is $3 / 2$ and that of water is $4 / 3$.

- Watch Video Solution

78. An achromatic convergent lens of focal length

150 cm is made by combining flint and crown glass
lenses. Calculate the focal length of both the
lenses and point out which one is divergent if the ratio of the dispersive power of flint and crown glasses is $3: 2$.

- Watch Video Solution

79. Calculate the angle of a prism of dispersive power 0.021 and refractive index 1.53 to form an achromatic combination with prism of angle 4.2°,
and dispersive power 0.045 , having refractive index 1.65. Find also the net deviation.

- Watch Video Solution

80. A prism of angle 60° is made of glass of refractive index 1.50 for red and 1.56 for violet. Find
the angular separation of these rays when a narrow pencil of composite light is incident at minimum deviation.

- Watch Video Solution

81. A thin biconvex lens is placed with its principal axis first along a beam of parallel red light and then along a beam of parallel blue light. If the refractive indices of the lens for red and blue light are respectively 1.514 and 1.524 and if the radius of
curvature of the faces are 30 cm and 20 cm , calculate the sepration of for red and blue light. If
the focal length for the mean colour (yellow) is 23.1
cm , find the dispersive power of the material of the lens.
82. Two parallel beams of light P and Q (separation
d) containing radiation of wavelengths $4000 A$ and
$5000 A$ (which are mutually coherent in each wavelength separately) are incident normally on a prism as shown in fig. The refractive index of the prism as a function of wavelength is given by the relation. $\mu(\lambda)=1.20+\frac{b}{\lambda^{2}}$ Where λ is in A and b is positive constant. The value of b is such that the
condition wave length and is not satisfied for the other.
(a) Find the value of b.
(b) find the deviation of the beams transmitted
through the face AC. (c) A convergent lens is used
to bring these transmitted beams into focus. If the intensities of transmission form the face AC, are 41 and I respectively, find the resultant intensity at the focus.

D Watch Video Solution

83. A short-sighted man, the accommodation of whose eye is between 12 cm and 60 cm wears
spectacles through which he can see remote objects distinctly. Determine the minimum distance at which the man can read a book through his spectacles.

- Watch Video Solution

84. The focal lengths of the objective and eyepiece of a microscope are 4 mm and 25 mm respectively, and the length of the tube is 16 cm . If the final image is formed at infinity and the least distance of distinct vision is 25 cm , then calculate the magnifying power of the microscope.
85. A telescope has an objective of focal length

50 cm and an eyepiece of focal length 5 cm . The least distance of distinct vision is 25 cm . The telescope is focused for distinct vision on a scale $2 m$ away from the objective. Calculate magnification produced and (b) separation between objective and eyepiece.
86. A compound microscope is used to enlarge an object kept at a distance $0.03 m$ from cuts objective which consists of serval convex lenses in contact and has focal length 0.03 m . If a lens focal length 0.1 m is removed from the objective, find out the distance by which the eye-piece of the microscope must be moved to refocus the image.

- Watch Video Solution

87. In a compound microscope, the objective and
eye piece have focal lengths 0.95 cm and 5 cm
respectively, and are kept at a distance of 20 cm .

The final image is formed at a distance of 25 cm from the eye piece. Calculate the position of the object and the total magnification.

- Watch Video Solution

88. The focal lengths of the objective and eye piece
of an astronomical telescope are 25 cm and 2.5 cm
respectively. The telescope is fucussed on an object
$1.5 m$ from objective, the final image being formed 25 cm from eye of the observer. Calculate the length of the telescope.
89. A short-sighted person cannot see objects situated beyond 2 m from him distinctly. What should be the power of the lens which he should use for seeing distant objects clearly?

- Watch Video Solution

Practive Exercise 5.1

1. A person's eye is at a height of 1.5 m . He stands in
frount of a 0.3 m length palne mirror bottom of
which is 0.8 m above ground.Find the length the of
his image he will be able in this mirror
[0.6 m]

- Watch Video Solution

2. An object of size 7.5 cm is placed in front of a convex mirror of radius of curvature 25 cm at a distance of 40 cm . The size of the image should be

- Watch Video Solution

3. In figure shown a light ray I after getting reflected fron mirror M_{1} strikes another mirror M_{2}
and reflected as ray 2 , If angle between M_{1} and M_{2}
is 60° find angle θ

$\left[60^{\circ}\right]$

- Watch Video Solution

4. Three plane mirrors are kept as shown in the

Figure A point object (O) is kept at the centroid of
the triangle seen in the Figure. How many images will be formed?

- Watch Video Solution

5. A point source of light B is placed at a distance L
in front of the centre of a mirror of which d hung
vertically on a wall.A man walks in front of the mirror along a line parallel to the mirror at a distance 2 L from it as shown in figure . The greatest distance over which he can see the image of the light source in mirror is :

[3d]

- Watch Video Solution

6. In a 3D coordinate system a plane mirror is placed parallel to XY plane and above the mirror a point object is moving at velocity $\vec{v}_{0}=5 \hat{i}-3 \hat{j}-1 l \hat{k} m / s$ If mirror is also moving parallel to it self at velocity $\vec{v}_{m}=2 \hat{i}+\hat{j}-3 \hat{k}$,
find the velocity of image produced in mirror, $[5 \hat{i}-3 \hat{j}+5 \hat{k} m / s]$

- Watch Video Solution

7. Two plane mirror M_{1} and M_{2} area inclined at angle θ as shown. A ray of light 1 , which is parallel to M_{1} strikes M_{2} and after two
reflection, the ray 2 become parrallel to M_{2}. Find the angle θ

- Watch Video Solution

8. An object moves with $5 \mathrm{~ms}^{-1}$ toward right while the mirror moves with $1 \mathrm{~ms}^{-1}$ toward the left as
shown in Figure. Find the velocity of image.
1

5 m s

4

the plane mirror is moving with velocity
$-2 \hat{i}-4 \hat{j}+4 \hat{k}$. Find velocity of image
$[-2 \hat{i}=14 \hat{j}+4 \hat{k}]$

- Watch Video Solution

10. Two plane mirrors are inclined to each other as
in figure A after three successive reflection falls on the mirror M_{1} and finally retaces its path.Calculate the angle between the two plane mirror

$\left[15^{\circ}\right]$

D Watch Video Solution

Practive Exercise 5.2

1. Find the distance from a convex mirror, of focal
length 60 cm where an object of height 12 cm
should be placed so that its image is produced at
35 cm from mirror.Also find the height of image
[-84 cm, 5 cm]

- Watch Video Solution

2. A 2 cm high object is placed on the principal axis
of a concave mirror at a distance 12 cm from the
ole of mirror, Find the location of the image and
focal length of mirror if the image height is 5 cm
and it is inverted
[$30 \mathrm{~cm}, 8,6 \mathrm{~cm}$]
3. A point object on the principal axis of a concave mirror of focal length 20 cm , is moving at a speed of $5 \mathrm{~cm} / \mathrm{s}$ at an single 45° to the principal axis as shown of 25 cm from the pole of mirror.Find the velocity components of image along and normal to principal axis at this instant

4. A man uses a concave mirror for shaving and see
his 2 times enlarged image when his face is at a distance 40 cm from mirror.Find focal length of mirror
[80 cm]

- Watch Video Solution

5. A 2 cm high object is placed on the principal axis of a concave mirror at a distance of 12 cm from the pole.If the time image is inverted, real and 5 cm
high, find the focal length of mirror.If the object starts moving at a speed of $1.2 \mathrm{~cm} / \mathrm{s}$ toward the
mirror find speed of image and its direction of

motion

[$7.5 \mathrm{~cm} / \mathrm{s}$]

D Watch Video Solution

6. Figure shows two spherical mirrors M_{1} and M_{2} on same optical axis at a separation of 50 cm .

Apoint object O is placed midway between mirrors in optical axis.Find location \& nature of its image after two successive reflections first at M_{1} then at M_{2}

[75 cm]

D Watch Video Solution

Practive Exercise 5.3

1. A convergent beam is incident on two slabs
placed in contact as shownin figure. Where will the
rays finally converge?

- Watch Video Solution

2. Find the apparent depth of an object O placed at the bottom of a beaker as shown in which two
layers of transparent liquids are filled

[22.67 cm]

- Watch Video Solution

3. A point object is placed 33 cm from a convex mirror of curvature radius $=40 \mathrm{~cm}$ A glass plate
of thickness 6 cm and refractive index 2.0 placed between the object and mirror,close to the mirror,find the distance of final image form the object?

- Watch Video Solution

4. A light ray falling at 60° angle with the surface of fa glass slab of thickness 1 m and is refracted at angle 75° with the surface, Calculate the time taken by the light to cross the slab

$$
\left[\frac{2}{3} \times 10^{-8} s\right]
$$

5. A surveyor on one bank of canal observed the image of the 4 inch and 17 ft marks on a vertical staff,which is partially immersed in the water and held against the bank directly opposite to him, coincides If the $17 f t$ mark and the surveyor's eye are both 6 ft above the water level ,estimate the width of the canal ,assuming that the reflective index of the water is $4 / 3$.Zero mark is at the bottom of the canal.
6. A ray of light is incident on a parallel slab of thickness t and refractive index n. If the angle of incidence θ is small, than the lateral displacement in the incident and emergent ray will be

- Watch Video Solution

7. How much water should be filled in a container of height 21 cm , so that it appears half filled to the observer when viewed from the top of the container $(\mu=4 / 3)$.
8. A glass plate has a thickness t and refravtive index $\mu \mathrm{A}$ light ray is allowed to incident in the plate from air. Find at what angle of incidence will the rays refracted and reflected by the plate be perpendicular to each other ? For this angle of incidence, calculate the lateral displacement of the ray

$$
t\left(\mu^{2}-1\right)
$$

$\mu \sqrt{1+\mu^{2}}$

- Watch Video Solution

9. A man standing on the edge of the swimming pool looking at a stone lying at the bottom of the pool. The depth of the swimming pool is equal to h . At what distance from the surface of water is the image of the stone formed if the line of vision makes an angle θ with the normal to the surface?

- Watch Video Solution

10. In a river 2 m deep a water level measuring post embedded into the river stand vertically with 1 m of
if above the water surface.If the angle of inclination of sum above the horizon is 30°, calculate the
length of the post on the bottom surface of river , (μ for water $=4 / 3$)
3.44 m

- Watch Video Solution

11. A concave mirror of radius of curvature one meter is placed at the bottom of a tank of water.

The mirror forms an image of the sun when it is directly overhead. Calculate the distance of the images from the mirror for (a) 80 cm and (b) 40 cm of water in the tank ($\mu=4 / 3$ for water)
12. A small object is placed at the centre of the bottom of a cylindrical vessel of radius 3 cm and height 4 cm filled completely with water. Consider the ray leaving the vessel through a corner. Suppose this ray and the ray along the axis of the vessel are used to trace the image. Find the apparent depth of the image and the ratio of real depth to the apparent depth under the assumptions taken. Refractive index -of water $=1$ 33.

1. A spherical surface S separates two media 1 and 2 as shown in figure . Find where an object O is placed in medium -I so that the light rays from object after refraction becomes parallel to optic of this system

240 cm
2. A glass sphere of radius 5 cm has a small bubble at a distance 2 cm from its centre. The bubble is viewed along a Diameter of the sphere from the side on which it lies.How far from the surface will it appear.Refractive index of glass is 1.5
2.5 cm behind the surface

- Watch Video Solution

3. A ray is incident on a glass sphere as shown.The opposite surface of the sphere is partially silvered .If the net deviation of the ray transmitted at the partially silvered surface is $1 / 3^{r d}$ of the net
deviation suffered by the ray reflected at the partially silvered surface(after emerging out of the sphere).Find the refractive index of the sphere.

- Watch Video Solution

4. A parallel incident beam falls on a solid glass sphere at near normal incidence.Show that the image in terms of the index of refractive μ and the
sphere of radius R is given by
$\frac{R(2-\mu)}{2(\mu-1)}$

- Watch Video Solution

5. A hollow sphere of glass of inner and outer radii R and $2 R$ respectively has a small mark on its inner surface. This mark is observed from a point outside the sphere such that the centre of the sphere lies in between. Prove that the mark will appear nearer

$$
\begin{aligned}
& \text { than it really it, by a distance } \\
& (\mu-1)(R) /(3 \mu-1)
\end{aligned}
$$

6. A transparent sphere of radius R ahs a cavity of
radius $R / 2$ as shown in figure,. Find the refractive index of the sphere if a parallel beam of light falling on left sureface focuses at point P.

7. A ray incident at a point at an angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and refracted at the farther surface of the sphere. The angle between the reflected and refracted rays at this surface is:

- Watch Video Solution

8. A glass sphere $(\mu=1.5)$ with a radius of 15.9 cm
has a tiny air bubble 5 cm its centre.This sphere is
viewed looking down along the extended radius
containing the bubble.What is the apparent depth
of the bubble below the sirface of the sphere?
8.57 cm from top

- Watch Video Solution

9. A vertical beam of light of cross sectional radius
R
$\frac{R}{2}$ is incident symmetrically on the curved surface of a glass hemisphere of refractive index $\mu=\frac{3}{2}$. Radius of the hemisphere is R and its base is on a horizontal table. Find the radius of luminous spot formed on the table. $\sin 20^{\circ}=\frac{1}{3} \quad$ and $\sin 80^{\circ}=0.98$
10. Figure shows a fish bowl of radius 10 cm in which along a diametrical line a fish F is moving at speed $2 \mathrm{~mm} / \mathrm{sec}$. Find the speed of fish as observed by an observer from outside along same line when fish is at a distance 5 cm from the centre of bowl to right of it as shown in figure

$3.84 \mathrm{~mm} / \mathrm{s}$
11. Figure shows an irregular block of material of refractive indec $\sqrt{2}$. A ray of light strikes the face
$A B$ as shown. After refraction, it is incident on a spherical surface CD of radius of curvature 0.4 m and enters a medium of refractive index 1.514 to meet $P Q$ at E. Find the distance $O E$ up to two places of decimal.

- Watch Video Solution

Practive Exercise 5.5

1. A glass prism of angle 72° and refractive index 1.66 is immersed in a liquid of $\mu=1.33$. Calculate the angle of minimum deviation.

