©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SHREE BALAJI PHYSICS

(HINGLISH)

RIGID BODY MOTION

EXAMPLE_TYPE

1. A gyroscope is spinning at angular velocity
ω_{0}. The power is shut off, and the gyroscope
begins to slow down with its angular velocity described by
$\omega=\omega_{0} e^{-r / T}$
with T a constant (a) How long does it take for
the gyroscope to reach half its initial angular
velocity? (b) What is the gyroscope's initial angular acceleration? (c) What is the gyroscope's average acceleration between the time the power through is cut of and the instant it reaches half speed? (d) Through how many revolutions does the gyroscope turn during this time?
2. Fig shows three forces F_{1}, F_{2} and F_{3} acting on a rod pivoted at its end. Find the torque of each force about pivot.

3. Four particles of mass m are connected by
massless rods to form a rectangle-of sides $2 a$
and $2 b$ as shown. The assembly, rotates about
an axis in the plane of the figure through the
centre. Find the moment of inertia about the
axis:,

- Watch Video Solution

4. A weighlifter's barbell consists of two heavy discs of mass m and radius R connected by as light rod of lenth $l \gg R$. Estimate its moment of inertia about an axis A through its
$C M$ and perpendicular to the rod. Determine
its kinetic energy.

- Watch Video Solution

5. Calculate the moment of inertia of a thin
rod of mass m and length l about a symmetry axis through the centre of mass and perpendicular to the length of the rod, as shown in Fig.

- Watch Video Solution

6. A circular hole of radius $r / 2$ is cut from a circular disc of radius ' r '. The disc lies in the $x y$ plane. Determine the moment of inertia about an axis passing through the centre and perpendicular to the plane of the disc.

D Watch Video Solution

7. An object of mass m is tied to a light string
wound around a pulley that has a moment of
inertia I and radius R. The wheel bearing is
fricrtionless and the string does not slip on
the run. Find the tension in the string and the acceleration of the object.

D Watch Video Solution

8. Two blocks are connected by a string that passes over a pulley of radius R and moment of inertia I. The block of mass m_{1} sides on a frictionless, horizontal surface, the block of mass m_{2} is suspended from the string. Find
the acceleration a of the blocks and the tension T_{1} and T_{2} assuming that the string
does not slip on the pulley.

- Watch Video Solution

9. A uniform slender rod of length L and mass
M is pivoted at one end. It is held horizontal and releasaed. Assume the pivot is frictionless.

Find .
(a) the angular acceleration of the rod immediately after it is released, and
(b) the force F_{0} exerted on the rod by the pivot immediately after release.

- Watch Video Solution

10. A uniform rod of mass M and length L
with two particles m and m_{2} attached to its
ends, is pivoted at its centre. The system
rotates in a vertical plane with angular velocity
ω.

- Watch Video Solution

11. A uniform slender rod of mass M and
length L is pivoted at its end. The rod is released from its nearly vertical position. What is the reaction at the pivot when the rod reaches the horizontal position? If the support is withdrawn at this instant, describe the subsequent motion of the rod.

D Watch Video Solution

12. Three particles A, B and C each of mass m, are connected to each other by three massless
rigid rods to form a rigid, equilateral triangular body of side I. This body is placed on a horizonta frictionsess table ($x-y$ plane) and is hinged to it at the point A so that it can move without friction about the vertical axis
through A. the body is set into rotational motion on the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.
(b) At time T , when the side BC is parallel to the x -axis, a force F is applied on B along BC (as shown). Obtain the x-component and the y component of the force exerted by the hinge on the body, immediately after time T .
13. A uniform rod of length $2 a$ is placed horizontally on the edge of a table. Initially the centre of mass of the rod is at a distance $a / 3$
from the edge. The rod is released from rest. If the rod slips after it turned an angle θ, find the coefficient of friction between the rod and the table.

D
 Watch Video Solution

14. A uniform board of mass M and length L rests on two spring scales. A person of mass
m stands at a distance l from one end as shown in Fig. (a) The board and person are at rest. What is the reading of the two scales?

- Watch Video Solution

15. A cylinder of weight W and radius R is to be raised onto a horizontal step of height h as shown in Fig. A rope is wrapped around the
cylinder and pulled horizontally with force F.
Assuming the cylinder does not slip on the step, find the minimum force F necessary to raise the cylinder.

- Watch Video Solution

16. A ladder rests on the floor of a room, leaning agains a wall. If the coefficient of static
friction between the ladder the floor is μ_{f} and
that between ladder and is μ_{w}, what is the minimum angle θ that the ladder can make with the floor if the ladder is not to slip?

Assume that the mass of the ladder is distributed uniformly.

17. A block of height h is projected along a rough surface of coefficient of friction μ. Find the point of application of the normal force on the block for $\mu_{k}=0.5$.

- Watch Video Solution

18. The block in figure has dimensions m by h and the ramp is inclined at θ to the horizontal.

Find the effective point of application of the normal force \vec{n}.(consider rotational equilibrium)

D Watch Video Solution

19. A car of mass m travelling at speed v moves on a horizontal track. The centre of mass of the car describes a circle of radius r. If
$2 a$ is the separation of the inner and outer
wheels and h is the height of the centre of mass above the ground, show that the limiting
speed beyond which the car will overturn in given by
$v^{2}=\frac{g r a}{h}$

D Watch Video Solution

20. A horizontal force F is applied to a homogeneous rectangular block of mass m, width b and height H. The block moves with constant velocity, the coefficient of friction is
μ_{k}.
a. What is the greater height h at which the
force F can be applied so that the block will slide without tipping over?

b. Through which point on the bottom face of the block will the resultant of the friction and normal forces act if $h=H / 2$?
c. If the block is at rest and coefficient of static friction is μ_{s} what are the various criteria for which sliding or tipping occurs?
21. A baggage cart of weight w rests on a wall of height h. Its centre of gravity is at a distance L from the wheel as shown in fig.

(D) Watch Video Solution
22. Fig shows a uniform cylinder of radius a weight $75 N$. After on off axis cylindrical hole was drilled through it as shown, it weighed $60 N$. The axes of the two cylinders are parallel.

Assuming the cyliner does not slip on the table, determine what the tension T in the
cord must be to keep it from moving.

D Watch Video Solution

23. A light ladder rests onn te rough floor of a
room, leaning against a smooth wall. The ladder touches the wall at height h above the
floor. A man climbs up the ladder until the base of the ladder is on the verge of slipping.

The coefficint of static friction between the foot of the ladder and floor is μ.
(a) What is the horizontal distance moved by the man?
(b) Solve part (a) if the ladder is uniform and has the same weight as the man and the base of the ladder is at a distance l from the wall.
24. The drum of a winch has mass M and radius R. A cable wound aroung the drum
suspends a load of mass m. The entire cable has a length L and mass per unit length λ, with a total mass $m_{c}=L \lambda$. The load begins to fall all toward the ground, unwinding the cable as it goes. How fast is the load moving after it has falled a distance d ?

- Watch Video Solution

25. In the fig as shown a certain mass M is
free to slide without friction on a horizontal
table. This mass is connected by a light thread to a mass m that hangs over the edge of the
table. The connecting thread passes over a frictionles pulley in the shape of a disk with radius R and mass m_{p}. Calculate the velocity of the string after the hanging mass has fallen
a distance h starting from test.

D Watch Video Solution

26. A wooden frame consists of seven thin rods as shown in fig.
(a) Calculate the moment of inertias of the
frame for rotation about its lower edge. Take
the mass and length of each rod to be m and l
respectively.
(b) If the frame starts from vertical with zero speed and falls over how fast is the edge traveling just before it hits the ground?

D Watch Video Solution

27. Suppose a person of mass m stands at the edge of a circular platform of radius R and moment of inertia I. The platform is at rest initially, but the platform begins to rotate
when the person begins to move with velocity
v. Determine the angular velocity of the platform.

D Watch Video Solution

28. The device shown in Fig. rotates on the
vertical axle as shown. The frame has negligible mass as compared to the four masses each of mass m. Initial angular velocity of the system is ω_{0}. Due to an internal mechanism the spokes in the frame lengthen
so that the radii of the masses become $2 a$. Initially, it was a. What will be the new angular velocity of the system?

29. A rotating star has a period of 30 days about an axis passing through its centre. The star undergoes an internal explosion and converts to a neutron star. Initial radius of the core was $1.0 \times 10^{4} \mathrm{~km}$, whereas, final radius is
3.0 km . Determine the period of rotation of the neutron star.

- Watch Video Solution

30. A clutch assembly consists of two discs A
and B of moment of inertia $2 I$ and I respectively, one being the engine fly wheel, the other one is the clutch plate. The discs are initially rotaing with angular velocities $\omega_{A}=\omega$
and $\omega_{B}=2 \omega$ as shown in fig. When the two disc are brought into contact the discs rub against each other and eventually reach a common angualr velocity ω.
(a) Derive an expressio for ω
(b) What is the angular impulse of friction on
any one of the discs?