- Watch Video Solution

2. In figure shown find the angle of incidence of the
light ray on face $A B$ of the prism for which light will reach face AC at incidence angle 60°.

$\left[90^{\circ}\right]$

D Watch Video Solution

3. A ray of light is incident on a glass slab at grazing incidence. The refractive index of the material of the slab is given by $\mu=\sqrt{(1+y)}$. If the thickness of the slab is d, determine the
equation of the trajectory of the ray inside the slab
and the coordinates of the point where the ray
exits from the slab. Take the origin to be at the point of entry of the ray.

$$
\left[y=\frac{x^{2}}{4}\right]
$$

D Watch Video Solution

4. A point source of light is placed directly below the surface of a lake at a distance h from the surface. Find the area surface of a lake at a distance h from the surface. Find the area on water
from which the light will come out from water. $\left[\frac{\pi h^{2}}{\left(\mu^{2}-1\right)}\right]$

- Watch Video Solution

5. A ray of light incident normally on one of the faces of a right-angle isosceles prism is found to be totally reflected as shown in the figure. What is the minimum value of the refractive index of the material of the prism? When the prism is immersed in water, trace the path of the emergent ray for the same incident ray, indicating the values of all the
angles $\left(\mu_{\omega}=4 / 3\right)$.

6. Figure.. Shows a triangular prism of refracting angle 90°. A ray of light incident at face $A B$ at an angle θ_{1}, refracts at point Q with an angle of refraction 90°.
a. What is the regractive index of the prism in terms of θ_{1} ?
b. What is the maximum value that the refractive inde can have?
c. What happens to the light at Q if the incident angle at Q is (i) increased slightly, and (ii) decrease
slightly?

- Watch Video Solution

7. On one face of an equilateral prism a light rays strikes normally. If its $\mu=\frac{3}{2}$, find the angle between incident ray and the ray that leaves the prism.
$\left[60^{\circ}\right]$

D Watch Video Solution

8. A light ray composed of two monochromatic components passes through a trihedral prism with refracting angle $\theta=60^{\circ}$. Find the angle $\Delta \alpha$ between the components of the ray after its passage through the prism if their respective indies of refraction are equal to 1.515 and 1.520 . the prism is oriented to provide the least deflection angle.

- Watch Video Solution

9. A parallel beam of light falls normally on the first face of a prism of small angle .At the second face it is partly reflected,the reflected beam striking at the
first face again, and emerging from it in a direction making an angle $6^{\circ} 30$ with the reversed direction of the incident beam. The refracted beam is found to have undergone a deviation of $1^{\circ} 15^{\prime}$ from the original direction.Find the refractive index of the glass and the angle of the prism.
10. A ray of light is incident at an angle of 60° on the face of a prism having refracting angle 30°.

The ray emerging out of the prism makes an angle
30° with the incident ray. Show that the emergent ray is perpendicular to the face through which it emerges and calculate the refractive index of the material of prism.

- Watch Video Solution

11. The refracting angle of a glass prism is 30°. A ray is incident onto one of the faces perpendicular to it. Find the angle δ between the incident ray and
the ray that leaves the prism. The refractive index of glass is $\mu=1.5$.

- Watch Video Solution

12. A ray of light travelling in air is incident at grazing angle (incident angle $=90^{\circ}$) on a long rectangular slab of a transparent medium of thickness $t=1.0$ (see figure). The point of incidence is the origin $A(O, O)$.The medium has a variable index of refraction $n(y)$ given by : $n(y)=\left[k y^{3 / 2}+1\right]^{1 / 2}$,where $\mathrm{k}=1.0 m^{-3 / 2}$.the refractive index of air is $1.0^{`}$

(i) Obtain a relation between the slope of the trajectory of the ray at a point $B(x, y)$ in the medium and the incident angle at that point
(ii) obtain an equation for the trajectory $y(x)$ of the ray in the medium.
(ii) Determine the coordinates (x_{1}, y_{1}) of the point P.where the ray the ray intersects upper surface of the slab -air boundary.

Indicate the path of the ray subsequently.

- Watch Video Solution

Practive Exercise 5.6

1. A point source of light is kept at a distance of

15 cm from a converging lens,on its optical axis.The
focal length of the lens is 10 cm and its diameter is
3 cm , A screen is placed on the other side of the
lens ,perpendicular to the axis of lens,at a distance
20 cm from it.Then find the area of the illuminated part of the screen?
2. A 5.0 diopter lens forms a virtual image which is

4 times the object placed perpendicularly on the principal axis of the lens. Find the distance of the object from the lens.

- Watch Video Solution

3. A point object is placed at a distance of 25 cm from a convex lens of focal length 20 cm . If a glass
slab of thickness t and refractive index 1.5 is
inserted between the lens and the object, the image is formed at infinity. The thickness t is
4. A convex lens of focal length 20 cm and a concave lens of focal length 10 cm are placed 10 cm apart with their principal axes coinciding. A beam of light travelling parallel to the principal axis and having a beam diameter 5.0 mm , is incident on the combination. Show that the emergent beam is parallel to the incident one. Find the beam diameter of the emergent beam.

- Watch Video Solution

5. A convex lens of focal length 20 cm is placed 10 cm in front of a convex mirror or radius of curvature 15 cm . Where should a point object be placed in front of the lens so that it images on to itself?

- Watch Video Solution

6. A converging lens of focal length 20 cm is separated 8 cm from a diverging lens of focal
length 30 cm . A parallel beam of light falls on converging lens and after passing through diverging lens focussed at point P. Find the
location of point P. Repeat the calculation for the case when the parallel beam first falls on diverging
lens.
[4.2 cm from convex lens]

- Watch Video Solution

7. Two symmetric double convex lenses A and B
have same focal length but the radii of curvature differ so that $R_{A}=0.9 R_{B}$. If refractive index of A is 1.63 find the refractive index of B.
8. An object is placed at 20 cm left of the convex
lens of focal length 10 cm . If a concave mirror of focal length 5 cm is placed at 30 cm to the right of the lens, find the magnification and the nature of the final image. Draw the ray diagram and locate the position of the final image.
[At the object and of same size]

D Watch Video Solution

9. In the figure- it is shown,the focal length f of the
two thin convex lenses is the same. They are separated by a horizontal distance $3 f$ and their
optical axes are displaced by a vertical separation
' $d^{\prime}(d \ll f)$ as shown. Taking the origin of coordinates O at the centre of the first lens, find the x and y coordinates of the point where aparallel beam of rays coming from the left finally gets focussed ?
((5f, 2d)]

10. A convex lens of focal length 10 cm is placed 30
cm in front of a second convex lens also of th esame focal length. A plane mirror is placed after the two lenses. Where should a point object be placed in front of the first lens so that it imagees on to itself?

- Watch Video Solution

11. A small pin of size 5 mm is placed along principal axis of a convex lens of focal length 6 cm at a distance 11 cm from the lens. Find the size of
image of pin.
[7.2 mm]

- Watch Video Solution

12. An object is kept at a distance of 16 cm from a
thin lens and the image formed is real. If the object
is kept at a distance of 6 cm from the lens, the image formed is virtual. If the sizes of the images
formed are equal, the focal length of the lens will be

- Watch Video Solution

13. An object is placed midway between the lens and the mirror as shown in figure. The mirror's radius of curvature is 20.0 cm and the lens has a focal length of -16.7 cm . Considering only the rays that leaves the object and travels first toward the mirror, locate the final image formed by this system. Is this image real or virtual ? Is it up right or inverted ? What is the over all magnification ?
[25.3 cm from mirror, virtual, erected, 8.048]

14. Two thin convex lenses of focal lengths f_{1} and f_{2} are separated by a horizontal distance d (where $d<f_{1}, d<f_{2}$) and their centres are displaced by a vertical separation \triangle as shown in the fig.

Taking the origin of coordinates O , at the centre of
the first lens the x and y coordinates of the focal
point of this lens system, for a parallel beam of
rays coming form the left, are given by:

- Watch Video Solution

15. A convex lens of focal length 15 cm and a concave mirror of focal length 30 cm are kept with their optic axis PQ and RS parallel but separated in vertical directiion by 0.6 cm as shown. The distance between the lens and mirror is 30 cm . An upright
object $A B$ of height 1.2 cm is placed on the optic axis PQ of the lens at a distance of 20 cm from the
lens. if $A^{\prime} B^{\prime}$ is the image after refraction from the lens and the reflectiion from the mirror, find the distance of $A^{\prime} B^{\prime}$ from the pole of the mirror and obtain its magnification. Also locate positions of A' and B^{\prime} with respect to the optic axis RS.

- Watch Video Solution

16. A convex lens of focal length 15 cm is placed in
front of a convex mirror. Both are coaxial and the
lens is 5 cm from the apex of the mirror. When an object is placed on the axis at a distance of 20 cm from the lens, its is found that image coincides with the object. Calculate the radius of curvature of mirror.
[55cm]

D Watch Video Solution

Practive Exercise 5.7

1. A thin lens of focal length +10.0 cm lies on a horizontal plane mirror. How far above the lens should an object be held if its image is to coincide with the object?

- Watch Video Solution

2. A concave-convex lens is placed on a horizontal
table with its convex surface polished to make it reflecting as shown in figure. If radii of curvature of
its two surfaces are 30 cm and 60 cm respectively
find the position on its principal axis where a point object should be placed to obtain its image on
itself. $\left(\mu_{\text {lens }}=\frac{3}{2}\right)$

[24]

- Watch Video Solution

3. A thin plano-convax lens fits exactly into a plano concave lens with their plane surface parallel to each other as shown in the figure.the radius of the
curvature of the curved surface $R=30 \mathrm{~cm}$ The lens are made of different material having refractive index $\mu_{1}=\frac{3}{2}$ and $\mu_{2}=\frac{5}{4}$ as shown in the figure

(i) if plane surface of the plano -convex lens is
silvered,then calculate the equivalent focal length
of this system and also calculate the nature of this equivalent mirror .
(ii) An object having transverse length 5 cm is placed on the axis of equivalent mirror(in part1) atadis \tan ce 15 cm from the equivalent mirror along principal axis.Find the transverse magnification produced by equivalents mirror.

- Watch Video Solution

4. Two identical thin converging lenses are kept in contact at a distance 12.5 cm from an object. If image produced is 4 times enlarged then what is
the optical power of each lens.
[5D]

- Watch Video Solution

5. A object is placed at a distance of 20 cm to the left of and on the axis of a convex lens L_{1} of focal
length 25 cm . A second convex lens L_{2} of focal
length 20 cm is placed coaxially to the right of the lens L_{1} at a distance of 10 cm from L_{1}. Find the position of the image and its magnification.

$$
\left[24.4 \mathrm{~cm}, \frac{10}{9}\right]
$$

6. When a lens is inserted between an object and a screen which are fixed distance apart the size of the image is either 6 cm or $\frac{2}{3} \mathrm{~cm}$. Find size of the object

- Watch Video Solution

7. A point source of light S is placed at the bottom of a vessel containing a liquid of refractive index
$5 / 3$. A person is viewing the source from above the
surface. There is an opaque disc of radius 1 cm
floating on the surface. The centre of disc lies
vertically above the source O. The liquid from the vessel is gradually drained out through a tap. What is the maximum height of the liquid for which the source cannot be seen at all.

- Watch Video Solution

Practive Exercise 5.8

1. Two thin prisms are combined to form an achromatic combination. For prism I,
$A=4^{\circ}, \mu_{R}=1.35, \mu_{Y}=1.40, \mu_{v}=1.42 \quad$ For
prism II, $\mu_{R}^{\prime}=1.7, \mu_{Y}^{\prime}=1.8$ and $\mu_{V}^{\prime}=1.9$. Find
the prism angle of prism II and the net mean deviation.

- Watch Video Solution

2. The index of refraction of heavy fint glass is 1.68 at $434 n m$ and 1.65 at 671 nm . Calculate the difference in the angle of deviation of blue $(434 \mathrm{~nm})$ and red $(671 \mathrm{~nm})$ light incident at 65° on one side of a heavy flint glass prism with apex angle 60°.
3. The dispersive powers of crown and flint glasses are 0.03 and 0.05 respectively. The refractive indices for yellow light for these glasses are 1.517 and 1.621 respectively. It is desired to form an achromatic combination of prism of crown and flint glasses which can produce a deviation of 1° in the yellow ray. Find the refracting angles of the two prisms needed.

- Watch Video Solution

4. A crown glass prism of angle of 5° is to be
combined with a flint glass prism in such a way
that the mean ray passes undeviated, find (a) the angle of the fint glass prism needed and (b) the angular dispersion produced by the combination when white light goes through it. Refractive indices
for red, yellow and violet light are 1.514, 1.517 and 1.523 respectively for crown glass and $1.613,1.620$ and 1.632 for flint glass.

- Watch Video Solution

5. The prism of a spectrometer has a refracting angle 60° and is made of glass whose refractive indices for red and violet are respectively 1.514 and
1.530.A while source is used and the instrument is set to give minimum deviation for red and the.

Determine (a) angle of incidence, (b) the angle of the emergence for violet light and (c) the angular width of spectrum
$49^{\circ} 12^{\prime},(b) 50^{\circ} 38^{\prime},(c) 1^{\circ} 26$

- Watch Video Solution

6. An equiconvex lens of crown glass abd an equiconvex lens of flint glass make an achromatic system. The radius of curvature of convex lens is
0.54 m . If the focal length of the combination for
the mean colour is 1.54 m and the refractive indices
for crown glass are $\mu_{R}=1.53$ and $\mu_{V}=1.55$, find the dispersive power of the flint glass 0.055

- Watch Video Solution

7. An achromatic lens -double is formed by in contact a convex lens of focal length 20 cm amd a concave lens of focal length 30 cm . The dispersive of the meterial of the convex lens is 0.18
(a) Determine the dispersive power of the meterial of the concave lens
(b) Calculate the focal of the lens-doublet
0.27 (b) 60 cm

- Watch Video Solution

Practive Exercise 5.9

1. A projector lens has a focal length $10 \mathrm{~cm} . \mathrm{lt}$ throws an image of a $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ slide on a screen

5 mater from the lens.Find (i) the size of the screen
and (ii) the ratio of illumination of the slide and of
the picture on the screen

2401
2. The focal length of the objective of a microscope
is $\int_{0}=3 \mathrm{~mm}$ and of the eyepiece $\int_{e}=5 \mathrm{~cm}$. An object the magnification of the microscope of 3.1 mm from the objective.Find the magnification of the microscope for a normal eye, if the final image is produced at a distance 25 cm from the eye or eyepiece .Also final the separation between the lenses of microscope 18013.46 cm

- Watch Video Solution

3. The optical powers of the objective and the ocular of a microscope are equal to 100 and $20 D$ respectively. The microscope magnification is equal to 50 . What will the magnification o fthe microscope be when the distance between the objected and the ocaular is increased by 2.0 cm ?

- Watch Video Solution

4. The focal lengths of the objective and eye piece of an astronomical telescope are 25 cm and 2.5 cm respectively. The telescope is fucussed on an object $1.5 m$ from objective, the final image being formed

25 cm from eye of the observer. Calculate the length of the telescope.

- Watch Video Solution

5. The eyepiece and objective of a miroscope, of focal length 0.3 m and 0.4 m respectively, are seprarated by a distence of 0.2 m The eyepiece and the objective are to be interchanged such that the angular magnification of the instrument remains
sane.What is the new separation between the lenses ?
0.2575 m

Discussion Question

1. What is the function of the circular stop at the focal plane of the objective of a telescope?

Givereasons.

- Watch Video Solution

2. A beam of white lighe passing through a hollow prism gives no spectrum.
3. The magnifying power of a telescope in normal adjustment is greater than that when it is focussed for least distance ofdistinct vision. Is this true or false? Give reasons.

- Watch Video Solution

4. Can you think of a specific optical set up with a trihedral prism (no other device)in which a light ray passes undeviated through theprism. Think and draw the ray diagram.
5. Can a real image be taken on a screen ?

- Watch Video Solution

6. Can you obtain image produced by a convexlens on a screen without using any other device.

- Watch Video Solution

7. It is difficult to thread a needle with one eye closed. Why?

- Watch Video Solution

8. If a single lens isused to form an image, it is
better to use a lens of large diameter, in which the outer parts near the rim are blocked off. Explain.
9. What is the best position of the eye for viewing an object through a microscope?

- Watch Video Solution

10. Can the optical length between two points
everbeless than the geometrical path between these points?
11. Can two lenses of the same material produce achromatism when placed in contact? Explain.

- Watch Video Solution

12. Why is the aperture of objective lens of a telescope taken large ?

- Watch Video Solution

13. A iiver inside the sea observes a ship on the
water surface. Does he finds the ship taller or
smaller then its actual height above the water
surface. Give reason and draw ray diagram to support your logic.

- Watch Video Solution

14. Why does the moon, purely white during the day, have a yellowish hue after sunset ?

- Watch Video Solution

15. How focal length of a spherical mirror changes
when placed in different media.

- Watch Video Solution

16. An air bubble inside water broadly behaves as a concave lens. Is the true or false.

D Watch Video Solution

17. Why does an aeroplane flying at a great altitude not cast a shadow on the earth ?

- Watch Video Solution

18. The magnifying power of a telescope in normal adjustment is greater than that when it is focussed for least distance ofdistinct vision. Is this true or false? Give reasons.

D Watch Video Solution

19. When sun rays pass through a small hole in the
foliage at the top of a high tree, they produce an elliptical spot of light on the ground. Explain why.

When will the spot be a circle?
20. If a mirror reverses right and left, why doesn't it reverse up and down?

- Watch Video Solution

21. Is it possible to photograph a virtual image?

- Watch Video Solution

22. Is it possible for a given lens to act as a
converging lens in one medium, and as a diverging
lens in another?

Watch Video Solution

23. A camera lens is marked $f / 1.8$. What is the meaning of this mark?

- Watch Video Solution

24. Some motor cars have additional yellow headlights. Why?

- Watch Video Solution

25. Why are lenses often coated with thin films of transparent material ?

- Watch Video Solution

26. If these are scratches on the lens of a camera, they do not appear on a photograph taken with the camera. Explain. Do the scratches affect the photograph at all ?

- Watch Video Solution

27. The sun seems to rise before it actually rises and it seems to set long after it actually sets. Explain why.

- Watch Video Solution

28. Does the focal length ofa lens depend on the medium in which the lens is immersed? Is it possible for a lens to act as aconverging lens in one medium and a diverging lens in another medium?
29. Explain why the use of goggles enables an underwater swimmer to see clearly under the surface of a lake.

- Watch Video Solution

Conceptual MCQs Single Option Correct

1. A beaker containing liquid is placed on a table,
underneath a microscope which can be moved
along a vertical scale. The microscope is focused,
through the liquid onto a mark on the table when
the reading on the scale is a. It is next focused on the upper surface of the liquid and the reading is b.

More liquid is added and the observations are repeated, the corresponding readings are c and d.

The refractive index of the liquid is
A. $\frac{d-b}{d-c-b+a}$
B. $\frac{d-c-b+a}{d-b}$
C. $\frac{b-d}{d-c-b+a}$
D. $\frac{d-c-b+a}{b-d}$
2. An insect of negligible mass is sitting on a block of mass M, tied with a spring of force constant K.

The block performs simple harmonic motion with amplitude A infront of a plane mirror placed as
shown. The maximum speed of insect relative to its
image will be

A. $A \sqrt{\frac{k}{M}}$
B. $\frac{A \sqrt{3}}{2} \sqrt{\frac{k}{M}}$
C. $a \sqrt{3} \sqrt{\frac{k}{M}}$
D. $2 A \sqrt{\frac{M}{k}}$

- Watch Video Solution

3. Inside a solid glass sphere of radius R, a point source of light lies at a distance $x(x<R)$ from centre of the sphere. The solid is surrounded by air of refractive index 1. The maximum angle of incidence for rays incident on the spherical glass air interface directly from the point soure is:
A. $\cos ^{-1} \cdot \frac{x}{R}$
B. $\sin ^{-1} \cdot \frac{x}{(R)}$
C. $\cos ^{-1} \sqrt{\frac{x}{R}}$
D. $\sin ^{-1} \sqrt{\frac{x}{R}}$

D Watch Video Solution

4. Two plane mirrors of length L are separated by
distance L and a man M_{2} is standing at distance L
from the connecting line of mirrors as shown in
figure. A man M_{1}, is walking in a straight line at
distance 2 L parallel to mirrors at speed u,then
man at O will be able to see image of M_{1},for total
time:

$$
\text { A. } \frac{4 L}{u}
$$

B. $\frac{3 L}{u}$
C. $\frac{6 L}{u}$
D. $\frac{9 L}{u}$

- Watch Video Solution

5. A point source has been placed as shown in the
figure-. What is the length on the screen that will
receive reflected light from the mirror ?

A. 2 H
B. 3 H
C. H
D. None of these
6. A thin lens focal length f_{1} and its aperture has diameter d. It forms an image of intensity I. Now the central part of the aperture up to diameter $\frac{d}{2}$ is blocked by an opaque paper. The focal length and image intensity will change to
A. $f / 2, I / 2$
B. $f, I / 4$
C. $2 f / 4, I / 2$
D. $f, 3 I / 4$
7. A ray of light falls on a plane mirror. When the mirror is turned, about an axis at right angles to the plane of mirror by 20° the angle between the incident ray and new reflected ray is 45°. The angle between the incident ray and original reflected ray was therefore.
A. 65°
B. 25°
C. 25° and 65°
D. 45°

D Watch Video Solution

8. In the diagram shown, light is incident on the interface between media 1 (refractive index n_{1}) and

2 (refractive index n_{2}) at angle slightly greater than the critical angle, and is totally reflected. The light is then also totally reflected at the interface between media 1 and 3 (refractive index n_{3}), after which it travels in a direction opposite to its initial
direction, The media must have a refractive indices
such that.

A. $\mu_{1}-\mu_{2}>\mu_{3}$
B. $\mu_{1}^{2}-\mu_{2}^{3}>\mu_{2}^{2}$
C. $\mu_{1}^{2}-\mu_{2}^{2}>\mu_{3}^{2}$
D. $\mu_{1}^{2}+\mu_{2}^{2}>\mu_{3}^{2}$

D Watch Video Solution

9. The observer ' O ' sees the distance $A B$ as infinitely large. If refractive index of liquid is μ_{1} and that of glass is μ_{2}, then $\frac{\mu_{1}}{\mu_{2}}$ is :

A. 2
B. 43467
C. 4
D. None of these

- Watch Video Solution

10. An infinitely long reactangular strip is placed on principal axis of a concave mirror as shown in figure. One end of the strip coincides with centre of curvature as shown. The hright of rectangular strip is very small in comparison to focal length of the mirror. Then the shape of image of strip formed by
concave mirror is

A. Rectangle
B. Trapezium
C. Triangle
D. Square
11. A concave spherical surface of radius of
curvature 10 cm separates two mediums X and Y
of refractive indices $4 / 3$ and $3 / 2$ respectively.
Centre of curvature of the surfaces lies in the medium X. An object is placed in medium X.
A. Image is always real
B. Image is real if the object distance is greater than 90 cm
C. Image is always virtual
D. Image is virtual only if the object distance is
less than 90 cm

- Watch Video Solution

12. In the figure. shown- a slab of refractive index $\frac{3}{2}$ is movedat speed $1 \mathrm{~m} / \mathrm{s}$ towards a stationary observer. A point ' P ' is observed by the observer with the help of paraxial rays through the slab. Both 'O' and observer lie in air. The velocity with which the image will moveis:

A. $2 \mathrm{~m} / \mathrm{s}$ towards left
B. $\frac{4}{3} \mathrm{~m} / \mathrm{s}$ towards left
C. $3 \mathrm{~m} / \mathrm{s}$ towards left
D. Zero

D Watch Video Solution

13. Light passes from air into flint glass with index of refraction n . The angle of incidence must the
light have forthe component of its velocity
perpendicular to the interface to remain same in both mediums is:
A. $\sin ^{-1} n$
B. $\sin ^{-1}(1 / n)$
C. $\cos ^{-1} n$
D. $\tan ^{-1} n$

- Watch Video Solution

14. In the figure shown If the object O moves towards the palne mirror ,then the image I(which is
formed after successive reflections from M_{1}, M_{2}
respectively will move:

A. Always towards right
B. Always towards left
C. Depends onposition of O
D. Cannot be determined
15. A person $A B$ of height 170 cm is standing in front of a plane mirror. His eyes are at height 164
cm . At what distance from P should a hole be made
in mirror so that he cannot see his hair?

A. 167 cm
B. 161 cm

C. 163 cm

D. None of these

- Watch Video Solution

16. In the figure shown, blocks P and Q are in contact but do not stick to each other. The lower
face of P behaves as a plane mirror. The springs
are in their natural lengths. The system is released
from rest. Then the distance between P and Q
when Q is at the lowest point first time will be

A. $\frac{2 m g}{K}$
B. $\frac{4 m g}{K}$
C. $\frac{3 m g}{K}$
D. 0

- Watch Video Solution

17. A point object is moving along principal axis of concave mirror with uniform velocity towards pole.

Initially the object is at infinite distance from pole right side of the mirror as shown. Before the object collides with mirror, the number of times a which the distance between object and its image is 40 cm

A. One time
B. Two times
C. Three times
D. Data insufficient
18. In the figure shown-, the maximum number of reflections light rays will undergo are:

A. 2
B. 3
C. 4
D. 1

- Watch Video Solution

19. A convex lens is cut into twoparts in different ways that arearranged in four manners, as shown.

Which arrangement will give maximum optical power?

- Watch Video Solution

20. A parallel beam of light passes parallel to the principal axis and falls on one face of a thin convex lens offocal length f and after two internal reflections from the second face forms a real image. The distance of image from lens if the reflactive index of material of lens is 1.5 :
A. $f / 7$
B. $f / 2$
C. 7 f
D. None of these

- Watch Video Solution

21. An object and a plane mirror are shown in
figure. Mirror is moved with velocity V as shown.

The velocity of image is :

Object (fixed) Mirror

A. $2 V \sin \theta$
B. 2 V
C. $2 V \cos \theta$
D. None of these
22. A prism of angle A and refractive index 2 is surrounded by medium of refractive index $\sqrt{3}$. A ray is incident on side PQ at an angle of incidence
$i\left(0 \leq i \leq 90^{\circ}\right)$ as shown in the figure-. The refracted ray is then incident on side PR of prism.

The minimum angle A of prism for which ray incident on side PQ does not emerge out of prism from side PR (for any value of i) is:

A. 30°
B. 45°
C. 60°
D. 120°

- Watch Video Solution

23. Two plane mirrors are joined together as shown. Two point objects A and B are placed symmetrically such that $O A=O B=d .[A O B$ is a straight line]
(a) If the images of A and B coincide find θ (call it $\left.\theta_{0}\right)$.
(b) Keeping the position of objects unchanged the angle between the two mirrors is increased to $\theta=\frac{4}{3} \theta_{0}$. Now find the distance between the images of A and B.

$$
\text { A. } \theta=60^{\circ}
$$

$$
\text { B. } \theta=90^{\circ}
$$

$$
\text { C. } \theta=30^{\circ}
$$

$$
\text { D. } \theta=45^{\circ}
$$

- Watch Video Solution

24. The position of a real point object and its point image are as shown in the figure-. $A B$ is the
principal axis. This can be achieved by using :

A. Convex mirror
B. Concave mirror
C. Plane mirror only
D. Convex mirror only
25. The image of the moon is produced bya convex
lens of focal length f. The area of image is directly proportional to:
A. f
B. f^{2}
C. $1 / f$
D. $1 / f^{2}$
26. A converging lens of focal length 20 cm and diameter 5 cm is cut along the line $A B$. The part of the lens shown shaded in the diagram is now used to form an image of a point Pplaced 30 cm away from it on the line $X Y$. Which id perpendicualr to the plane of the lens.The image of P will be formed.