D Watch Video Solution
31. A man of mass 100 kg stands at the rim of a turtable of radius $2 m$ and moment of inertia $4000 \mathrm{kgm}^{2}$ mounted on a vertical frictionless shaft at its centre. The whole system is initially
at rest. The man now walks along the outer edge of the turntable with a velocity of $1 \mathrm{~m} / \mathrm{s}$ relative to the earth
a. With what angular velocity and in what direction does the turntable rotate?
b. Through what angle will it have rotated when the man reaches his initial position on the turntable?
c. Through what angle will it have rotated
when the man reaches his initial position relative to the earth?

D Watch Video Solution

32. Two skaters each of mass 50 kg , approach each other along parallel paths separated by
$3 m$. They have equal ad opposite velocities of $10 \mathrm{~m} / \mathrm{s}$. The first skater carries a long light pole, $3 m$ long, and the second skater grabs the end of it as he passes (assume frictionless ice).
a. Described quantitatively the motion of the skaters after they are connected by the pole.
b. By pulling on the skaters reduce their distance to $1 m$. What is their motion then?
c. Compare the KEs of the system in parts a.
and b. where does the change come from?

- Watch Video Solution

33. A bullet of mass m moving with velocity v
strikes and becomes embedded at the edge of
a cylinder of mass M and radius R_{0} as shown
in fig. The cylinder, initially at rest, begins to rotate about its symmetry axis, which remains
fixed in position. Assuming no frictional torque, what is the angular velocity of the cylinder after this collision? Kinetic energy conseved?

34. The two uniform discs rotate separately on parallel axles. The upper disc (radius a and momentum of inertia I_{1}) is given an angular velocity ω_{0} and the lower disc of (radius b and momentum of inertia I_{2}) is at rest. Now the two discs are moved together so that their rims touch. Final angular velocity of the upper

disc is.

D Watch Video Solution

35. A string is wrapped several times on a
cylinder of mass M and radius R. the cylinder
is pivoted about its adxis of block symmetry. A
block of mass m tied to the string rest on a support positioned so that the string has no
slack. The block is carefully lifted vertically a distance h, and the support is removed as shown figure.
a. just before the string becomes taut evalute
the angular velocity ω_{0} of the cylinder ,the speed v_{0} of the falling body, m and the kinetic energy K_{0} of the system.
b. Evaluate the corresponding quanitities
ω_{1}, v_{1} and K_{1} for the instant just after the string becomes taut.
c. Why is K_{1} less than K_{0} ? Where does the
energy go?
d. If $M=m$, what fraction of the kinetic energy is lost when the string becomes taut?

- Watch Video Solution

36. A small mass particle is projected with an
initial velocity v_{0} tangent to the horizontal rim
of smooth hemisphereical bowl at a radius r_{0}
from the vertical centre line, as shown at point
A. As the particle slide past point B, a distance
h below A and distance r from the verticle centre line, its velocity v makes an angle θ with
the horizontal tangent to the bowl through B.

Determine θ.

- Watch Video Solution

37. A uniform rectangular block of dimensions
shown in fig is sliding on the horizontal
surface with a velocity v when it strikes a small
kerb in the surface. Determine the minimum
value of v for which the block will pivot about
the kerb and just reach the vertical position
with no velocity. Assume negligible rebound at
the step.

- Watch Video Solution

38. A thin uniform rod of length l is initially at rest with respect to an inertial frame of reference. The rod is tapped at one end perpendicular to its length. How far the centre of mass translates while the rod completes one revolution about its centre of mass.

Neglect gravitational effect.

- Watch Video Solution

39. A wedge of mass m and triangular crosssection $(A B=B C=C A=2 R)$ is moving with a
constant velocity $-v^{\wedge}$ I towards a sphere of radius R fixed on a smooth horizontal table as
shown in figure. The wadge makes an elastic collision with the fixed sphere and returns along the same path without any rotaion.

Neglect all friction and suppose that the
wedge remains in contact with the sphere for
a very shot time. Δt, during which the sphere exerts a constant force F on the wedge.

(a) Find the force F and also the normal force

N exerted by the table on the wedge during the time Δt.
(b) Ler h denote the perpendicular distance between the centre of mass of the wedge and
the line of action of F . Find the magnitude of the torque due to the normal force N about
the centre of the wedge, during the interval Δt.

D Watch Video Solution

40. A ball of radius R and mass m is rolling without slipping on a horizontal surface with
velocity of its centre of mass $v_{C M}$. It then rolls
wilthout slippig up a hill to a height h before
momentarily coming to rest. Find h

- Watch Video Solution

41. A rectangular rigid fixed block has a long horizontal edge. A solid homogeneous cylinder of radus R is placed horizontally at rest its length parallel to the edge such that the exis of the cylinder and the endg of the
block are in the same vertical plane as shown
in the figure below. Ther is sufficinet friction present at the edge s that a very small displacement causes the cylinder to roll off the edge without slipping. Determine:

(a) the angle θ_{c} through which the cylinder rotates before it leaves contact with the edge,
(b) the speed of the centre of mass of the
cylinder before leaving contact with the edge, and
(c) the ratio of the translational to rotational kinetic energy of the cylinder when its centre of mass is in horizontal line with the edge.

D Watch Video Solution

42. A solid cylinder has a thin string wrapped several times around its circumference. The string is fixed at one end and the cylinder is
released. Find the downward acceleration of cylinder and tension in the string.

D Watch Video Solution

43. A horizontal force P applied at a height h above the centre of a solid cylinder of mass M
, radius R. Determine force of friction in terms
of h show that friction force is zero for $h=R / 2$. Assume that the cylinder rolls without slipping.
44. A wheel of radius R, mass m and moment of inertia I is pulled along a horizontal surface by application of force F to as rope unwinding from the axel of radius, r as shown in figure.

Friction is sufficient for pure rolling of the wheel.

a. What is the linear acceleration of the wheel?
b. Calculate the frictional force that acts on the wheel.

D Watch Video Solution

45. A sphereicla ball of mass M and radius R
is projected along a rough horizontal surface
so that initially $(t=0)$ it slides with a linear
speed v_{0} but does not rotate. As it slides, it
begins to spin and eventually rolls without
slipping. How long does it take to begin rolling without slipping?

D Watch Video Solution

46. A uniform disc of mass m and radius R is projected horizontally with velocity v_{0} on a rough horizontal floor so that it starts off with
a purely sliding motion at $t=0$. After t_{0} seconds, it acquires pure rolling motion as shown in the figure.
(a) Calculate the velocity of the center of mass
of the disc at t_{0}.

Assuming that the coefficent of friction to be μ, calculate t_{0}.

- Watch Video Solution

47. Two thin circular disks of mass 2 kg and
radius 10 cm each are joined by a rigid massless rod of length 20 cm . the axis of the
rod is along the perpendicular to the planes of
the disk through their centres. This object is
kept on a truck in such a way that the axis of
the object is horizontal and perpendicular to
the direction of the motion of the truck. Its
friction with the floor of the truck is large enough so that the object can roll on the truck without slipping. Take x axis as the direction of motion of the truck and z-axis as
the vertically upwards direction. if the truck has an acceleration of $9 \mathrm{~m} / \mathrm{s}^{2}$ Calculate:
(i) The force fo friction on each disk,
(ii) The magnitude and the direction of the
frictional torque acting on each disk about the centre of mass O of the object. Express the torque in the vector form in terms of unit vectors \hat{i}, \hat{j} and \hat{k} in the x, y, and z directions.

D Watch Video Solution

48. The cue stick hits a cue ball horizontally a
distance x above the centre of the ball. Find
the value of x for which the cue ball will instantaneously roll without slipping.

Calculate the answer in terms of the radius R of the ball.

D Watch Video Solution

49. A ball of radius r hits a cushion with a pure rolling motion and rebounds, with a pure rolling motion. Find the ratio of the height h of the cushion to the radius r of the ball.

Assume that the foce exerted on the ball by the cushion is horizontal during the impact and that the ball hits the cushion normally.

- Watch Video Solution

50. A diatomic molecule two identicla atoms of
mass m bound together a distance l apart is
confined in a lab reference frame. At a certain
time one of the two atoms is observed to have
speed v_{0} and the other, moving in the
opposite direction, speed $v_{0} / 3$.

- Watch Video Solution

51. A uniform rod of length l and mass $2 m$ rest
on a smooth horizontal table. A points mass
m moving horizontally at right angles to the rod with an initial velocity v collides with one end of the rod and sticks to it.

Determine
(a) the angular velocity of the system after collision,
(b) the position of the point on the rod which remains stationary immediately after collision,
(c) the chabge in kinetic energy of the system as a result of the collision.

- Watch Video Solution

52. A spinning cylinder of mass m and radius
R is lowered on a rough inclined plane of angle 30° with the horizontal and $\mu=1 \sqrt{3}$.

The cylinder is released at a height of $3 R$ from horizontal. Find the total time taken by the
cylinder to reach the bottom of the incline.

- Watch Video Solution

SCQ_TYPE

1. A homogenous rod of length $l=\eta x$ and mass M is lying on a smooth horizontal floor.

A bullet of mass m hits the rod at a distance x
from the middle of the rod at a velocity v_{0} perpendicular to the rod and comes to rest after collision. If the velocity of the farther end of the rod just after the impact is in the opposite direction of v_{0} then:
A. $\eta>3$
B. $\eta<3$
C. $\eta>6$

D. $\eta<6$

Answer: D

D View Text Solution

2. A thin circular ring of mass M and radius r is

rotating about its ais with an angular speed ω.