A. 0.5 cm above XY
B. 1 cm below XY
C. on XY
D. 1.5 cm below XY

- Watch Video Solution

27. A man stands on a glass slab of height h and inside an elevator accelerated upwards with 'a'. μ_{g}

If is refractive index of glass then the bottom of
the slab appears to have shifted with respect to the man by a distance,
A. less then h / μ_{g}
B. greater than h / μ_{g}
C. equal to h / μ_{g}
D. can't be said

- Watch Video Solution

28. When an object is at a distance u_{1} and u_{2} from the optical centre of a lens, a real and virtual image are formed respectively, with the same magnification.The focal length of lens is:
A. $\left(u_{1}+u_{2}\right)$
B. $u_{1}+\frac{u_{2}}{2}$
C. $\frac{u_{1}+u_{2}}{2}$
D. $\frac{u_{1}-u_{2}}{2}$

- Watch Video Solution

29. A liquid of refractive index 1.33 is placed
between two identical plano-convex lenses, with refractive index 1.50 . Two possible arrangement P
and Q are shown in figure-. The system is:

P

Q
A. Divergentin P, convergent in Q
B. Convergentin P, divergent in 2
C. Convergent in both
D. Divergent in both
30. Two particles $\mathrm{A} \& \mathrm{~B}$ of mass m_{1} and m_{2} respectively start moving from O with speeds v_{1}, and v_{2}. A moves towards the plane mirror and B moves parallel to mirror horizontally. The mirror is in y-z plane. The absolute-speed of image of centre
of mass of the system (image of A + image of B)is:

A. Zero
B. $\frac{m_{1} m_{2}}{m_{1}}$
C. $\frac{m_{2} m_{2}}{m_{1}}$
D. None of these

- Watch Video Solution

31. A mango tree is at the bank of a river and one of
the branch of tree extends over the river. A tortoise
lives in the river. A mango falls just ono the tortoise. The acceleration of the mango falling from tree as it appears to the tortoise is (refractive index of water is $4 / 3$ and the tortoise is stationary)
A. g
B. $\frac{3 g}{4}$
C. $\frac{4 g}{3}$

D. None of these

- Watch Video Solution

32. A plane mirror having a mass m is tied to the free end of a mass less spring of spring constant k.

The other end of the spring is attached to a wall.
The spring with the mirror held vertically to the floor on which it can slide smoothly. When the spring is at its natural length, the mirror is found to be moving at a speed of $\mathrm{vcm} / \mathrm{s}$. The separation
between the images of a man standing before the mirror, when the mirror is in its extreme positions:

A. $v \sqrt{\frac{m}{k}}$
B. $\frac{v}{2} \sqrt{\frac{m}{k}}$
C. $2 v \sqrt{\frac{m}{k}}$
D. $4 v \sqrt{\frac{m}{k}}$
33. An observer can see through a pin-hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3 h and its radius h .

When the beaker is filled with a liquid up to a height 2 h , he can see the lower end of the rod.

Then the refractive index of the liquid is

A. $5 / 2$
B. $\sqrt{5 / 2}$
C. $\sqrt{3 / 2}$
D. $3 / 2$

- Watch Video Solution

34. A ray of light is incident on the left vertical face of glass cube of refractive index n_{2}, as shown in figure. The plane of incidence is the plane of the page, and the cube is surrounded by liquid (refractive index $=n_{1}$). What is the largest angle
of incidence θ_{1} for which total internal reflection occurs at the top surfaces?
A. $\sin 1=\sqrt{\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2}-1}$
B. $\sin 1=\sqrt{\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2}+1}$
C. $\sin 1=\sqrt{\left(\frac{\mu_{1}}{\mu_{2}}\right)^{2}+1}$
D. $\sin 1=\sqrt{\left(\frac{\mu_{1}}{\mu_{2}}\right)^{2 .}+1}$
35. Two plane mirrors are inclined to each other at an angle θ. A ray of light is reflected at one
mirror and then at the other. Find the total deviation of the ray.
A. $360^{\circ}=2 \theta$
B. $360^{\circ}+2 \theta$
C. $180^{\circ}-2 \theta$
D. $180^{\circ}+2 \theta$
36. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror and parallel to the second is reflected from the second mirror parallel to the first mirror. Determine the angle between the two mirrors:
A. 60°
B. 30°
C. 90°
D. 180°
37. A slab of high quality flat glass, with parallel
faces, is placed in the path of a parallel light beam before it is focussed to a spot by a lens. The glass
is rotated slightly back and forth from the dotted centre about an axis coming out ofthe page, as shown in the diagram. According to ray optics the effect on the focussed spot is:

A. There is no movement of the spot
B. The spot moves towards then away from the
lens
C. The spot moves up and down parallel to the
lens
D. The spot moves along a line making an angle a (neither zero nor 90°) with axis of lens

- Watch Video Solution

38. A parallel glass slab of refractive index $\sqrt{3}$ is placed in contact with an equilateral prism of
refractive index $\sqrt{2}$. A ray is incident on left surface of slab as shown. The slab and prism combination is surrounded by air. The magnitude of minimum possible deviation of this ray by slab-prism combination is:

A. 30°
B. 45°
C. 60°
D. $60^{\circ}-\sin ^{-1} \sqrt{\frac{2}{3}}$

Answer: A

- Watch Video Solution

39. The mirror of length L moves horizontally as
shown in the figure with a velocity v . The mirror is
illuminated bya point source of light ' P ' placed on the ground. The rate at which the length of the
light spot on the ground increases is :

A. v
B. Zero
C. 2 v
D. 3 v
40. Monochromatic light rays parallel to x-axis strike a convex lens $A B$ of refractive index 0.5 . If the lens oscillates such that $A B$ tilts upto a small angle
θ (in radian) on either side of y-axis, then find the distance between extreme positions of oscillating
image:

A. $f \sec \theta$
B. $f \sec ^{2} \theta$
C. $f(\sec \theta-1)$
D. The image will not move
41. The focal length of convex tens is f and the distance of an object from the principal focus is x.

The ratio of the size of the real image to the size of the object is
A. $\frac{(f+x)}{f}$
B. $\frac{f}{x}$
C. $\sqrt{\frac{f}{x}}$
D. $\frac{f^{2}}{x^{2}}$
42. A light ray gets reflected from a pair of mutually
\perp mirrors, not necessarily along axes. The intersection point of mirrors is at origin. The incident light ray is along $y=x+2$. If the light ray strikes both mirrors in succession, then it may get reflected finally along the line:

$$
\begin{aligned}
& \text { А. } y=2 x-2 \\
& \text { B. } y=-x+2 \\
& \text { C. } y=-x-2 \\
& \text { D. } y=x-4
\end{aligned}
$$

- Watch Video Solution

43. A ray is incident on the first prism at an angle of incidence 53° as shown in the figure. The angle between side CA and B'A' for the net deviation by both the prisms to be double of the deviation produced by the first prism, will be:

A. $\sin ^{-1} \cdot \frac{2}{3}+53^{\circ}$
B. $\sin ^{-1} \cdot \frac{2}{3}+37^{\circ}$
C. $\cos ^{-1} \cdot \frac{2}{3}+53^{\circ}$
D. $2 \sin ^{-1} \cdot \frac{2}{3}$

- Watch Video Solution

Numerical MCQs Single Options Correct

1. An equilateral prism deviates a ray through 40°
for two angles of incidence differing by 20°. The
possible angles of incidences is
A. 1.567
B. 1.467
C. 1.5
D. 1.65

- Watch Video Solution

2. two plane mirror L_{1} and L_{2} are parallel to each other and 3 m apart. A person standing x m from the right mirror L_{2} looks into this mirror and sees
a series of images, The distance between the first and second image is 4 m . Then, the value of x is

3. An elevator at rest which is at 10th floor of a building is having a plane mirror fixed to its floor. A particle is projected with a speed $(\sqrt{2}) m / s$ and at
45° with the horizontal as shown in the figure. At the very instant of projection, the cable of the elevator breaks and the elevator starts falling freely. what will be the separation between the particles and is image 0.5 s after the instant of
projection?

A. $0.5 m$
B. 1 m
C. 2 m
D. 1.5 m

- Watch Video Solution

4. A plane mirror is moving with velocity
$4(\hat{i})+4(\hat{j})+8(\hat{k})$. A point object in front of the mirror moves with a velocity
$3(\hat{i})+4(\hat{j})+5(\hat{k})$. Here, \hat{k} is along the normal to the plane mirror and facing towards the object.

The velocity of the image is

$$
\begin{aligned}
& \text { A. }-3 \hat{i}-4 \hat{j}+5 \hat{k} \\
& \text { В. } 3 \hat{i}+4 \hat{j}+11 \hat{k} \\
& \text { С. }-4 \hat{i}+5 \hat{j}+11 \hat{k}
\end{aligned}
$$

D. $7 \hat{i}+9 \hat{j}+3 \hat{k}$

- Watch Video Solution

5. Two plane mirrors $A B$ and $A C$ are inclined at an angle $\theta=20^{\circ}$. A ray of light starting from point P is incident at point Q on the mirror $A B$, then at R on mirror $A C$ and again on S on $A B$. Finally the ray

ST goes parallel to mirror AC. The angle which the ray makes with the normal at point Q on mirror AB

A. 20°
B. 30°
C. 40°
D. 60°
6. A person's eye is at a height of 1.5 m . He stands infront of a $0.3 m$ long palane mirror which is $0.8 m$ above the ground. The length of the image he sees of himself is:
A. 1.5 m
B. 1.0 m
C. 0.8 m
D. 0.6 m
7. A plane mirror of length 8 cm is present near a wall in situation as shown in figure-. Then the length of spot formed on the wall is:

A. 8 cm
B. 4 cm
C. 16 cm
D. None of these
8. An object O is kept in air in front of a thin planoconvex lens of radius of curvature 10 cm . Its refractive index at $3 / 2$ and the medium towards right of the plane surface is water of refractive index $4 / 3$. What should be distance x of the object so that the rays becomes parallel finally?

A. 5 cm
B. 10 cm

C. 20 cm

D. None of these

- Watch Video Solution

9. A diverging lens of focal length 10 cm is placed 10 cm in front of a plane mirror as shown in Fig. Light from a very far away source falls on the lens.

What is the distance of final image?

D Watch Video Solution
10. A fish is near the centre of a spherical water
filled $(\mu=4 / 3)$ fish bowl,A child stands in air ata
distance $2 R(R$ 'is the radius of curvature of the sphere)from the centre of the bowl.At what distance from the centre would the child nose appear to the fish situated at the centrer:
A. 4 R
B. 2 R
C. 3R
D. 4 R

11. An object is placed at a distance of 15 cm from a

 convex lenx of focal length 10 cm . On the other side of the lens, a convex mirror is placed at its focussuch that the image formed by the combination coincides with the object itself. The focal length of the convex mirror is
A. 20 cm
B. 10 cm
C. 15 cm
D. 30 cm
12. Two planoconvex lenses each of the focal length of10cm\&refractive index3/2are placed as shwon .In the space left water (R.I. $=4 / 3$) is filled.Then whole arrangement is in air.The optical power of
the system is(in diopters).

A. 6.67
B. -6.67
C. 33.3
D. 20

D Watch Video Solution

13. The curvature radii of a concavo-convex glass
lens are 20 cm and 60 cm .th convex surface of the lens is silvered .With the lens horizotnal ,the concave surface is filled with water.The focal length of the effective mirror is (μ of glass $=1.5, \mu$ of water= $4 / 3$
A. $90 / 13 \mathrm{~cm}$
B. $80 / 13 \mathrm{~cm}$
C. $20 / 3 \mathrm{~cm}$
D. $45 / 8 \mathrm{~cm}$

- Watch Video Solution

14. A plano-convex lens when silvered on the plane side behaves like a concave mirror of focal length

60 cm . However when silvered on the convex side it
behaves like a concave mirror of focal length 20 cm .
Then the refractive index of the lens
A. $9 / 14$
B. $14 / 9$
C. $17 / 9$
D. None

- Watch Video Solution

15. A prism has refractive index $\sqrt{\frac{3}{2}}$ and refractive
angle 90°. Find the minimum deviation produced
by prism
A. 40°
B. 45°
C. 30°
D. 49°

- Watch Video Solution

16. A certain prism is found to produce a minimum of 38°. It produces a deviation of 44° when the angle of incident is either 42° or 62°. What is the
angle of incidence when it is undergoing minimum deviation?
A. 45°
B. 49°
C. 40°
D. 55°

- Watch Video Solution

17. Light ray is incident on a prism of angle
$A=60^{\circ}$ and refractive index $\mu=\sqrt{2}$.the angle of
incidence at which the emergent ray grazes the surface is given by

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{1-\sqrt{3}}{2}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

D Watch Video Solution

18. A transparent cylinder has its right half polished so as to act as a mirror. A paraxial light ray inciden
from left, that is parallel to the principal to the incident ray as shown. The refractive index n of the material of the cylinder is

A. 1.2
B. 1.5
C. 1.8
D. 2.0

- Watch Video Solution

19. A composite slab consisting of different media is placed in front of a concave mirror of radius of curvature 150 cm as shown in figure., The whole arrangement is immersed in water. Locate the final
image of point object 0 .

A. To the left of Object
B. On the Object
C. To the right of Object
D. Date insufficient to calculate the image position
20. A luminous point object is moving along the principal axis of a concave mirror of focal length 12 cm towards it. When its distance from the mirror is 20 cm its velocity is $4 \mathrm{~cm} / \mathrm{s}$. The velocity of the image in cm / s at that instant is
A. 6, towards the mirror
B. 6, away from the mirror
C. 9, away from the mirror
D. 9, toward the mirror
21. Two blocks each of masses m lie on a smooth table. They are attached to two other masses as shown in figure. The pulleys and strings are light.

An object O is kept at rest on the table. The sides
$A B$ and $C D$ of the two blocks are made reflecting.
The acceleration of two images formed in those two reflecting surfaces with respect to each other is

A. $5 \mathrm{~g} / 6$
B. $5 \mathrm{~g} / 3$
C. $g / 3$
D. $17 \mathrm{~g} / 6$

- Watch Video Solution

22. An opaque sphere of radius a is just immersed in a transparent liquid as shown in figure. A point source is placed on the vertical diameter of the sphere at a distance all from the top of the
sphere.One ray originating from the point source after refraction from the air liquid interface forms tangent to the sphere. The angle of refraction for that particular ray is 30°. The refractive index of the liquid is:

A. $\frac{2}{\sqrt{3}}$
B. $\frac{3}{\sqrt{5}}$
C. $\frac{4}{\sqrt{5}}$
D. $\frac{4}{\sqrt{7}}$

- Watch Video Solution

23. In the figure $A B C$ is the cross-section of a right angled prism and BCDE is the cross-section of a glass slab. The value of theta so that light incident normally on the face $A B$ does not cross the face $B C$ is $\left(\right.$ Given $\left.\sin ^{-1} 3 / 5=37^{\circ}\right)$
A. $\theta \leq 37^{\circ}$
B. $\theta<37^{\circ}$
C. $\theta \leq 53^{\circ}$
D. $\theta<53^{\circ}$

- Watch Video Solution

24. A linear object $A B$ is placed along the axis of a
concave mirror. This object is moving towards the mirror with speed U. The speed of the image of the point A is $4 U$ and the speed of the image of B is
alSO 4 U btu in opposite direction. If the center of
the line $A B$ is at a distance L from the mirror then
find out the length of the object.

25. A small rod $A B C$ is put in water making an angle
6° with vertical. If it is viewed paraxially from above, it will look like bent shaped $A B C^{\prime}$. The angle of bending $\left(\angle C B C^{\prime}\right)$ will be in degree is

$$
\left(n_{w}=\frac{4}{3}\right)
$$

A. 2°
B. 3°
C. 4°
D. 4.5°

- Watch Video Solution

26. It is found that all electromagnetic signals sent
from A towards B reach point C inside the glass
sphere, as shown in figure. The speed of
electromagnetic signals in glass cannot be:

A. $1.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
D. $4 \times 10^{7} \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

27. A concave mirror of focal length 2 cm is placed on a glass slab as shown in the figure. The image of point object O formed due to reflection at mirror and then refraction by the slab

A. Will be virtual and will be at 2 cm from the pole of the concave mirror
B. Will be virtual and formed on the pole of the
mirror
C. Will be real and on the object itself
D. None of these

- Watch Video Solution

28. In the figure, an object is placed at distance 25 cm from the surface of a convex mirror, and a
plane mirror is set so that image formed by the two mirrors lie adjacent to each other in the same plane. The plane mirror is placed at 20 cm from the object. What is the radius of curvature of the convex mirror ?

A. $R=80 \mathrm{~cm}$
B. $R=25 \mathrm{~cm}$
C. $R=75 \mathrm{~cm}$

D. None of these

- Watch Video Solution

29. A uniform, horizontal parallel beam of light is incident upon a prism as shown. The prism is in the shape of a quarter cylinder, of radius 5 cm , and has refractive index $5 / 3$. The width of the regionat which the incident rays after normal incidence on plane surface and subsequent refraction at curved surface intersect on x axis is (Neglect the ray which
travels along x-axis)

A. 4 cm
B. $5 / 4 \mathrm{~cm}$
C. $9 / 4 \mathrm{~cm}$
D. $25 / 4 \mathrm{~cm}$
30. Sharp image of extended object which is placed perpendicular to the principle axis of a lens is η times that of the object for a particular position of object on a screen. Without disturbing the position of object and screen, by shifting lens a position can be obtained where the sharp image is $1 / \eta$ times that of object. Ratio of difference between the two positions of lens to the focal length of lens is:

$$
\begin{aligned}
& \text { A. } \frac{\eta^{2}-1}{\eta} \text { if } \eta>1 \\
& \text { B. } \frac{\eta^{2}-1}{\eta} \text { if } \eta \leq 1 \\
& \text { C. } \frac{\eta^{2}-1}{\eta} \text { for all values of } \eta
\end{aligned}
$$

D. η

Answer: C

- Watch Video Solution

31. A beaker is filled with water as shown in figure
(a). The bottom surface of the beaker is a concave mirror of large radius of curvature and small aperture. The height of water is $h=40 \mathrm{~cm}$. It is
found that when an object is placed 4 cm above the water surface, the image coincides with the object. Now the water level h is reduced to zero
but there will still be some water left in the concave part of the mirror as shown in figure (b).

The new height of the object h^{\prime} above the new water surface so that the image again coincides with the object, will be (Refractive index of water

$$
=4 / 3)
$$

(a)

(b)
A. 34 cm
B. 10 cm
C. 74 cm
D. Zero

- Watch Video Solution

32. Which of the following relations is correct for a spherical mirror if a point object is kept on the principal axis ['P' is pole ' C ' is centre object is at point ' O '. Image is at point 'I'].

$$
\begin{aligned}
& \text { А. } \frac{O P}{O C}=\frac{I P}{I C} \\
& \text { в. } \frac{O P}{I C}=\frac{I P}{O C} \\
& \text { с. } \frac{P C}{P O}=\frac{P I}{P C}
\end{aligned}
$$

D. $\frac{I O}{C P}=\frac{I P}{C O}$

- Watch Video Solution

33. A plane mirror is placed with its plane at an angle 30° with the y-axis. Plane of the mirror is perpendicular to the xy-plane and the length of the mirror is $3 m$. An insect moves along x-axis starting from a distant point, with speed $2 \mathrm{~cm} / \mathrm{s}$. The druation of the time for which the insect can see
its shown image in the mirror is:

A. 300s
B. 200s
C. 150s
D. 100 s
34. A partical revolves in clockwise direction (as
seen from point A) in a circle C of radius 1 cm and completes one revolution in 2 sec . The axis of the circle and the principal axis of the mirror M coincides, call it $A B$. The radius of curvature of the mirror of 20 cm . Then, the direction of revolution
(as seen from A) of the image of the partical and its

A. Clockwise, $1.57 \mathrm{~cm} / \mathrm{s}$
B. Clockwise, $3.14 \mathrm{~cm} / \mathrm{s}$
C. Anticlockwise, $1.57 \mathrm{~cm} / \mathrm{s}$
D. Anticlockwise, $3.14 \mathrm{~cm} / \mathrm{s}$
35. An elevator at rest which is at 10th floor of a building is having a plane mirror fixed to its floor. A particle is projected with a speed $(\sqrt{2}) m / s$ and at
45° with the horizontal as shown in the figure. At
the very instant of projection, the cable of the elevator breaks and the elevator starts falling freely. what will be the separation between the particles and is image 0.5 s after the instant of
projection?

A. 0.5 m
B. 1 m
C. 2 m
D. 1.5 m

- Watch Video Solution

36. A beam of light converges towards a point O ,behind a convex mirror of focal length 20 cm .Find the nature and position of image if the point O is-
(1) 10 cm behind the mirror, (2) 30 cm behind the mirror
A. 10 cm in front of mirror
B. 20 cm in front of mirror
C. $10 / 3 \mathrm{~cm}$ behind the mirror
D. $20 / 3$ in front of mirror

- Watch Video Solution

37. Two thin slabs of refractive indices μ_{1} and μ_{2} are placed parallel to each other in the $x-z$ plane. If the direction of propagation of a ray in the two media are along the vectors $\vec{r}_{1}=a \hat{i}+b \hat{j}$ and
$\vec{r}_{2}=c \hat{i}+d \hat{j}$ then we have:

A. $\mu_{1} a=\mu_{2} b$
B. $\frac{\mu_{1} a}{\sqrt{a^{2}+b^{2}}}=\frac{\mu_{2} a}{\sqrt{c^{2}+d^{2}}}$
C. $\mu_{1}\left(a^{2}+b^{2}\right)=\mu_{2}\left(c^{2}+d^{2}\right)$
D. None of these
38. A particle moves towards a concave mirror of focal length 30 cm along its axis and with a constant speed of $4 \mathrm{~cm} / \mathrm{sec}$. At the instant the particle is 90 cm from the pole
A. $2 \mathrm{~cm} / \mathrm{sec}$
B. $8 \mathrm{~cm} / \mathrm{sec}$
C. $1 \mathrm{~cm} / \mathrm{sec}$
D. $4 \mathrm{~cm} / \mathrm{sec}$
39. A screen beaming areal image of magnification formed by a convex lens is moved through a distance x . The objectis the moved until a new image of magnification is formedon the screen. The focal length of the lens is :
A. $\frac{x}{m_{1}-m_{2}}$
B. $\frac{x}{m_{1}-m_{2}}$
C. $\frac{x}{\sqrt{m_{1} m_{2}}}$
D. None of these
40. A ray incident at a point at an angle of incidence of 60° enters a glass sphere with refractive index $\sqrt{3}$ and it is reflected and refracted at the farther surface of the sphere. The angle between the reflected and refracted rays at this surface is:
A. 50°
B. 60°
C. 90°
D. 40°
41. A layer of oil 3 cm thick is floating on a layer of coloured water 5 cm thick. Refractive index of
coloured water is $5 / 3$ and the apparent depth of the two liquids appears to be $36 / 7 \mathrm{~cm}$. Find the refractive index of oil.
A. 1.6
B. 1.4
C. 1.9
D. 0.9

- Watch Video Solution

42. A small filament is at the centre of a hollow glass sphere of inner and outer radii 8 cm and 9 cm respectively. The refractive index of glass is 1.50 .

Calculate the position of the image of the filament when viewed from outside the sphere.
A. 9 cm
B. -9 cm
C. -19 cm
D. +19 cm

- Watch Video Solution

43. A double convex thin lens made of glass
(refractive index $\mu=1.5$) has both radii of curvature of magnitude 20 cm . Incident light rays parallel to the axis of the lens will converge at a distance L such that
A. 10 cm
B. 20 cm
C. 30 cm
D. 40 cm

- Watch Video Solution

44. Time required for making a print at a distance of 40 cm from a 60 watt lamp is 12.8 second. It the distance is decreased to 25 cm , then time required in making the similar print will be :
A. 15 sec
B. 10sec
C. 5 sec

D. Remains some

- Watch Video Solution

45. A 60° prism has a refractive index of 1.5 .

Calculate (a) the angle of incidence for minimum deviation (b) angle of minimum deviation (c) the angle of emergence of light at maximum deviation
(d) angle of maximum deviation.
A. 50°
B. 58°
C. 64°
D. 60°

- Watch Video Solution

46. A glass sphere $(\mu=1.5)$ of radius 8 cm is placed in sunlight. Where is the image of the sun formed by the light passing through the sphere after refraction by second surface of sphere ?
A. 4 cm
B. 6 cm

C. 15 cm

D. 50 cm

- Watch Video Solution

47. A thin convergent glass lens $\left(\mu_{g}=1.5\right)$ has a power of $+5.0 D$. When this lens is immersed in a liquid of refractive index μ_{1}, it acts as a divergent lens of focal length 100 cm . The value of μ_{1} is

$$
\begin{aligned}
& \text { A. } \frac{5}{3} \\
& \text { B. } \frac{5}{4}
\end{aligned}
$$

C. $\frac{6}{3}$
D. None of these

- Watch Video Solution

48. A plano-convex lens of focal length 10 cm is silvered at its plane face. The distance d at which an object must be placed in order to get its image
on itself is:

A. 5 cm
B. 20 cm
C. 10 cm
D. 2.5 cm
49. A lens of focal length 20.0 cm and aperture radius 2.0 cm is placed at a distance $30 . \mathrm{cm}$ from a point source of light. On the other side a screen is placed at a distance 50.0 cm from the lens. The radius of spot of light formed on screen is (neglect spherical abberation through lens)
A. 0.5 cm
B. 0.3 cm
C. 0.2 cm
D. 1.0 cm

- Watch Video Solution

50. The dispersive power of the material of a lens is
0.04 and the focal length of the lens is 10 cm . Find
the difference in the focal length (in mm) of the
lens for violet and red colour.
A. 2 mm
B. 4 mm
C. 6 mm
D. 8 mm

- Watch Video Solution

51. Two point objects are placed on principal axis of a thin converging lens. One is 20 cm from the lens and other is on the other side of lens at a distance of 40 cm from the lens. The images of both objects coincide. The magnitude of focal length of lens is :-
A. $\frac{80}{3} \mathrm{~cm}$
B. $\frac{40}{3} \mathrm{~cm}$
C. 40 cm
D. $\frac{20}{3} \mathrm{~cm}$

- Watch Video Solution

Advance MCQs with One or More Options Correct

1. A point source of light S is placed on the axis of a
lens of focal length 20 cm at a distance 25 cm from
lense. A screen is placed normal to the axis of lens at a distance x from it (treat all rays as paraxial).

Identify the true or false statements.
a. As x is increased from zero , intensity
continuously decreases.
b. As x is increased from zero, intensity first increases then decreases.
c. Intensity at center of screen for $x=90 \mathrm{~cm}$ and $x=110 \mathrm{~cm}$ is same.
A. As x is increased from zero, intensity

continuously decreases

B. As x is increased from zero, intensity first increases and then decreases
C. Intensity at centre of screen for $x=90 \mathrm{~cm}$ and $x=110 \mathrm{~cm}$ is same
D. radius of bright circle obtained on screen is

$$
\text { equal to1cm for } x=200 \mathrm{~cm}
$$

- Watch Video Solution

2. A point object is placed at 30 cm from a convex glass lens $\left(\mu_{g}=\frac{3}{2}\right)$ of focal 20 cm . The final image of object will beformed at infinity if :
A. Another concave lens of focal length 60 cm is placed in cotact with the previous lens
B. Another convex lens of focal legth 60 cm is

placed at a distance of 30 from the first lens

C. The whole system is immersed in a liquid of refractive index 4/3
D. The whole system is immersed in liquid of refractive index 9/8

- Watch Video Solution

3. A converging lens of focal length f_{1} is placed in
front of and coaxially with a convex mirror of focal
length f_{2}. Their separation is d. A parallel beam of
light incident on the lens returns as a parallel beam from the arrangement, Then,
A. The beam diameters of the incident and reflected beams must be the same
B. $d=\left|f_{1}\right|-2\left|f_{2}\right|$
C. $d=\left|f_{1}\right|-\left|f_{2}\right|$
D. If the entire arrangement is immersed in water, the conditions will remain unaltered
4. Two plane mirrors M_{1} and M_{2} are placed parallel to each other 20 cm apart. A luminous point object ' O ' is placed between them at 5 cm from M_{1} as shown in figure :

A. The distance (in cm) of three nearest from mirror M_{1} are 5,35 and 45 respectively
B. The distance (in cm) of three nearest images
from mirror M_{2} are 5,35 and 45 respectively
C. The distance (in cm) three neatest images
from mirror M_{2} are 15, 25 and 55 respectively.
D. The distancec (in cm) of three nearest images
from mirror M_{2} are 15, 25 and 55 respectively

- Watch Video Solution

5.