Two particles having mas m each are now attached at diametrically opposite points. The angular speed of the ring will become

$$
\text { A. } \frac{\omega M}{M+m}
$$

B. $\frac{\omega M}{M+2 m}$
C. $\frac{\omega(M-2 m)}{M+2 m}$
D. $\frac{\omega(M+2 m)}{M}$

Answer: B

D Watch Video Solution

3. A flywheel rotates about an axis. Due to
friction at the axis, it experiences an angular retardation proportional to its angular velocity. If its angular velocity falls to half while
it makes n rotations, how many more rotations will it make before coming to rest?
A. $2 n$
B. n
C. $\frac{n}{2}$
D. $\frac{n}{3}$

Answer: B
(Watch Video Solution
4. The figure shows a uniform rod lying along the x-axis. The locus of all the points lying on the $x-y$ plane, about which the moment of inertia of the rod is same as that about O, is

A. Circle
B. Parabola
C. Straight line

D. Ellipse

Answer: A

D Watch Video Solution

5. The moment of inertia of a uniform semicircular disc of mass M and radius r about a line perpendicular to the plane of the disc through the center is
A. $M r^{2}$
B. $\frac{1}{2} M r^{2}$
C. $\frac{1}{4} M r^{2}$
D. $\frac{2}{5} M r^{2}$

Answer: A

D Watch Video Solution

6. A ring of mass M and radius R is released on an inclined as shown. If the coefficient of
friction $\mu<\frac{1}{2} \tan \theta$ then during a

A. Acceleration of the ring $=g / 2 \sin \theta$
B. Acceleration
of
the
ring
$=g \sin \theta-\mu g \cos \theta$
C. work done by the force of friction

$$
=m g l(\sin \theta-u \cos \theta)
$$

D. work done by the force of friction is zero

Answer: B

D View Text Solution

7. The line of action of the resultant of two like parallel forces shifts by one-fourth of the distance between the forces when the two
forces are interchanged. The ratio of the two forces is:
A. $1: 2$
B. $2: 3$
C. $3: 4$
D. $3: 5$

Answer: D
(Watch Video Solution
8. A mass m moving with a constant velocity
along a line parallel to the axis, away from the
origin. Its anguarl momentum with respect to
the origin
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B
9. A person sitting firmly over a rotating stool
has his arms stretched. If he folds his arms, his
angular momentum about the axis of rotation
A. increases
B. decreases
C. remains unchanged
D. doubles

Answer: C
10. Two uniform rods of equal length but different masses are rigidly joined to form an
L-shaped body, which is then pivoted about O
as shown. If in equilibrium the body is in the
shown configuration, ratio $\frac{M}{m}$ will be

A. 2
B. 3
C. $\sqrt{2}$

D. $\sqrt{3}$

Answer: D

D Watch Video Solution

11. A solid sphere of mass M, radius R and
having moment of inertia about as axis
passing through the centre of mass as I, is recast into a disc of thickness t, whose moment of inertia about an axis passing through its edge and perpendicular to its
plance remains I. Then, radius of the disc will be.

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{15}} R \\
& \text { B. } \frac{2}{\sqrt{5}} R \\
& \text { C. } \frac{3}{\sqrt{15}} R \\
& \text { D. } \sqrt{\frac{3}{15}} R
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. A mass m moving with a constant velocity
along a line parallel to the axis, away from the
origin. Its anguarl momentum with respect to
the origin
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B
13. An cylinder of mass m is rotated about its
axis by an angular velocity ω and lowered gently on an inclined plane as shown in figure.

Then :

A. It will start going upward
B. It , will first going upward anci then
downward
C. It will go downward just after it is
lowered
D. It can never go upward

Answer: D

D Watch Video Solution

14. A wheel of radius R rolls without slipping on a horizontal ground. The distance travelled
by a point on the rim in one complete rotation
is:
A. $2 \pi R$
B. $8 R$
C. $2 R$
D. πR

Answer: B
15. Two identical rods are joined to form an
' X '. The smaller angle between the rods is θ.

The moment of inertia of the system about an
axis passing through point of intersection of
the rods and perpendicular to their plane is proportional to:
A. θ
B. $\sin ^{2} \theta$
C. $\cos ^{2} \theta$

D. independent of θ

Answer: D

D Watch Video Solution

16. One end of a uniform rod of mas m and
length I is clamped. The rod lies on a smooth
horizontal surface and rotates on it about the
clamped end at a unifrom angular velocity ω.
Theforce exerted by the clamp on the rod has
a horizontal component
A. $m \omega^{2} l$
B. Zero
C. $m g$
D. $\frac{1}{2} m \omega^{2} l$

Answer: D

D Watch Video Solution

17. A large platform is moving with constant acceleration ' a ' perpendicular to its plane in gravity free space. A particle of mass m is
projected with speed u relative to the platform at an angle θ with its plane from a point O on it. The angular momentum of the particle about O :
A. Always increases
B. Always decreases
C. First decreases and then increases
D. First increases and then decreases

Answer: A

D View Text Solution
18. A cubical block of side a is moving with
velocity V on a horizontal smooth plane as
shown in Figure. It hits a ridge at point O . The angular speed of the block after it hits O is

A. $3 v /(4 a)$
B. $3 v /(2 a)$
C. $\sqrt{3 v} /(\sqrt{2 a})$
D. Zero

Answer: A

D Watch Video Solution

19. A wheel of radius r rolls without slipping
with a speed v on a horizontal road. When it is
at a point A on the road, a small blob of mud separates from'the wheel at- its highest point and lands at point B on the road:
A. $A b=v \sqrt{\frac{r}{g}}$
B. $A B=2 v \sqrt{\frac{r}{g}}$
C. $A B=4 v \sqrt{\frac{r}{g}}$
D. If $v>\sqrt{4 r g}$, the blob of mud land on
the wheel and not on the road.

Answer: C

- Watch Video Solution

20. A string of negligible thicknes is wrapped several times around a cylinder kept on a rough horizontal surface. A man standing at a distance I from the cylinder holds one end of the sitting an pulls the cylinder towards him figure. There is no slipping anywhere. The length of the string passed through the hand of the man whicle the cylinder reaches his
hands is

A. l
B. $2 l$
C. $3 l$
D. $4 l$

Answer: B
21. $A B C$ is a traiangular plate of uniform thickness. The sides are in the ratio shown in
the figure. $I_{A B}, I_{B C}$ and $I_{C A}$ are the moments of inertia of the plate about $A B, B C$ and $C A$ repectively. Which one of the following
relations is correct?

A. $I_{C A}$ is maximum
B. $I_{A B}>I_{B C}$
C. $I_{B C}>I_{A B}$
D. $I_{A B}+I_{B C}=I_{C A}$

Answer: B

- Watch Video Solution

22. A solid homogeneous sphere of mass M
and radius R is moving on a rough horizontal
surface partly rolling and partly sliding. During this kind of motion of the sphere
A. Total kinetic energy is conserved
B. Angular momentum of the sphere about
the point of contact is conserved
C. Only the rotational kinetic.energy about
the center of mass is conserved

D. Angular momentum about the center of

mass is conserved

Answer: B

D Watch Video Solution

23. Ler I be the moment of inertia of a uniform
square plate about an axis $A B$ that passes
through its centre and is parallel to two of its
sides. $C D$ is a line in the plane of the plate that passes through the centre of the plate and makes an angle θ with AB . The moment of inertia of the plate about the axis $C D$ is then equal to
A. I
B. $I \sin ^{2} \theta$
C. $I \cos ^{2} \theta$
D. $I \cos ^{2}\left(\frac{\theta}{2}\right)$

Answer: A
24. Two uniform solid spheres having unequal rdii are released from rest from the same height on a rough incline. Iff the spheres roll without slipping
A. The heavier sphere reaches the bottom
first
B. The bigger sphere reaches the bottom
first
C. The two spheres reach the bottom
together
D. The information given is not sufficient to
tell which sphere will reach the bottom
first

Answer: C

- Watch Video Solution

25. A particle of mass $m=5 \mathrm{~kg}$ is moving with
a uniform speed $v=3 \sqrt{2}$ in the $X O Y$ plane along the line $Y=X+4$. The magnitude of
the angular momentum of the particle about
the origin is
A. zero
B. 60
C. 7.5
D. $40 \sqrt{2}$

Answer: B

- Watch Video Solution

26. A sphere S rolls without slipping moving with a constant speed on a plank P. The friction between the upper surface of P and the sphere is sufficient to prevent slipping, while the lower surface of P is smooth and rest on the ground. Initially P is fixed on the
ground by a pin N. If N is suddenly removed

A. S will begin to slip on P
B. P will begin to move backwards
C. The speed of S will decrease and its
angular velocity with increase
D. There will be no change in the motion of
S and P will still be in rest