A ray of light is incident normally on one face of a prism as shown in figure. The refractive index of the material of the prism is $\frac{5}{3}$ and the prism is immersed in water of refractive index $\frac{4}{3}$, then
A. The exit angle θ_{2} of the ray is $\sin ^{-1}\left(\frac{5}{8}\right)$
B. The exit angle θ_{2} of the ray is $\sin ^{-1}\left(\frac{5}{4 \sqrt{3}}\right)$
C. Total internal reflection at point ceases if the
refractive index of water in increased to 5
$\frac{5}{2 \sqrt{3}}$ by dissolving some substance
D. Total internal reflection at point P ceases if
the refractive index of water is increased to
5 $\frac{5}{6}$ by dissolving some substance

- Watch Video Solution

6. An object $A B$ is placed parallel and close to the optical axis between focus F and center of
curvature C of a converging mirror of focale length f as shown in Figure. Then,

A. Image of A will be closer than that of B from
the mirror
B. Image of $A B$ will be parallel to the optical axis
C. Image of $A B$ will be straight line inclined to the optical axis
D. Image of $A B$ will not be straight line

- Watch Video Solution

7. Which of the following statement is / are correct about the refraction of light from a plane
surface when light rays is incident in denser medium. [C is critical angle]
A. The maximum angle of deviation during refraction is $\frac{\pi}{2}-\theta_{C}$, it will be at angle of incidence is θ_{C}
B. The maximum angle of deviation for all angle
of incidences is $\pi-2 \theta_{C}$, when angle of incidence is slightly greater than θ_{C}
C. If angle of incidence is less than θ_{C} then deviation increases if angle of incidence is
also increased
D. If angle of incidence is greater than θ_{C} then
angle of deviation decreases if angle of incidence is increased
8. A particle is moving towards a fixed convex mirror. The image of object also moves. If V_{i} is the speed of image and V_{0} is the speed of the object, then :
A. $V_{i} \leq V_{0}$ if $|u|<|F|$
B. $V_{i}>V_{0}$ if $|u|>|F|$
C. $V_{i}<V_{0}$ if $|u|>|F|$
D. $V_{i}=V_{0}$ if $|u|=|F|$
9. The positions of the object O (real or virtual) and the image I (real or virtual) with respect to the optical axis of a spherical mirror is shown. Then select the possible mirror and its position to realise it.

A. Concave mirror closer to object
B. Concave mirror closer to image
C. Convex mirror closer to object
D. Convex mirror closer to image

- Watch Video Solution

10. A small air bubble is trapped inside a transparent cube of size 12 cm . When viewed from one of the vertical faces, the bubble apears to be at

5 cm . From it. When viewed from opposite face, it appears at 3 cm from it.
A. The distance of the air bubble from the first
face is 7.5 cm
B. The distance of the air bubble from the first
face is 9 cm
C. Refractive index of the material of the prism is 2.0
D. Refractive index of the material of the prism is 1.5

- Watch Video Solution

11. Which of the following statements are true for a plane mirror:
A. It can form real image of a real object
B. It neither converges nor diverges the parallel
rays incident on it
C. It cannot form real image of a real object
D. None of these

- Watch Video Solution

12. A convex lens forms an image of an object on a screen ,The height of the image is 9 cm The lens is now disiplaced between the object on the
screen.the height of this image is 4 cm .the distance between the object and the screen is 90 cm
A. The distance between the two positions of the lens is 30 cm
B. The distance of the from the lens in its first position is 36 cm
C. The height of the object is 6 cm
D. The focal length of the lens is 21.6 cm
13. A ray of light is incident on an equilateral triangular prism parallel to its base as shown in the figure. The ray just fails to emerge from the face AC. If μ be the refractive index of the prism then the relation(s) is/are :

$$
\begin{aligned}
& \text { A. } 2 \sin ^{-1}\left(\frac{1}{\mu}\right)=\pi / 3 \\
& \text { B. } \sin ^{-1}\left(\frac{1}{\mu}\right)+\sin ^{-1}\left(\frac{1}{2 \mu}\right)=\frac{\pi}{6}
\end{aligned}
$$

> C. $\sin ^{-1}\left(\frac{1}{\mu}\right)+\sin ^{-1}\left(\frac{1}{2 \mu}\right)=\frac{\pi}{3}$
> D. $\sin ^{-1}\left(\frac{1}{\mu}\right)+\sin ^{-1}\left(\frac{\mu}{4}\right)=\frac{\pi}{3}$

- Watch Video Solution

14. A convex lens forms a real of an object with magnification 0.5 . If the object is displaced by 20 cm allong the principal axis, a real image equal to the size of the object is formed :
A. the focal length is 20 cm
B. the distance of the image from the lens initially is 25 cm
C. the distance of the object from the lens initially is 60 cm
D. the distance of the image finally the lens is

30 cm

D Watch Video Solution

15. Sun ray are incident at an angle of 24° with the horizon. They be directed parallel to the horizon
using a plane mirror for this plane mirror should be placed at an angle :
A. 12° to the horizontal
B. 48° to the horizontal
C. 72° to the horizontal
D. 78° to the horizontal

- Watch Video Solution

16. A ray of light incident normally on an isosceles
right angled prism travels as shown in the figure.

The least value of the refractive index of the prism must be

A. $\mu>1.2$
B. $\mu>1.3$
C. $\mu>1.5$
D. $\mu>1.7$
17. Two plane mirrors are inclined to each other with their reflecting daces making acute angle. A
light ray is incident on one plane mirror. The total deviation after two successive reflections is :
A. Independent of the initial angle of incidence
B. Independent of the angle between the mirrors
C. Dependent on the initial angle of incidence
D. Dependent on the angle between the mirrors

- Watch Video Solution

18. An equiconvex lens of refractive index μ_{2} is placed such that the refractive :

A. Must be diverging if μ_{2} is less than the arithrnetic mean of μ_{1} and μ_{3}
B. Must be converging if μ_{2} is greater than the arithumetic mean of μ_{1} and μ_{3}
C. May be diverging if μ_{2} is less than the arithmetic mean of m_{1} and μ_{3}
D. Will neither be diverging nor converging if μ_{2}
is equal to arithmetic mean of μ_{1} and μ_{3}

- Watch Video Solution

19. A ray of light is incident on a prism of refracting angle A. if θ_{C} is the critical angle for the material of
the prism with respect to the surrounding air, then:
A. An emergent ray will be there for all values of
θ_{C}
B. An emergent ray will be there only for
$A \leq 2 \theta_{C}$
C. A ray incident at an angle I can pass through
the prism if $\sin >\frac{\sin \left(A-\theta_{C}\right)}{\sin \theta_{C}}$ for
$\theta_{C}<A<2 \theta_{C}$
D. None of above is correct
20. A point source of light is placed at a distance h
below the surface of a large and deep lake. If f is
the fraction of light energy that escapes directly
from water surface and μ is refractive index of water then:
A. f various as a function of h
B. f is independent of value of h
C.f depends only on the refractive index of water
D. f is independent of refractive index of water

- Watch Video Solution

21. In the figure shown, a point object O is placed in air on the principal axis. The radius of curvature of the spherical surfaces is 60 cm . I is the final image formed after all reflections and refractions.

A. If $d_{1}=120 \mathrm{~cm}$, then the ' I_{f}^{\prime} is formed ' O ' for any value of d_{2}
B. If $d_{1}=240 \mathrm{~cm}$, then the ' $I^{\prime}{ }_{f}$ is formed on ' O ' only if $d_{2}=360 \mathrm{~cm}$
C. If $d_{1}=240 \mathrm{~cm}$, then the ' $I^{\prime}{ }_{f}$ is formed on ' O '
for all value of d_{2}
D. If $d_{1}=240 \mathrm{~cm}$, then the ${ }^{\prime} I^{\prime}{ }_{f}$ cannot be formed on 'O'
22. A fish F, in the pond is at a depth of 0.8 m from the water surface and is moving vertically upward with velocity $2 m s^{-1}$. At the same instant, a bird B is at a height of 6 m from the water surface and is moving downward with velocity $3 m s^{-1}$. At this instant. both are on the same vertical line as shown in figure . Which of the following statements are correct?

A. height of B, observed by F (from itself)
B. depth of F, observed by B (from itself) is equal to 0.60 m
C. height of B, observed by F (from itself) is equal to 8.80 m
D. none of these

- Watch Video Solution

23. A man of height 170 cm wants to see his
complete image in a plane mirror(while
standing).His eyes are at a height of 160 cm from the ground.
A. Minimum length of the mirror $=80 \mathrm{~cm}$
B. Minimum length of the mirror $=85 \mathrm{~cm}$
C. Bottom of the mirror should be at a height 80 cm
D. Bottom of the mirror should be at a height 85 cm
24. Two plane mirrors at an angle such that a ray incident on a mirror undergoes a total deviation of 240° after two reflections:
A. the angle between the mirrors is 60°
B. the number of images formed by this system
will be 5 , if an object is placed symmetrically
between the mirrors
C. the number of images will be 5 if an object is
kept unsymmetrical between the mirrors
D. a ray will retrace its path after 2 successive
reflections, if the angle of incidence on one

mirror is 60°

- Watch Video Solution

25. If the equation of mirror is given by $y=2 / \pi \sin \pi x(y>0,0 \leq x \leq 1)$ then find the point on which horizontal ray should be incident so that the reflected ray become perpendicular to
the incident ray

A. $\left(\frac{1}{3}, \frac{\sqrt{3}}{\pi}\right)$
B. $\left(\frac{\sqrt{3}}{\pi}, \frac{1}{3}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{\pi}\right)$
D. $(1,0)$
26. The figure shows a ray incident a angle $i=\pi / 3$
of the plot drawn shown the variartion of $|r-i|$
versus $\frac{\mu_{1}}{\mu_{2}}=\mathrm{k},(r=$ angle of refraction $)$

the value of k_{1} is
A. The value of k_{1} is $\frac{2}{\sqrt{3}}$
B. The value of θ_{1} is $\pi / 6$
C. The value of θ_{2} is $\pi / 3$
D. The value of k_{0} is 1

- Watch Video Solution

27. For refractin of light through a prism
A. For every angle of deviation there are two angles of incidences
B. The light travelling inside an equilateral prism in necessarily parallel to the base when prism is set for minimum deviation
C. There are two angles of incidence for maximum deviation
D. Angle of minimum deviation will increase if
refractive index of prism $\left(\mu_{p}\right)$ is increased keeping the refractive index of the outside medium $\left(\mu_{s}\right)$ uncharged if $\mu_{P}>\mu_{S}$.

- Watch Video Solution

28. An object O is kept infront of a converging lens of focal length 30 cm behind which there is a plane
mirror at 15 cm from the lens.

A. The final image is formed at 60 cm from the
lens towards right of it
B. The final image is at 60 cm from lens towards
left of it
C. The final image is real

D. The final image is virtual

- Watch Video Solution

29. Choose the correct alternative corresponding to the object distance 'u', image distance 'v' and the focal length ' F ' of a converging lens from the following.
(i) The average speed of the image as the object moves with uniform speed from distance $\frac{3 F}{4}$ to $\frac{F}{2}$ is greater than the average speed of the image as the object moves with same speed from
distance $\frac{F}{2}$ to $\frac{F}{4}$
(ii) The minium distance between a real object and its real image in case of a converging lens is 4 F where F is its focal length.
A. both are correct
B. both are incorrect
C. (i) is correct (ii) is incorrect
D. (i) is incorrect, (ii) is correct

Answer: A

- Watch Video Solution

30. An object and a screen are fixed at a distance d
apart. When a lens of focal length f is moved between the object and the screen, sharp images of the object are formed on the screen for two positions of the lens.

The magnifications produced at these two positions are M_{1} and $M_{2}{ }^{-}$
A. $d>2 f$
B. $d>4 f$
C. $M_{1} M_{2}=1$
D. $\left|M_{1}\right|-\left|M_{2}\right|=1$

- Watch Video Solution

Unsolved Numerical Problems

1. The left end of a long glass rod of index 1.6350 is

grounded and polished to a convex spherical
surface of radius 2.50 cm . A small object is located
in the air and on the axis 9.0 cm from the vertex.

Find the lateral magnification.

- Watch Video Solution

2. Focal length of a convex lense in air is 10 cm . Find its focal
length in water. Given that $\mu_{g}=3 / 2$ and $\mu_{w}=4 / 3$.

- Watch Video Solution

3. Find the distance of an object from a convex lens
if image is
two times magnified. Focal length of the lens is
10 cm
4. A pile 4 m high driven into the bottom of a lake is 1 m above the water. Determine the length of the shadow of the pile on the bottom of the lake if the sun rays make an angle of 45° with the water surface . The refractive index if water is $\frac{4}{3}$.

- Watch Video Solution

5. An object is placed 12 cm to the left of a diverging lens of focal length -6.0 cm . A converging lens with a focal length of 12.0 cm is placed at a distance d to the right of the diverging
lens. Find the distance d that corresponds to a final image at infinity.

- Watch Video Solution

6. A solid glass sphere with radius R and an index of refraction 1.5 is silvered over one hemisphere. A small object is located on the axis of the sphere at a distance $2 R$ to the left of the vertex of the unsilvered hemisphere. Find the position of final image after all refractions and reflection have taken place.
7. A glass sphere with 10 cm radius has a 5 cm radius spherical hole at its centre. A narraow beam of parallel light is directed into the sphere. Where, if anywhere, will the sphere produce an image? The index of refraction of the glass is 1.50 .

- Watch Video Solution

8. A source of light is located at double focal length
from a convergent lens. The focal length of the lens
is $f=30 \mathrm{~cm}$. At what distance from the lens
should a flat mirror be placed, so that the rays
reflected from the mirror are parallel after passing through the lens for the second time?

- Watch Video Solution

9. A parallel beam of rays is incident on a consisting pf three thin lenses with a common optical axis. The focal length of the lenses are equal
$f_{1}=+10 \mathrm{~cm}$ and $f_{2}=-20 \mathrm{~cm}$, and $f_{3}=+9 \mathrm{~cm}$
respectively. The distance between the first and the
second lens is 15 cm and between the second and
the third is 5 cm . Find the position of the point at
which the beam converges when it leaves the system of lenses.