Answer: D

D Watch Video Solution

27. Three identical solid spheres move down
three incline A, B and C are all of the same dimensions. A is without friction, the friction between B and a sphere is sufficient to cause rolling without slipping, the friction between
C and a sphere causes rolling with slipping.
The kinetic energies, of A, B, C at the bottom of the inclines are E_{A}, E_{B}, E_{C}.
A. $E_{A}=E_{B}=E_{C}$
B. $E_{A}=E_{B}>E_{C}$
C. $E_{A}>E_{B}>E_{C}$
D. $E_{A}>E_{B}=E_{C}$

Answer: B

D Watch Video Solution

28. A sphere is rotating about a diameter
A. The particles on the surface of the
sphere do not have any linear
acceleration
B. The particles cin the diameter
mentioned above do not have any linear acceleration
C. Different particles on the surface have different angular speeds
D. All the particles on the surface have same linear speed

Answer: B

- Watch Video Solution

29. A thin spherical shell of radius R lying on a
rough horizontal surface is hit sharply and
horizontally by a cue. Where should it be hit so that the shell does not slip on the surface?
A. $\frac{2}{3} R$
B. $\frac{5}{4} R$
C. $\frac{5}{3} R$
D. $\frac{3}{2} R$

Answer: C

- Watch Video Solution

30. Two moving particles P and Q are 10 cm apart at any instant. Velocity of P is $8 \mathrm{~m} / \mathrm{s}$ at 30°, from line joining the P and Q and velocity of Q is $6 \mathrm{~m} / \mathrm{s}$ at 30°. Calculate the angular
velocity of P w.r.t. Q

A. $0 \mathrm{rad} / \mathrm{s}$
B. $0.1 \mathrm{rad} / \mathrm{s}$
C. $0.4 r a d / s$
D. $0.7 \mathrm{rad} / \mathrm{s}$

Answer: D

D Watch Video Solution

31. A uniform rod of mass m and length l_{0} is rotating with a constant angular speed ω about a vertical axis passing through its point of suspension. Find the moment of inertia of the rod about the axis of rotation if it make an angle θ to the vertical (axis of rotation).
A. $\frac{m l^{2}}{3}$
B. $\frac{m l^{2}}{3} \sin \theta$
C. $\frac{m l^{2}}{3} \sin ^{2} \theta$
D. $\frac{m l^{2}}{3} \cos ^{2} \theta$

Answer: C

D Watch Video Solution

32. A sphere can roll on a surface inclined at an angle θ if the friction coefficient is more than $\frac{2}{7} g \sin \theta$. Suppose the friction coefficient is $\frac{1}{7} g \sin \theta$, and a sphere is released from rest on the incline,
A. It will ,tay at rest
B. It will make pure translational motion
C. it will translate and rotate about the

center

D. The angular momentum of the sphere about its center will remain constant

Answer: C

D Watch Video Solution

33. What is the moment of inertia of a triangular plate $A B C$ of mass M and side $B C=$ ' a ' about a axis passing through A
and perpedicular to the plane of the plate?

$$
\begin{aligned}
& \text { A. } \frac{M a^{2}}{6} \\
& \text { B. } \frac{3 M a^{2}}{4} \\
& \text { C. } \frac{M a^{2}}{24} \\
& \text { D. } \frac{M a^{2}}{12}
\end{aligned}
$$

Answer: A

D Watch Video Solution

34. A rolling body is kept on a plank B. There is
sufficient friction between A and B and no
friction between B and the incline,d plane.

Then body:

A. A rolls
B. A does not experience any friction
C. A and B has equal acceleration and
unequal velocities
D. A rolls depending upon the angle of inclination θ

Answer: B

D View Text Solution

35. Three identical rods, each of length L, are joined to form a rigid equilateral triangle. Its
radius of gyration about an axis passing thorugh a corner and perpendicular to plane of triangle is
A. $\frac{l}{2}$
B. $\sqrt{\frac{3}{2}} l$
C. $\frac{l}{\sqrt{2}}$
D. $\frac{l}{\sqrt{3}}$

Answer: C

- Watch Video Solution

36. A sphere cannot roll on
A. A smooth horizontal surface
B. A smooth inclined plane
C. A rough horizontal surface
D. A rough inclined surface

Answer: B

D Watch Video Solution

37. Figure shows smooth inclined plane fixed in a car acceleratiing on a horizontal road. The angle of incline θ is related to the acceleration
a of the car as $a=>a n \theta$. If the sphere is set
in pure rolling on the incline

A. It will continue pure rolling
B. It will slip down the plane
C. Its linear velocity will increase
D. Its linear velocity will decrease

Answer: A
38. A uniform rod is kept vertically on a horizontally smooth surface at a point O. IF it is rotated slightly and released, it falls down on the horizontal surface. The lower end will remain
A. At O
B. At a distance less than $\frac{l}{2}$ from O
C. At a distance $\frac{l}{2}$ from O
D. At a distance larger than $\frac{l}{2}$ from O

Answer: B

- Watch Video Solution

39. A uniform rod of length l and mass M is
suspended on two vertical inextensible string
as shown in figure. Then tension T in the left
string at the instant, when right string snaps
is?

А. $T=M g$
В. $T=\frac{M g}{2}$
C. $T=\frac{M g}{4}$
D. $T=$ zero

Answer: C

D Watch Video Solution

40. A equilaterial triangle $A B C$ formed from a uniform wire has two small identical beads initially located at A. The triangle is set rotating about the vertical axis $A O$. Then the beads are released from rest simultaneously and allowed to slide down. one long. $A B$ and
the other along $A C$ as shown. Neglecting frictional effects, the quantities that are
conserved as the beads slide down, are.

D Watch Video Solution
41. A translational velocity v_{0} is imparted in a horizontal direction to a hoop of radius r placed on a rough horizontal surface. What is angular velocity of hoop after it stops slipping?
A. $\frac{v_{0}}{r}$
B. $\frac{v_{0}}{2 r}$
C. $\frac{2 v_{0}}{r}$
D. Zero

Answer: B

- Watch Video Solution

42. A sphere of mass m is given some angular velocity about a horizontal axis through the center, and gently placed on a plank of mass m. The coefficient of friction between the two
is μ. The plank rests on a smooth horizontal
surface. The intial acceleration of the sphere
relative to the plank will be:

A. zero
B. μg
C. $\frac{7}{5} \mu g$
D. $2 \mu g$

- Watch Video Solution

43. A semicircular lamina of mass m and radius
' r ' and centre C. Its center of mass is at a distance ' x ' from C. Its moment of inertia about an axis through its center of mass and perpendicular to its plane is:

A. $\frac{1}{2} m r^{2}$
B. $\frac{1}{4} m r^{2}$
C. $\frac{1}{2} m r^{2}+m x^{2}$
D. $\frac{1}{2} m r^{2}-m x^{2}$

Answer: D

D Watch Video Solution

44. A disc of mass mO rotates freely about a fixed horizontal axis through its center. A thin cotton pad is fixed to its rim, which can absorb
water. The mass of water dripping onto the pad is μ per second. After what time will the angular velocity of the disc get reduced to half of its initial value:

> C. $\frac{m_{0}}{\mu}$ D. $\frac{m_{0}}{2 \mu}$

Answer: D

D View Text Solution

45. A plank P is placed on a solid cylinder S, which rolls on a horizontal surface. The two are of equal mass. There is no slipping at any of the surfaces in contact. The ratio of kinetic
energy of P to the kinetic energy of S is:

A. 1:1
B. 2:1
C. 8:3
D. $11: 8$

Answer: C

- Watch Video Solution

46. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with
centre at O as shown. The moment of inertia
of the loop about the axis $X X^{\prime}$ is :

B

A. $\frac{\rho L^{Y}(3)}{8 \pi^{2}}$
B. $\frac{\rho L^{3}}{16 \pi^{2}}$
C. $\frac{5 \rho L^{3}}{16 \pi^{2}}$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer: D

- Watch Video Solution

47. A round uniform body of radius R, mass M
and moment of inertia 'I' rolls down (without
slipping) and inclined plane making an angle θ with the horizontal. Then its acceleration is.

$$
\begin{aligned}
& \text { A. } \frac{g \sin \theta}{1+\frac{I}{M R^{2}}} \\
& \text { B. } \frac{g \sin \theta}{1+\frac{M R^{2}}{I}} \\
& \text { C. } \frac{g \sin \theta}{1-\frac{I}{M R^{2}}} \\
& \text { D. } \frac{g \sin \theta}{1-\frac{M R^{2}}{I}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

48. A thin rod of mass m and length l is
hinged at the lower end to a level floor and
stands vertically. Then its upper end will strike
the floor with a velocity given by:
A. $\sqrt{2 g l}$
B. $\sqrt{3 g l}$
C. $\sqrt{5 g l}$

D. $\sqrt{m g l}$

Answer: B

D Watch Video Solution

49. A cubical block of side L rests on a rough
horizonta surface with coefficient of friction μ.

A horizontal force F is applied on the block as
shown. If the coefficient of friction is
sufficiently high so that the block does not
slide before toppling, the minimum force
required to topple the block is

A. infinitesimal
B. $m g / 4$
C. $m g / 2$
D. $m g(1-\mu)$

Answer: C

- Watch Video Solution

50. One quarter sector is cut from a uniform circular disc of radius R. This sector has mass
M. It is made to rotate about a line perpendicular to its plane and passing through the centre of the original disc. It moment of inertia about the axis of rotation
is.

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$

Answer: A

D Watch Video Solution

51. A cylinder rolls up an inclined plane, reaches some height, and then rolls down (without slipping throughout these motions).

The directions of the frictional force acting on the cylinder are.
A. up the incline while ascending and down
, the incline while descending
B. up the incline while ascending as well as
descending
C. down the incline while ascending and up
the incline while descending
D. down the incline while ascending as well
as descending

Answer: B

52. A circular platform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now the platform is given an angular velocity ω_{0}. When the tortoise move along a chord of the platform with a constant velocity (with respect to the platform),

B.

C.

Answer: B

- Watch Video Solution

53. Consider a body, shown in figure, consisting of two identical balls, each of mass
M connected by a light rigid rod. If an impulse $J=M V$ is imparted to the body at one of its ends what would be it angular velocity?

L

A. V / L
B. $2 V / L$
C. $V / 3 L$
D. $V / 4 L$

Answer: A

D Watch Video Solution

54. A particle undergoes uniform circular motion. About which point on the plane of the circle, will the angular momentum of the particle remain conserved?
A. centre of the circle
B. on the circumference of the circle
C. inside the circle

D. outside the circle

Answer: A

D Watch Video Solution

55. A disc is rolling (without slipping) on a
horizontal surface. C is its center and Q and
P are two points equidistant from C. Let
V_{P}, V_{Q} and V_{C} be the magnitude of velocities
of points P, Q and C respectively, then

A. $V_{Q}>V_{C}>C_{P}$
B. $V_{Q}<V_{C}<V_{P}$
c. $V_{Q}=V_{P}=V_{P} / 2$
D. $V_{Q}<V_{C}<V_{P}$

Answer: A
56. A child is standing with folded hands at the center of a platform rotating about its central axis. The kinetic energy of the system is K. The child now stretches his arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is
A. $2 K$
B. $K / 2$
C. $K / 4$

D. $4 K$

Answer: B

D Watch Video Solution

57. A particle moves in a circular path with decreasing speed . Choose the correct statement.
A. Angular moment remains constant B. Acceleration \vec{a} is towards the centre
C. Particle moves in a spiral path with decreasing radius
D. The direction of angular momentum remains constant

Answer: D

D Watch Video Solution

58. From a circular disc of radius R and mass 9
M, a small disc of radius $R / 3$ is removed from
the disc. The moment of inertia of the
remaining disc about an axis perpendicular to
the plane of the disc and passing through O is

A. $4 M R^{2}$
B. $\frac{40}{9} M R^{2}$
C. $10 M R^{2}$
D. $\frac{37}{9} M R^{2}$

Answer: A

D Watch Video Solution

59. A 'T' shaped object with dimensions shown
in the figure, is lying on a smooth floor. A force
${ }^{\prime} \vec{F}$ ' is applied at the point P parallel to AB ,
such that the object has only the translational
motion without rotation. Find the location of
P with respect C.

A. $\frac{2}{3} L$
B. $\frac{3}{2} L$
C. $\frac{4}{3} L$
D. L

Answer: C

- Watch Video Solution

60. A thin circular ring of mass m and radius R
is rotating about its axis with a constant angular velocity ω. Two objects each of mass
M are attached gently to the opposite ends of a diameter of the ring. The ring now rotates with an angular velocity $\omega^{\prime}=$
A. $\frac{\omega m}{(m+M)}$
B. $\frac{\omega m}{(m+2 M)}$
c. $\frac{\omega(m+2 M)}{m}$
D. $\frac{\omega(m-2 M)}{(m+2 M)}$

Answer: B

- Watch Video Solution

61. A force of $-F \hat{k}$ acts on O , the origin of the coodinate system. The torque about the point
$(1,-1)$ is

A. $F(\hat{i}+\hat{j})$
B. $-F(\hat{i}-\hat{j})$
C. $F(\hat{i}-\hat{j})$
D. $-F(\hat{i}+\hat{j})$

Answer: D

- Watch Video Solution

62. Four point masses, each of value m, are placed at the corners of square $A B C D$ of side l. The moment of inertia of this system about an axis passing through A and parallel to $B D$ is -
A. $3 m l^{2}$
B. $m l^{2}$
C. $2 m l^{2}$
D. $\sqrt{3} m l^{2}$

Answer: A

- Watch Video Solution

63. For the given uniform square lamina $A B C D$,
whose centre is O ,

A. $\sqrt{2 I}_{A C}=I_{E F}$
B. $I_{A D}=3 I_{E F}$
C. $I_{A C}=I_{E F}$
D. $I_{A C}=\sqrt{2 I_{E F}}$

Answer: C

D Watch Video Solution

64. A uniform thin bar of mass $6 m$ and length
$12 L$ is bend to make a regular hexagon. Its moment of inertia about an axis passing
through the centre of mass and perpendicular to the plane of the hexagon is :
A. $20 m L^{2}$
B. $6 m L^{2}$
C. $\frac{12}{5} m L^{2}$
D. $30 m L^{2}$

Answer: A
(Watch Video Solution
65. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring

$$
=m, \text { radius }=r \text {) }
$$

A. $\frac{1}{2} m r^{2}$
B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$

D. $2 m r^{2}$

Answer: C

D Watch Video Solution

66. In a rectangle $A B C D, A B=21$ and
$B C=1$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is
least about :

A. $D B$
B. $B C$
C. $x x$
D. $y y$

Answer: C
67. Moment of inertia I of a solid sphere about an axis parallel to a diameter and at a distance x from it varies as:
A.
(a)

(b)

C.
(c)

D.
(d)

Answer: A

- Watch Video Solution

68. A wire of length l and mass m is bent in
the form of a rectangle $A B C D$ with $\frac{A B}{B C}=2$.
The moment of inertia of this wife frame about the side $B C$ is
A. $\frac{22}{252} m l^{2}$
B. $\frac{8}{203} m l^{2}$
C. $\frac{5}{136} m l^{2}$
D. $\frac{7}{162} m l^{2}$

Answer: D

D Watch Video Solution

69. A hoop rolls on a horizontal ground
without slipping with linear speed v. Speed of
a particle P on the circumference of the hoop
at angle θ is :

A. $2 v \sin \left(\frac{\theta}{2}\right)$
B. $v \sin \theta$
C. $2 v \cos \left(\frac{\theta}{2}\right)$
D. $v \cos \theta$

Answer: A

D Watch Video Solution

70. A rigid spherical body is spinning around an axis without any external torque. Due to temperature its volume increases by 3%.

Then percentage change in its angular speed is:

$$
\text { A. }-2 \%
$$

B. -1%

C. -3%

D. 1%

Answer: A

D Watch Video Solution

71. A solid sphere and a hollow sphere of equal mass and radius are placed over a rough horizontal surface after rotating it about its mass centre with same angular velocity ω_{0}. Once the pure rolling starts let v_{1} and v_{2} be
the linear speeds of their centres of mass.

Then
A. $v_{1}=v_{2}$
B. $v_{1}>v_{2}$
C. $v_{1}<v_{2}$
D. data is insufficient

Answer: C
(Watch Video Solution
72. A circular platform is mounted on a vertical
frictionless axle. Its radius is $r=2 m$ and its
moment of inertia is $I=200 \mathrm{~kg}-m^{2}$. It is
initially at rest. A 70 kg man stands on the
edge at speed $v_{0}=1.0 \mathrm{~m} / \mathrm{s}$ relative to the
ground. The angular velocity of the platform
is:
A. $1.2 \mathrm{rad} / \mathrm{s}$
B. $0.4 \mathrm{rad} / \mathrm{s}$
C. $2.0 \mathrm{rad} / \mathrm{s}$

D. $0.7 \mathrm{rad} / \mathrm{s}$

Answer: D

D View Text Solution

73. A ball of mass m and radius r rolls inside a
hemispherical shell of radius R. It is released
from rest from point A as shown in figure. The angular velocity of centre of the ball in
position B about the centre of the shell is.

A. $2 \sqrt{\frac{g}{5(R-r)}}$
B. $\sqrt{\frac{10 g}{7(R-r)}}$
C. $\sqrt{\frac{2 g}{5(R-r)}}$
D. $\sqrt{\frac{5 g}{2(R-r)}}$

Answer: B

- Watch Video Solution

74. A disc of radius 0.1 m rolls without sliding
on a horizontal surface with a velocity of
$6 \mathrm{~m} / \mathrm{s}$. It then ascends a smooth continuous
track as shwon in figure. The height upto
which it will ascend is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. $2.4 m$
B. $0.9 m$
C. $2.7 m$
D. 1.8 m

Answer: D

D View Text Solution

75. A sphere is moving on a smooth surface with linear speed v_{0} and angular velocity ω_{0}. It finds a rough inclined surface and it starts climbing up:

A. if $v_{0}>R \omega_{0}$ friction force will act downwards
B. if $v_{0}<R \omega_{0}$, frictio force will act upwards
C. if $v_{0}=R \omega_{0}$ no friction force will act
D. if all above case friction will act upwards

Answer: A

D View Text Solution
76. An inclined plane makes an angle of 60°
with horizontal. A disc rolling acceleration
equal to:
A. $\frac{g}{3}$
B. $\frac{3}{4} g$
C. $\frac{g}{\sqrt{3}}$
D. $\frac{g}{2}$

Answer: C

- Watch Video Solution

77. A force F is applied at the top of a ring of mass M and radius R placed on a rough
horizontal surface as shown in figure. Friction
is sufficient to prevent slipping. The friction
force acting on the ring is:

A. $\frac{F}{2}$ towards right
B. $\frac{F}{3}$ towards left
C. $\frac{2 F}{3}$ towards right
D. Zero

Answer: D

D Watch Video Solution

78. In both the figures all other factors are same, except that in figure (i) $A B$ is rough and $B C$ is smooth while in figure (ii) $A B$ is smooth and $B C$ is rough. In figure (i), if a
sphere is released from rest it starts rolling.