- Watch Video Solution

10. A ray of light is incident on the left vertical face
of glass cube of refractive index n_{2}, as shown in figure. The plane of incidence is the plane of the page, and the cube is surrounded by liquid (refractive index $=n_{1}$). What is the largest angle of incidence θ_{1} for which total internal reflection occurs at the top surfaces?
11. One face of a prism with a refrective angle of 30° is coated with silver. A ray of light incident on another face at an angle of 45° is refracted and reflected from the silver coated face and retraces its path. What is the refractive index of the prism?

- Watch Video Solution

12. In an isosceles prism of prism angle 45°, it is
found that when the angle of incidence is same as
the prism angle, the emergent ray grazes the emergent surface. Find the refractive index of the
material of the prism.For what angle of incidence the angle of deviation will be minimum ?

- Watch Video Solution

13. An astronomical telescope with objective of focal length 100 cm and eyepiece of focal length 10 cm is used by a shortsighted man whose far point is 33 cm from his eye, to form an image of an infinitely distant object at his far point. Find the separation of the lenses, and magnification obtained.
14. Figure shows a right angled prism ABC having refractive $\mu_{g}=\frac{3}{2}$ lowered into water $\left(\mu_{\omega} \frac{4}{3}\right)$.

Find angle α so that the incident ray normal to face $A B$ will be reflected at face $B C$ completely.

15. An equilateral prism deviates a ray through 40° for two angles of incidence. The two incidence angels differ by 20°. Find their values.

D Watch Video Solution

16. A ray of light strikes a glass slab of thickness t.
(i) Prove that it emerges on the opposite face, parallel to the initial ray.
(ii) (ii) Prove that the value of deflection of beam which passed through the plate is:
$t \sin i_{1}\left[1-\sqrt{\left(\frac{1-\sin ^{2} i_{1}}{{ }_{\cdot a} \mu_{g}^{2}-\sin ^{1} i_{1}}\right)}\right]$
(iii) Prove that for a small angle of incidence i_{1}, the internal shift x is given by
$x=t i_{1}\left(1-\frac{1}{.{ }_{. a} \mu_{g}}\right)$
where ${ }_{\cdot a} \mu_{g}$ is the refractive index of glass with respect to air.

- Watch Video Solution

17. A plano-convex lens has thickness 4 cm . When places on a horizontal table with the curved surface in contact with it, the apparent depth of
the bottom-most point of the lens if found to be

3 cm . If the lens is inverted such that the plane face is in contact with the table, the apparent depth of the center of the plane face of the lens is face of the lens is found to be $25 / 8 \mathrm{~cm}$. Find the focal length of the lens.

- Watch Video Solution

18. An image Y is formed of a point object x by a lens whose optic axis is $A B$ as shown in Figure. Draw a ray diagram to locate the lens and its focus.

If the image Y of object X is formed by a concave mirror (having the same optic axis $A B$) instead of
lens, draw another ray diagram to locate the mirror and its focus. Write down the steps of construction of the ray diagrams.

- Watch Video Solution

19. A thin plano-convex lens.of focal length f is split into two halves: One of the halves is shifted along the optical axis (figure)The separation between object and image planes is 1.8 m .The magnification of the image formed by one of the half lensis 2 .

Find the focal length of the lens and separation between the two halves. Draw the ray diagram for image formation.

D View Text Solution

20. The focal lengths of the objective and the eye piece of a compound microscope are 1 cm and 5 cm respectively. An object placed at a distance of $1: 1$ cm from the objective has its final image formed at
(i) infinity (ii) least distance of distinct vision. Find the magnifying power and the distance between the lenses. Least distance of distinct vision is 25 cm.

- View Text Solution

21. Find the minimum size of mirror required to see the full image of a wall behind a man standing at the centre of room, where H is the height of wall.
22. Two mirrors are inclined by an angle 30°. An object is placed making 10° with the mirror My

Find the positions of the first two images formed by each mirror. Find the total number of images.

- Watch Video Solution

23. $A B$ is a man of height $2 m$ and M is a mirror of
length 0.5 m and mass 0.1 kg . Initially top of mirror
M and A are at the same level and the M starts
falling freely always remaining vertical. If the level
of the eyes of the maxis 1.5 cm below his head. A,
find the time after which the man sees the
reflection of his feet.

- Watch Video Solution

24. Figure. Shows a point object A and a plane mirror MN. Find the position of the image of object

A, in mirror MN, by drawing ray diagram. Indicate the region in which the observer's eye must be
present in order to view the image. (This region is called field of view.)

- Watch Video Solution

25. Find the region on Y-axis in which reflected rays are present. Object ia at $A(2,0)$ and MN is a plane
mirror, as shown in Figure.

- Watch Video Solution

26. See the following figure. Which of the object(s)
shown in O_{2} figure will not form its image in the
mirror.
. O_{2}

. O_{3}

(Watch Video Solution

27. Two plane mirrors are inclined at an angle of
75° to each other. Find the total number of images
formed when an object is placed as shown in figure

- Watch Video Solution

28. Two plane mirrors are inclined at an angle of
70° to each other. Find the total number of images
formed when object is placed as shown. In figure-.

Total images $=5$

- Watch Video Solution

29. There is a point object and a plane mirror. If the mirror is moved by 10 cm away from the object, find
the distance which the image will move.

- Watch Video Solution

30. A crown glass prism of refracting angle 8° is combined with a flint glass prism to obtain deviation without dispersion. If the refractive indicates for red and violet rays for the crown glass are 1.514 and 1.524 and for the flint glass are 1.645 and 1.665 respectivey, find the angle of fint glass prism and net deviation.

- Watch Video Solution

31. An opaque cylindrical tank with an open top has
a diameter of 3.00 m and is completely filled with water .When the setting sun reaches an angle of
37° above the horizon,sunlight ceases to
illuminate any part of the bottom of the tank. How deep is the tank?

- Watch Video Solution

32. In the situation shown in figure, find the velocity vector of image in the co-ordinate system
shown in figure

- Watch Video Solution

33. Find the velocity of the image of a moving object in situation shown in figure in which object and mirror velocities in horizontal and vertical
directions are shown.

$5 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

34. Two plane mirrors are inclined to each other at an angle 30° to each other. A ray of light is incident at an angle of 40° to the mirror $\left(M_{1}\right)$.

Find the total angle of deviation of the ray after
the third successive due to mirrors.

- Watch Video Solution

35. Figure shows a torch producing a straight light beam falling on a plane mirror at an angle 60° The reflected beam makes a spot P on the screen along
y-axis . If at $t=0$, mirror starts ratating about the hinge A with an angular velocity $(\omega)=1^{\circ}$ per second clockwise. Find the speed of the spot on screen after time $\mathrm{t}=15 \mathrm{~s}$.

36. A light ray I is incident on a plane mirror M.The mirror is rotated in the direction as shown in the figure by an arrow at frequency $\frac{9}{\pi} \mathrm{rev} / \mathrm{sec}$, The light reflected by the mirror is received on the wall W at a distance 10 mfrom the axis of rotation When the angle of incidence becomes 37° find the speed of the spot (a point) on the wall?

- Watch Video Solution

37. A spherical light bulb with a diameter of 3.0 cm radiates equally in all the directions with a power of $4.5 \pi W$. (a find the light intensity of the surface of the bulb.(b) Find the light set up with its axis pointing towards the bulb.The lens has a circular face with a diameter of 15.0 cm and a focal length of 30.0 cm Find the diameter of the image of the bulb formed on a screen kept at the location of the image .(d)Find the light intensity at the image.

- Watch Video Solution

38. A coin lies on the bottom of a lake 2 m deep at a horizontal distance x from the spot light S which is a source of thin parallel beam of light situated 1 m above the surface of the liquid of refractive index $p=$ as shown in figure. The liquid height is $2 m$.

Find x so that a narrow beam of light from S when incident on the liquid surface at incidence angle
45° fells directly on the coin

- Watch Video Solution

39. What should be the value of angle θ so that
light entering normally through the surface AC of a
prism ($n=3 / 2$) does not cross the second
refracting surface $A B$?

- Watch Video Solution

40. Refracting angle of a prism $A=60^{\circ}$ and its refractive index is $n=3 / 2$. What is angle of incidence i to get minimum deviation. Also, find the
minimum deviation. Assume the surrounding medium to be air $(n=1)$.

- Watch Video Solution

41. The refractive indices of flint glass for red and
violet lights are 1.613 and 1.632 , respectively. Find the angular dispersion produced by a thin prism of flint glass having refracting angle 5°.
42. A small object of height 0.5 cm is placed in front of a convex surface of glass $(\mu-1.5)$ of radius of curvature 10 cm . Find the height of the image formed in glass.

- Watch Video Solution

43. in figure shown $A B$ is a plane mirror of length 40 cm placed at a height 40 cm from ground. There
is a light source S at a point on the ground ,Find the maximum and minimum height of a man(eye height)required to see the image of the source If he is standing at a point A on ground shown in figure.

44. A plane mirror of circular shape with radius $r=20 \mathrm{~cm}$ is fixed to the ceiling .A bulb is to be placed on the axis of the mirror.A circular area of radius $R=1 m$ on the floor is to be illuminated after reflection of light from the mirror. The height of the room is $3 m$ What is maximum distance from the center of the mirror and the bulb so that the required area is illuminated?

- Watch Video Solution

45. A room contains air in which the speed of sound is $340 \mathrm{~m} / \mathrm{s}$. The walls of the room are made
of concrete in which the speed of sound is $1700 \mathrm{~m} / \mathrm{s}$ (a) Find the critical angle for total internal refection of sound at the concrete-air boundary.(b) in which medium must the sound be travelling to undergo total internal reflection?

- Watch Video Solution

46. A glass prism has refractive index $\sqrt{2}$ and refracting angle 30°. One of the refracting surface of the prism is silvered. A beam of monchromatic
light will retrace it path it its angle of incidence on the unsilvered refracting surface of the prism is
47. Photograph of the ground are taken form an air-craft ,flying at an altitude of 2000 m by a camera with a lens of focal length 50 cm . The size of the film in the camera is $18 \times 18 \mathrm{~cm}$. What area of the ground can be photography by this camera at any one time.

- Watch Video Solution

48. An equilateral prism deviates a ray through 23°
for two angles of incidence differing by 23° find μ of
the prism?

- Watch Video Solution

49. A plano convex lens $(\mu=1.5)$ has a maximum
thickness of 1 mm . If diameter of its aperture 4 cm
Find
(i)Radius of curvature of curved surface
(ii) its focal length in air.

- Watch Video Solution

50. A convex lens of focal length 1.5 m is placed in a system of coordinate axis such that its optical centre is at origin and principa, axis coinciding with the x-axis. An object and a plane mirror are arrange on then principal axis as shown in figure. Find value of d (in m) so that y-coordinate of image (after refraction and reflection) is 0.3 m . (Take $\tan \theta=0.3)$

- Watch Video Solution

51. A ray in incident normally on a right angle prism whose refractive index is $\sqrt{3}$ and prism angle $\alpha=30^{\circ}$. After crossing the prism, ray passes through a glass sphere. It strikes the glass sphere at $\frac{R}{\sqrt{3}}$ distance from principal axis, as shown in the figure. The is half polished. Find the totol angle of deviation of the incident ray after all reflections
and refractions from this optical setup

- Watch Video Solution

52. A short-sighted man, the accommodation of whose eye is between 12 cm and 60 cm wears spectacles through which he can see remote objects distinctly. Determine the minimum distance at which the man can read a book through his spectacles.

- Watch Video Solution

53. A stationary observer O looking at a fish F in
water ($\mu_{w}=4 / 3$) through a converging lens of
focal length 90.0 cm . The lens is allowed to fall frelly from a height 62.0 cm with its axis vertical.

The fish and the observer are on the principal axis of the lens. The fish moves up with constant velocity $100 \mathrm{~cm} / \mathrm{s}$. Initially it was at depth of 44.0 cm . Find the velocity (in $\mathrm{cm} / / \mathrm{s}$) with which the fish appears to move with respect to lens to the
observer at $t=0.2 \mathrm{~s}$. (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

- Watch Video Solution

54. An equilateral prism $A B C$ is placed in air with its
base side $B C$ lying horizontally along x-axis as
shown in the figure. A ray given by $\sqrt{3} z+x=10$ is incident at a point P on the face $A B$ of the prism
(a) Find the value μ from which the ray grazes the face $A B$
(b) Find the direction of the initially refracted ray if $\mu=\frac{3}{2}$
(c) Find the equation of ray coming out of the prism if bottom $B C$ is silvered ?

55. A convex lens of focal length 20 cm and a concave lens of focal length 10 cm are placed 10 cm apart with their principal axes coinciding. A beam of light travelling parallel to the principal axis and having a beam diameter 5.0 mm , is incident on the combination. Show that the emergent beam is parallel to the incident one. Find the beam diameter of the emergent beam.

- Watch Video Solution

56. A thin convex lens of refractive index $\mu=1.5$ is
placed between a point source of Light S and a screen A, shown in figure,. Light rays from the source S are brought to focus on the screen A, forming a point image P. The distance $S P$ is equal to 50 cm . Water $(\mu=4 / 3)$ is now poured into a vessel interposed between the object and the lens, and it is observed that when the water level is 8 cm
the screen has to be moved up by a distance of
6 cm in order to get a sharp image. Find the focal
length of the lens.

- Watch Video Solution

57. A thin equiconvex glass lens $\left(\mu_{g}=1.5\right)$ is beign placed on the top of a vessel of height
$h=20 \mathrm{~cm}$ as shown figure. A luminous point
source is beign placed at the bottom of vessel on
the principal axis of the lens. When the air is on
both the side of the lens the image of luminous
source is formed at a distance of 20 cm from the
lens out side the vessel. When the air inside the
vessel is being replaced by a liquid of refractive index μ_{l} the image of the same source is being formed at a distance 30 cm from the lens outside
the vessel. Find the μ_{l}.

Air
 20 cm
 Luminous
 source

58. Light passes symmetrically through a 60° prism of refractive index 1.54. After emergence out from
the prism the light ray is incident on a plane mirror fixed to the base of the prism extending beyond it.