Now consider the figure (ii), if same sphere is A released from top of the inclined plane, what will be the kinetic energy of the sphere on reaching the bottom:

(i)

(ii)
A. is same in both the cases
B. is greater in case (i)
C. is greater in case (ii)

D. information insufficient

Answer: B

D Watch Video Solution

79. A billiard ball of mass m and radius r, when
hit in a horizontal direction by a cue at a
height h above its centre, acquired a linear
velocity v_{0}. The angular velocity ω_{0} acquired by the ball is

$$
\text { A. } \frac{2 v_{0} h}{5 r^{2}}
$$

B. $\frac{5 v_{0} h}{2 r^{2}}$
C. $\frac{2 v_{0} r^{2}}{5 h}$
D. $\frac{5 v_{0} r^{2}}{2 h}$

Answer: B

- Watch Video Solution

80. A wheel of radius R rolls on the ground
with a uniform velocity v. The relative acceleration of topmost point of the wheel with respect to the bottommost point is:
A. $\frac{v^{2}}{R}$
B. $\frac{2 v^{2}}{R}$
C. $\frac{v^{2}}{2 R}$
D. $\frac{4 v^{2}}{R}$

Answer: B

D Watch Video Solution

81. A plank with a uniform sphere placed on it resting on a smooth horizontal plane. Plank is pulled to right by a constant force F. If sphere
does not slip over the plank. Which of the

following is incorrect?

A. Acceleration of the centre of sphere is
less than that of the plank
B. Work done by friction acting on the
sphere is equal to its total kinetic energy
C. Total kinetic energy of the system is
equal to work done by the force F

D. None of these

Answer: D

D Watch Video Solution

82. A rod of length l is given two velocities v_{1}
\& v_{2} in opposite directions at its two ends at rigt angles to the length. The distance of the instantaneous axis of rotation from v_{1} is:
A. zero
B. $\frac{v_{1}}{v_{1}+v_{2}} l$
C. $\frac{v_{2} l}{v_{1}+v_{2}}$
D. $\frac{l}{2}$

Answer: B

D View Text Solution

83. Two particle of equal mass m at A and B
are connected by a rigid light rod $A B$ lying on
a smooth horizontal table. An impulse J is
applied at A in the plane of the table and
perpendicular at $A B$. The velocity of particle at A is
A. $\frac{J}{2 m}$
B. $\frac{J}{m}$
C. $\frac{2 J}{m}$
D. zero

Answer: B

- View Text Solution

1. A ring mass m and radius R has three particle attached to the ring as shown in the figure. The centre of the centre v_{0}. Find the kinetic energy of the system. (Slipping is absent).

A. $6 m v_{0}^{2}$
B. $12 m v_{0}^{2}$
C. $2 m v_{0}^{2}$
D. $8 m v_{0}^{2}$

Answer: A

D Watch Video Solution

2. A block of mass m moves on a horizontal rough surface with initial velocity v. The height
of the centre of mass of the block is h from the surface. Consider a point A on the surface.
A. Angular momentum about A is $m v h$ initially.
B. The velocity of the block decreases as
time passes
C. Torque of the forces acting on block is
zero about A
D. Angular momentum is not conserved about A

Answer: A::B::D

D Watch Video Solution

3. A uniform circular disc of radius r. 1placed on a rough horizontal plane has initial velocity
v_{0} and an angular velocity ω_{0} as shown. The disc comes to rest after moving some distance

A. the friction force acts in the backwards
direction
B. the point of contact of disc with ground
has zero velocity
C. v_{0} must be equal to $\frac{r \omega_{0}}{2}$ in magnitude

D. v_{0} must be equal to $2 r \omega_{0}$ in magnitude

Answer: A::C

D View Text Solution

4. A non-uniform ball of radius R and radius of
gyration about geometric centre $=R / 2$ is
kept on a frictionless surface. The geometric
centre coincides with the centre of mass. The
ball is struck horizontally with a sharp impulse
$=J$ the point of application of the impulse is at a height h above the surface. then.
A. the ball will slip on surface for all cases
B. the ball will roll purely is $h=\frac{5 R}{4}$
C. the ball will roll purely if $h=\frac{3 R}{2}$
D. there will be no rotation if $h=R$

Answer: B::D

- Watch Video Solution

5. Two equal uniform rods P and Q move with
the same velocity v as shown in the figure. The
second rod has an angular velocity
$\omega(<6 v / l)$ (clockwise) about G in addition to
v.

A. If th ends A and A^{\prime} are suddenly fixed
simultanesouly, both rods will rotate with the same angular velocity
B. If the ends A and A^{\prime} are suddenly fixed
simultaneously, the rod Q will rotate
with greater angular velocity
C. If the ends B and B^{\prime} are suddenly fixed
simultantaneously both rods will rotate
with the same angular velocity
D. If the ends B and B^{\prime} are suddenly fixed
simultaneously, the rod P will rotate
with greater angular velocity

- Watch Video Solution

6. A thin uniform rod of mass m and length L rotates with the constant angular velocity ω about .the vertical axis passing through the rod's suspensjon point O. It describes a carried surface, then:
A.centrifugal force acting on rod is
$m \frac{L}{2} \sin \theta \omega^{2}$ and will pass through centre of mass
B. centrifugal force acting on rod is
$m \frac{L}{2} \sin \theta \omega^{2}$ and will not pass through
centre of mass
C. $\theta=\cos ^{-1}\left(\frac{3 g}{2 \omega^{2} L}\right)$
D. $\theta=\cos ^{-1}\left(\frac{g}{\omega^{2} L}\right)$

Answer: B::C

D View Text Solution

7. A thin uniform rigid rod of length l is hinged

at one end so that it can move ina vertical plane by rotating about a horizontal axis through upper end. The lower end is given a sharp blow and made to acquire a linear velocity Maximum height attained by lower
end of the rod is:

A. $\frac{v_{0}^{2}}{3 g}$ for $v_{0}<\sqrt{6 g l}$
B. $\frac{3 v_{0}^{2}}{g}$ for $v_{0}<\sqrt{6 g l}$
C. $2 l$ for $v_{0} \geq \sqrt{6 g l}$

$$
\text { D. } l \text { for } v_{0}=\sqrt{3 g l}
$$

Answer: C::D

D View Text Solution

8. A cylinder is rotated clockwise and lowered
slowly on arough inclined plane with

($\mu=0.8)$. Then:

A. cylinder will start going upwards
B. cylinder will start going downwards
C. frictional force will act upwards

D. frictional force will act downwards

Answer: B::C

- View Text Solution

9. A wad of sticky clay of mass m and velocity
v_{i} is fired at a solid cylider of mass M and
radius R figure. The cylinder is initially at rest and is mounted on a fixed horizontal axle that
runs through the centre of mass. The line of motion of the projectile is perpendicular to
the axle and at a distance d, less thant R, from the centre

A. Angular velocity just after collision is

$$
\omega=\frac{2 m v_{i} d}{(M+2 m) R^{2}}
$$

B. Linear momentum of cylinder and clay is
conserved

C. Angular momentum of cyliner and clay is

conserved
D. Mechanical energy is conserved

Answer: A::C

D View Text Solution

10. A uniform circular disc of radius R lies in
the $X Y$ plane with its centre coinciding with
the origin.The moment of inertia about an axis passing through a point on the X-axis at a
distance $x=2 R$ and perpendicular to the $X-Y$
plane is equal to its moment of inertia about an axis passing through a point on the Y-axis at a distance $y=d$ and parallel to the X-axis in the $X-Y$ plane. The value of d is

$$
\begin{aligned}
& \text { A. } \frac{4}{3} R \\
& \text { B. } \frac{\sqrt{17}}{2} R \\
& \text { C. } \sqrt{13} R \\
& \text { D. } \frac{\sqrt{15}}{2} R
\end{aligned}
$$

Answer: B
11. A uniform disc of mass M and radius R is
pivoted about a horizontal axis passing through its edge. It is released from rest with
its centre of mass at the same height as the pivot.