Find the total deviation of the light ray after reflection from the mirror.

- Watch Video Solution

59. A glass rod has ends as shown in figure. The refractive index of glass is μ. The object O is at a distance 2 R from the surface of larger radius of curvature. The distance between apexes of ends is

3R. Find the distance of image formed of the point object from right hand vertex. What is the condition on μ for formation of a real image

- View Text Solution

60. When the object is placed 4 cm from the objective of a microscope, the final image formed coincides with the object. The final image is at the least distance of distinct vision (24 cm). If the
magnifying power of the microscope is 15 , calculate the focal lengths of the objective and eye-piece.

- Watch Video Solution

61. A hemispherical portion of the surface of a solid glass sphere ($\mathrm{mu}=1.5$) of radius r is silvered to make the inner side reflecting. An object is placed on the axis of the hemisphere at a distance 3 r from the centre of the sphere. The light from the object is refracted at the unsilvered part, then reflected
from the silvered part and again refracted at the unsilvered part. Locate the final image formed.
62. The focal lengths of the objective and the eyepiece of an astronomical telescope are 0.25 m and 0.02 m , respectively. The telescope is adjusted to view an object at a distance of 1.5 m from the objective, the final image being 0.25 m from the eye of the observer. Calculate the length of the telescope and the magnification produced by it.

- Watch Video Solution

63. A convex lens of focal length 1.5 m is placed in a system of coordinate axis such that its optical centre is at origin and principa, axis coinciding with the x-axis. An object and a plane mirror are arrange on then principal axis as shown in figure. Find value of d (in m) so that y-coordinate of image (after refraction and reflection) is 0.3 m . (Take $\tan \theta=0.3)$

- Watch Video Solution

64. A ball is kept at a height h above the surface of
a heavy transparent sphere made of a material of refractive index The radius of the sphere is R. At $t=$ 0 , the ball is dropped to fall normally on the sphere. Find the speed of the image formed as a
function of time for $t<\sqrt{\frac{2 h}{g}}$. Consider only the image by a single refraction.

- Watch Video Solution

65. A prism of angle 60° is made of glass of refractive index 1.50 for red and 1.56 for violet. Find
the angular separation of these rays when a narrow pencil of composite light is incident at minimum deviation.

- Watch Video Solution

66. An achromatic telescope objective of focal
length 1.5 m is consists of two thin lenses of dispersive power 0.050 and 0.075 , respectively, placed in contact. Find the focal length of each lens.
67. Calculate the focal length of a convex lens of crown glass of dispersive power 0.012 and concave lens of dispersive power 0.020 that from an achromatic coverging combination of focal length 0.3 m when placed in contact.

- Watch Video Solution

68. In an astronomical telescope, focal length of objective lens is 75 cm and that of eye piece is 5 cm
. Calculate the magnifying power and the distance
between the two lenses, when final image of distant object is seen at a distance of 25 cm from the eye.

- Watch Video Solution

69. An astronomical telescope consisting of two convex lenses of focal length 50 cm and 5 cm is
focussed on the moon. What is the distance between the two lenses in this position ? If the telescope is then turned towards an object 10 m a way, how much would the eye-piece have to be
moved to focus on the object without altering the accommodation of the eye? Calculate the angular magnification produced by the telescope in the two adjustments.

- View Text Solution

70. How would you use two plano-convex lenses of
focal lengths 6 cm and 4 cm to design an eye-piece
free from chromatic aberration. What will be its
focal length and magnifying power for normal
vision ? Will it be a positive or negative eye-piece ?
71. A short-sighted person cannot see objects situated beyond 2 m from him distinctly. What should be the power of the lens which he should use for seeing distant objects clearly?

- Watch Video Solution

72. An astronomical telescope in normal adjustment hasa tube length of 93 cm and magnification (angular) of 30 . If the eye-piece is to
be drawn out by 3 cm to focus a near object, with
the final image at infinity, find how far away is the object and the magnification (angular) is this case.

D View Text Solution

73. The focal lengths of the objective and the eyepiece of an astronomical telescope are 0.25 m and 0.025 m , respectively. The telescope is focussed on an object 5 m from the objective, the final image being formed 0.25 m from the eye of the observer.

Calculate the length of the telescope and its magnifying power.
74. A Keplerian telescope with magnification
$T=15$ was submerged into water which filled up
the inside of the telescope. To make the system
work as a telescope again within the former dimensions, the objective was replaced. What has the magnification of the telescope become equal to ? the refractive index of the glass of which the ocular is made is equal to $n=1.50$.

- Watch Video Solution

75. A man stands on vertical tower of height 20 cm .

Calculate the distance up to which he will be able to see on the surface of the earth. Neglect the height of the man. Take the radius of the earth $=6400 \mathrm{~km}$

- Watch Video Solution

76. The redius of curvature of the convex face of a plano-convex lens is 12 cm and its refractive index is 1.5.
a. Find the focal length of this lens. The plane surface of the lens is now silvered.
b. At what distance form the lans will parallel rays incident on the convex face converge?
c. Sketch the ray diagram to locate the image, when a point object is places on the axis 20 cm from the lens.
d. Calculate the image distance when the object is placed as in (c).

- Watch Video Solution

77. An object is at a distance of $a=36 \mathrm{~cm}$ from a
lens with a focal length $f=30 \mathrm{~cm}$. A flat mirror turned through 45° with respect to the optic axis
of the lens is placed behind at a distance of $l=1 m$. At what distance h from the optic axis should the bottom of a tray filled with water upto depth 20 cm be placed to obtain a sharp image of the object at the bottom ?

- Watch Video Solution

78. The focal length of a thin biconvex lens is 20 cm .

When an object is moved from a distance of 25 cm in front of it to 50 cm , the magni-fication of its image changes from $m_{25} \rightarrow m_{50}$. The ratio $\frac{m_{25}}{m_{50}}$ is.

- Watch Video Solution

79. An object is placed 20 cm to the left of a convex
lens of focal length 10 cm . If a concave mirror of
focal length 5 cm is placed 30 cm to the right of the
lens, find the magnification and the nature of the
final image. Draw the ray diagram and locate the position of the image.

- Watch Video Solution

80. A glass sphere with centre O is shown in the figure, $A O B$ and COD are two diameters at right angles to each other. A ray parallel to AOB strikes the sphere at P, a point mid-way between A and C.

After refraction, it proceeds along PB. Find

(a) The path of ray beyond B,
(b) The refractive index of glass, and
(c) The deviation of the ray as it emerges out of the sphere.

- Watch Video Solution

81. A hollow sphere of glass of inner and outer radii
R and $2 R$ respectively has a small mark on its inner
surface. This mark is observed from a point outside the sphere such that the centre of the sphere lies in between. Prove that the mark will appear nearer
than
it
really
it,
by
a
distance
$(\mu-1)(R) /(3 \mu-1)$
82. Two thin similar watch glass pieces are joined together,front to front ,with near convex portion silvered and the combination of glass pieces is placed at a distance $a=60 \mathrm{~cm}$ from a screen.A small object is placed normal to the optical axis of the combination such that its image is two time the object. Now water is filled in between the glass. water $\mu=4 / 3$,calculated the distance
through,which the object must be displayed so that a sharp image is again formed on the screen.
83. Two convex lenses of focal lengths f_{1} and f_{2} are placed coaxially, a distance d apart. If the axis of one of the lenses is lifted parallel to itself by Δ,
find the distance by which the focal point is shifted and the distance of the focal point from the first lens.

D View Text Solution

84. A prism of angle 60° deviates a ray of light through 31° for two angles of incidence, which
differ by 17°. What is the refractive index of the glass of the prism?

- Watch Video Solution

85. Two large plane mirrors OM and ON are arranged at 150° as shown in the figure. P is a point object and SS' is a long line perpendicular to the line OP. Find the length of the part of the line

SS' on which two images of the point object P can
be seen.

- Watch Video Solution

86. A concave lens of focal length 20 cm is placed 15
cm in front of a concave mirror of radius of
curvature 26 cm and further 10 cm away from the
lens is placed an object. The principal axis of the lens and the mirror are coincident and the object is on the axis Find the position and nature of the image.

- Watch Video Solution

87. A double convex lens is placed on a horizontal
plane mirror. A pin held horizontally above the lens
coincides with its own image when it is 18 cm from
the lens. The space between the lens and the mirror is filled with glycerine and water, turn by
turn, and the positions of coincidence of the pin
with the image are 28 cm and 24 cm from the lens, respectively. Calculate the refractive index of glycerine, given that the refractive index of water is 4/3.

D View Text Solution

88. A prism has refractive index $\sqrt{\frac{3}{2}}$ and refractive angle 90°. Find the minimum deviation produced by prism
89. Image of an object approaching a convex mirror of radius of curvature 20 m slong its optical axis is observed to move from $\frac{25}{3} \mathrm{~m}$ to $\frac{50}{7} \mathrm{~m}$ in 30 seconds. What is the speed of the object in km per hour?

- Watch Video Solution

90. A ray is incident on a glass sphere as shown.The opposite surface of the sphere is partially silvered If the net deviation of the ray transmitted at the partially silvered surface is $1 / 3^{r d}$ of the net deviation suffered by the ray reflected at the
partially silvered surface(after emerging out of the sphere).Find the refractive index of the sphere.

- Watch Video Solution

91. Light is incident normally on the short face of a $30^{\circ}-60^{\circ}-90^{\circ}$ prism. A liquid is poured on the hypotenuse of the prism. If the refractive index of the prism is $\sqrt{3}$, find the maximum refractive index
of the liquid so that light is totally reflected.

D Watch Video Solution

92. A convex lens of crown glass is perfectly
cemented to a plano-concave lens of flint glass to
form an achromatic combination of power $\div 5 D$.
Calculate the radii of curvature of the convex lens
from the following data.
Refractive index Dispersive power
Crown glass
1.50
0.1
Flint glass
1.60
0.02

- Watch Video Solution

93. A converging system of convex lenses free from chromatic aberration and of focal length 2.5 cm is
to be constructed by using a convex lens of focal
length 2 cm and dispersive power 0.04 and another
convex lens of dispersive power 0.03 . What should
be the focal length of the second lens and at what distance from the first lens should it be placed ?
94. For a ray of light refracted through a prism of angle 60°, the angle of incidence is equal to the angle of emergence, each equal to 45°. Find the refractive index of the material of the prism.

- Watch Video Solution

95. In a biprism experiment, 21 fringes are seen distinctly on a screen at a distance 1 m , when the sources are 0.5 mm apart. What is the coherent
length and coherent time of the set-up. $(\lambda=6000 \AA)$

- View Text Solution

96. In a direct vision spectroscope there are two
flint glass prisms each of angle 5° and dispersive power 0.36 and two crown glass prisms of dispersive power 0.24 . Calculate the angle of each crown glass prism and the net dispersion produced
by
the
system
of
prisms.
$\left(\mu_{\text {crown }}=1.5\right.$ and $\left.\mu_{\text {flint }}=1.68\right)$
97. An achromatic doublet of focal length 50 cm is
used as an objective of a telescope. The refractive indices of the glasses of the lenes for yellow are 1.6 and 1.5 . The radius of curvature of the sides on contact is 15 cm . Find the radii of curvature of the other surfaces. The dispersive powers of the glasses are 0.33 adn 0.24 .

D View Text Solution

98. A ray of light incident normally on one of the
faces of a right-angle isosceles prism is found to be
totally reflected as shown in the figure. What is the minimum value of the refractive index of the material of the prism? When the prism is immersed in water, trace the path of the emergent ray for the same incident ray, indicating the values of all the angles $\left(\mu_{\omega}=4 / 3\right)$.

99. In a double slit experiment ,the separation between the slits is $d=0.25 \mathrm{~cm}$ and the distance of the screen $D=100 \mathrm{~cm}$ from the slits if the wavelength of light used in $\lambda=6000 \AA$ and I_{0} is the intensity of the central bright fringe.the intensity at a distance $x=4 \times 10^{-5}$ in form the central maximum is-
100. The focal lengths of the objective and eyepiece of a compound microscope are 1 cm and 5 cm , respectively. An object is placed 11 mm from the objective and the final image is 25 cm from the eye. Find:
(a) magnification produced and
(b) the separation of the lenses.

- Watch Video Solution

101. Two lenses in contact made of materials with
dispersive powers in the ratio2:1behaves as ab
achromatic lens of focal length 10 cm .The individual focal length of the lenses are :

- Watch Video Solution

102. A compound microscope has an objective of focal length 2 cm and eye-piece of focal length 5 cm . The distance between the two lenses is 25 cm .

If the final image is at a distance of 25 cm from the eye-piece, find the magnifying power of the microscope. What would be the magnifying power if the microscope were reversed ?
103. A convex lens of focal length 15 cm is placed in front of a convex mirror. Both are coaxial and the lens is 5 cm from the apex of the mirror. When an object is placed on the axis at a distance of 20 cm from the lens, its is found that image coincides with the object. Calculate the radius of curvature of mirror.
[55 cm]

- Watch Video Solution

104. An object of height 4 cm is kept to the left of and on the axis of a converging lens offocal length 10 cm at a distance of 15 cm from lens. A plane mirror is placed inclined at 45° to the lens axis, 10 cm to the right of the lens.Find the position and size of the image formed by the lens and mirror combination. Trace the path ofthe rays forming the image.

- Watch Video Solution

105. The refractive index of the material of a prism
of refracting angle 45° is 1.6 for a certain
monochromatic ray. What will be the minimum angle of incidence of this ray on the prism so that no TIR takes place as the ray comes out of the prism.

- Watch Video Solution

106. A point source of light S is placed at the bottom of a vessel containing a liquid of refractive index $5 / 3$. A person is viewing the source from above the surface. There is an opaque disc of
radius 1 cm floating on the surface. The centre of disc lies vertically above the source O. The liquid
from the vessel is gradually drained out through a tap. What is the maximum height of the liquid for which the source cannot be seen at all.

- Watch Video Solution

107. A ray of light is incident on a prism $A B C$ of
$\mu=\sqrt{3}$ as shown in Fig. Find the angle of incidence for which the deviation of light by the prism $A B C$ is minimum.

By what angle should the second prism be rotated
so that final ray suffers net minimum deviation?

- Watch Video Solution