A. The angular velocity of disc when its centre of mass is directly below the pivot
is $\sqrt{\frac{4 g}{3 r}}$
B. The force exerted by the pivot at this
instant is $\frac{7}{3} m g$
C. Angular momentum of disc is conserved
D. Angular acceleration of disc at the given instant is zero

Answer: A::C

12. Two rods $O A$ and $O B$ of equal length and

 mass are lying on $x y$ plane as shown in figure.Let $I_{x}, I_{y} \& I_{z}$ be the moment of inertias of both the rods abour x, y and z axis respectively. Then:

A. $I_{x}=I_{y}>I_{z}$
B. $I_{x}=I_{y}<I_{z}$
C. $I_{x}>I_{y}>I_{z}$
D. $I_{z}>I_{y}>I_{x}$

Answer: B

D View Text Solution

13. Two skaters approach each other as shown
in figure and lock hans. Given each has an initial speed of $2.50 \mathrm{~m} / \mathrm{s}$ relative to ice. Each
has a mass of 70.0 kg and their centres of mass are 0.800 m from their locked hands. You may approximate their momerits of inertia to be that of point masses at this radius:

A. Final angular velocity is $3.12 \mathrm{rad} / \mathrm{s}$
B. Skaters begin to rotate about CM of
system
C. There is a no loss of energy

D. If skaters pull each other and reduce

their separation by half thei energy is increased

Answer: A::B::D

D View Text Solution

14. A wire of length l and mass m is first bent in a circle, then in a square and then in an equilateral triangle. The moment of inertia in
these three cases about an axis perpendicular
to their planes and passig through their centres of mass are $I_{1}, I_{2} \& I_{3}$ respectively. Then maximum of them is:
A. I_{1}
B. I_{2}
C. I_{3}
D. data insufficient

Answer: A

D View Text Solution
15. A disc of radius R rolls on a horizontal ground with linear acceleration a and angular acceleration α as shown in Fig. The magnitude of acceleration of point P as shown in the figure at an instant when its linear velocity is v and angular velocity is ω will be a

A. $\sqrt{(a+r \alpha)^{2}+\left(r \omega^{2}\right)^{2}}$
B. $\frac{a r}{r}$
C. $\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}$
D. $r \alpha$

Answer: A

D Watch Video Solution

16. A block with a square base measuring axa and height h, is placed on an inclined place.

The coefficient of friction is m. The angle of
inclination (θ) of the plane is gradually increased. The block will.
A. topple before sliding if $\mu>\frac{a}{h}$
B. topple before sliding if $\mu<\frac{a}{h}$
C. slide before toppling if $\mu>\frac{a}{h}$
D. slide before toppling if $\mu<\frac{a}{h}$

Answer: A::D

D Watch Video Solution

17. A sphere is projected npon a rough inclined
plane. The friction coefficient between the
solid sphere and the incline is μ. The centre of
the sphere is given an initial upward' velocity
at $t=0$ without imparting any initial angular
velocity. Then, which of the following statement (s) is/are true?
A. Pure rolling will defin!tely begin before
the sphere reaches the highest point and the sphere will continue to roll
purely after that, even while coming
down.
B. Pure rolling will definitely begin before
the sphere reaches the highest point
but the sphere will continue to roll
purely after that (even while coming
down) only if μ is greater- than a certain
value.
C. The sphere will be rolling purely while
coming down if $\mu>\frac{(2 \tan \alpha)}{7}$
D. The sphere cannot roll purely while moving up the incline

Answer: B::C

D Watch Video Solution

18. A uniform rod of length l and mass $2 m$
rests on a smooth horizontal table. A point of
mass m moving horizontally at right angle to
the rod with velocity v collides with one end of
the rod and sticks to it, then:
A. angular velocity of the system after
collision is $\frac{v}{l}$
B. angular velocity of the system after
collision is $\frac{v}{2 l}$
C. the loss in kinetic enerlgy of the system
as a whole as a result of the collision is
$\frac{m v^{2}}{6}$
D. the loss in kinetic energy of the system
as a whole as a result of the collision is
$\frac{7 m v^{2}}{24}$

Answer: A::C

D Watch Video Solution

19. A mass m is attached to a rigid rod of negligible mass as shown in figure. The system
is pivoted at point O and rotates about the indicated z-axis with angular velocity $\vec{\omega}$,
maintaining a fixed angle θ with the axis.

A. Angular momentum \vec{L} of mass m about
pivot is parallel to vector $\vec{\omega}$
B. Angular momentum \vec{L} of mass m about
pivot is never parallel to $\vec{\omega}$
C.

$$
\vec{L}_{0}=-m r^{2} \omega \sin \theta \cos \theta \hat{i}+m r^{2} \omega \sin ^{2} \theta \hat{k}
$$

D. Angular momentum of particle about P

is parallel

Answer: B::C::D

D Watch Video Solution

20. A projectile is projected with a velocity v_{0} at an angle θ with the horizontal as shown in
figure. The angular momentum of particle
about the origin:

A. is zero when particle is at the origin
B. is $\frac{-m v^{3} \sin ^{2} \theta \cos \theta}{2 g} \hat{k}$ when particle is at the highest point of trajectory
C. is $\frac{-2 m v^{2} \sin ^{2} \theta \cos \theta}{g} \hat{k}$ when particle is just about to hit ground

D. downward force of gravity exerts a

 torque in $-z$ direction.
Answer: A::B::C::D

D View Text Solution

21. A woman of mass m stands at the edge of ,a solid cylindrical platform of mass M and
radius R. At $t=0$ the platform is rotating
with negligible friction at angular velocity ω_{0} about a vertical axis passing through the
centre. The woman begins to walk with speed v, relative to the platform, towards the centre of the platform:
A. Angular velocity when woman reaches
the centre is $\left(v+\frac{m}{M}\right) \omega_{0}$
B. Angular velocity as function of time is

$$
\omega=\frac{M+m}{M+2 m(1-v t / R)^{2}}
$$

C. Energy of system is conserved
D. Momentum of woman increases in magnitude

Answer: A::B::D

- View Text Solution

22. A solid cube of side $2 a$ and mass M, sliding
on a smooth surface with velocity v_{0}, collides
inelastically with the raised edge of the table:

A. Moment of inertia of cube about edge is
$\frac{4 M a^{2}}{3}$
B. Moment of inertia of cube about edge is
$\frac{8 M a^{2}}{3}$
C. Minimum value of v so that cube falls off
the table is $\sqrt{1.19 g}$

D. Energy of system is conserved

Answer: B::C

23. A large spool of rope stands on the ground with the end of the rope lying on the top edge of the spool. A person grabs the end of the rope and walks a distance, holding onto it figure. The spool rolls behind the person without slipping. What is the length of rope that unwinds from the spool? How far does

A. Length of rope that unwinds from the spool is l
B. Length of rope that unwinds from the
spool $\frac{l}{2}$
C. Spool's CM moves through $\frac{l}{2}$

D. Spools's CM moves through l

Answer: B::C

D View Text Solution

24. A constant power is suppied to a rotating
disc. The relationship between the angular
velocity (ω) of the disc and number of rotations (n) made by the disc is governed by

$$
\text { A. } \omega \propto n^{1 / 3}
$$

B. $\omega \propto n^{3 / 2}$
C. $\omega \propto n^{2 / 3}$
D. $\omega \propto n^{2}$

Answer: A

- Watch Video Solution

25. A force F is applied on the top of a cube as
shown in the figure. The coefficient of friction
between the cube and the ground is μ. If F is
gradually increased, find the value of μ for
which the cube will topple before sliding.

A. $\mu>1$
B. $\mu<\frac{1}{2}$
C. $\mu>\frac{1}{2}$
D. $\mu<1$

Answer: C
26. A uniform rod $A B$ of mass m and length l is at rest on a smooth horizontal surface. An impulse J is applied to the end B, perpendicular to the rod in the horizontal direction. Speed of particlem P at a distance l $\frac{l}{6}$ from the centre towards A of the rod after time $t=\frac{\pi m l}{12 J}$ is.
A. $2 \frac{\mathrm{~J}}{\mathrm{~m}}$
B. $\frac{J}{\sqrt{2} m}$
C. $\frac{J}{m}$
D. $\sqrt{2} \frac{J}{m}$

Answer: D

D Watch Video Solution

27. A rod $A B$ of length $1 m$ is placed at the edge for a smooth table as shown in figure. It is hit horizontally at point B. If the displacement of centre of mass m in $1 s$ is
$5 \sqrt{2} m$. The angular velocity of the rod is
$\left(g=10 m / s^{2}\right)$

A. $30 \mathrm{rad} / \mathrm{s}$
B. $20 \mathrm{rad} / \mathrm{s}$
C. $10 \mathrm{rad} / \mathrm{s}$
D. $5 \mathrm{rad} / \mathrm{s}$

Answer: A

- View Text Solution

28. Two cylinders having radii $2 R$ and R and moment of inertia $4 I$ and I about their central axes are supported by axles perpendicular to
their planes. The large cylinder is initially
rotating clockwise with angular velocity ω_{0}.
The small cylinder is moved to the right until it touches the large cylinder and is caused to rotate by the frictional force between the two.

Eventually slipping ceases and the two cylinders rotate at constant rates in opposite directions. During this

A. angular moment of system is conserved
B. kinetic energy is conserved
C. neither the angular momentum nor the kinetic energy is conserved

D. both the angular momentum and kinetic

 energy are conserved
Answer: C

D Watch Video Solution

29. The acceleration α of the plank P required to keep the centre C of a cylinder in a fixed position during the motion is (no slipping
takes place between cylinder and plank)

A. $\frac{g}{2} \sin \theta$
B. $2 g \sin \theta$
C. $g \sin \theta$
D. $\sqrt{2} g \sin \theta$

Answer: B

D View Text Solution

30. A rod of mass m and length l is hinged at one of its end A as shown in figure. A force F is applied at a distance x from A. The acceleration of centre of mass (a) variea with x
as:

A.

C.

D.

Answer: B

D View Text Solution
31. A uniform rod of length l is pivoted at point A. It is struck by a horizontal force which delivers an impulse J at a distance x from point A as shwon in figure, impulse delivered
by pivot is zero if x is equal to

A. $\frac{l}{2}$
B. $\frac{l}{3}$
C. $\frac{2 l}{3}$
D. $\frac{3 l}{4}$

Answer: C

D View Text Solution

32. In the figure shown mass of both, the spherical body and block is m. Moment of inertia of the spherical body about centre of
mass is $2 m R^{2}$. The spherical body rolls on the
horizontal surface. There is no slipping at any
surfaces in contact. The ratio of kinetic energy of the spherical body to that of block is

A. $\frac{3}{4}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

33. A particle is projected with velocity v at an angle of θ with horizontal. The average angular velocity of the particle from the point of projection to impact equals:
A. $\frac{g \cos \theta}{\theta v}$
B. $\frac{g}{v \sin \theta}$
C. $\frac{g}{v \theta}$
D. $\frac{g \theta}{v \sin \theta}$

Answer: D

- View Text Solution

34. In the figure shown, the plank is being pulled to the right with a constant speed v. If
the cylinder does not slip then:

A. the speed of the centre of mass of the cylinder is $2 v$
B. the speed of the centre of mass of the
cylinder is zero
C. the angular velocity of the cylinder is $\frac{v}{R}$

D. the angular velocity of the cylinder is

zero

Answer: C

D Watch Video Solution

35. Two men each of mass m stand on the rim
of a horizontal circular disc, diametrically opposite to each other. The disc has a mass M and is free to rotate about a vertical axis passing through its centre of mass. Each man
start simultaneously along the rim clockwise and reaches their original starting points on the disc. The angle turned through by the disc with respect to the ground (in radian) is:
A. $\frac{8 m \pi}{4 m+M}$
B. $\frac{2 m \pi}{4 m+M}$
C. $\frac{m \pi}{M+m}$
D. $\frac{4 m \pi}{2 M+m}$

Answer: A

36. A time varying force $F=2 t$ is applied on a spool as shown in figure. The angular momentum of the spool at time t about bottommost point is:

A. $\frac{r^{2} t^{2}}{R}$
B. $\frac{(R+r)^{2}}{r} t^{2}$
C. $(R+r) t^{2}$
D. data is insufficient

Answer: C

- Watch Video Solution

37. A spherical body of radius R rolls on a horizontal surface with linear velociltly v. Let
L_{1} and L_{2} be the magnitudes of angular momenta of the body about centre of mass
and point of contact P. Then:

A. $L_{2}=2 L_{1}$ if radius of gyration $K=R$
B. $L_{2}=2 L_{1}$ for all cases
C. $L_{2}>2 L_{1}$ if radius of gyration $K<R$
D. $L_{2}>2 L_{1}$ if radius of gyration $K>R$

Answer: A::D

- Watch Video Solution

38. A thin uniform rod $A B$ of mass 1 kg move translationally with acceleration $a=2 m / s^{2}$ due to two antiparallel force as shown. If
$l=20 \mathrm{~cm}$ then:

A. $F_{1}=3 N$
B. $F_{1}=5 N$
C. Length of rod is $1 m$
D. Length of rod is 80 cm

Answer: A::C

- Watch Video Solution

39. The torque τ on a body about a given point is found to be equal to $A x x L$ where A is a constant vector, and L is the angular momentum of the body about that point.

From this it follows that
A. $d \vec{L} / d t$ is perpendicular to \vec{L} at all instants to time
B. the component of \vec{L} in the direction of \vec{A} does not change with time.
C. the magnitude of \vec{L} does not change with time.
D. \vec{L} does not change with time.

Answer: A::B::C::D

- Watch Video Solution

40. A ball moves over a fixed track as shown in
the figure. From A and B the ball rolls without
slipping. If surface B is frictionless and
K_{A}, K_{B} and K_{C} are kinetic energies of the ball at A, B and C respectively then:

A. $h_{A}>h_{C}, K_{B}>K_{C}$
B. $h_{A}>h_{C}, K_{C}>K_{A}$
C. $h_{A}=h_{C}, K_{B}=K_{C}$

$$
\text { D. } h_{A}<h_{C}, K_{B}>K_{C}
$$

Answer: A::B

D Watch Video Solution

41. A uniform cylinder of mass M and radius R
rolls without slipping down a slope of angle 8
with horizontal. The cylinder is connected to a spring of force constant k at the centre, the other side of which is connected to a fixed support at A. The cylinder is released when the

A. is always upwards
B. is always downwards
C. is initially upwards and then becomes
downwards

D. is initially upwards and then becomes

zero

Answer: C

(D) Watch Video Solution

COMPREHENSION_TYPE

1. A solid cylinder of mass m rolls on a rough
surface with velocity v_{0}. It collides elastically
with a cubical block of same mass at rest. The
centre of mass of both the bodies are at same
height. Coefficient of friction between
horizontal surface and cylinder as well as horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Percentage of energy of cylinder lost due to collision is:
A. zero
B. 50%
C. 66.67%
D. 33.33%

Answer: D

D Watch Video Solution

2. A solid cylinder of mass m rolls on a rough
surface with velocity v_{0}. It collides elastically
with a cubical block of same mass at rest. The
centre of mass of both the bodies are at same
height. Coefficient of friction between
horizontal surface and cylinder as well as horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Regarding frictional force acting on cylinder we can say that:
A. before collision friction acts forward
B. before collision friction does not act
C. after collision friction acts backwards
D. after collision friction does not act

Answer: A

D Watch Video Solution

3. A solid cylinder of mass m rolls on a rough
surface with velocity v_{0}. It collides elastically with a cubical block of same mass at rest. The centre of mass of both the bodies are at same
height. Coefficient of friction between
horizontal surface and cylinder as well as
horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Time after which the cylinder starts pure rolling again:
A. $\frac{2 v_{0}}{3 \mu g}$
B. $\frac{v_{0}}{\mu g}$

> C. $\frac{2 v_{0}}{\mu g}$ D. $\frac{v_{0}}{3 \mu g}$

Answer: D

D Watch Video Solution

4. A solid cylinder of mass m rolls on a rough surface with velocity v_{0}. It collides elastically with a cubical block of same mass at rest. The centre of mass of both the bodies are at same height. Coefficient of friction between
horizontal surface and cylinder as well as
horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Velocity of cube when the cylinder starts pure rolling:
A. $\frac{v_{0}}{2}$
B. $\frac{v_{0}}{3}$
C. $\frac{2 v_{0}}{3}$
D. $\frac{v_{0}}{4}$

Answer: C

D Watch Video Solution

5. A solid cylinder of mass m rolls on a rough
surface with velocity v_{0}. It collides elastically with a cubical block of same mass at rest. The centre of mass of both the bodies are at same height. Coefficient of friction between
horizontal surface and cylinder as well as
horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Velocity of cylinder with which it will collide with cube again is:
A. v_{0}
B. $\frac{v_{0}}{3}$
C. $\frac{2 v_{0}}{3}$
D. $\frac{v_{0}}{4}$

Answer: B

D Watch Video Solution

6. A solid cylinder of mass m rolls on a rough
surface with velocity v_{0}. It collides elastically with a cubical block of same mass at rest. The centre of mass of both the bodies are at same height. Coefficient of friction between
horizontal surface and cylinder as well as
horizontal surface and cube is μ. No frictional exists between cylinder and cube. The cylinder collides the, cube at $t=0$, then.

Maximum separation between cylinder before
it collide the cube again is:

$$
\begin{aligned}
& \text { A. } \frac{v_{0}(2)}{\mu g} \\
& \text { B. } \frac{v_{0}^{2}}{4 \mu g}
\end{aligned}
$$

C. $\frac{v_{0}^{2}}{4 \mu g}$
D. zero

Answer: C

D Watch Video Solution

7. A uniform rod mass m and length L is free to rotate about hinge O. A slight disturbance
cause the rod to rotate freely about O and it strikes the ground.

Velocity with which the non-hinged end of rod strikes the surface is:
A. $\sqrt{2 g L}$
B. $\sqrt{3 g L}$
C. $\sqrt{6 g L}$
D. $\sqrt{g L}$

Answer: B

D Watch Video Solution

8. A uniform rod mass m and length L is free
to rotate about hinge O. A slight disturbance
cause the rod to rotate freely about O and it strikes the ground.

Horizontal force applied on rod by hinge just before the rod hits the surface is:
A. $m g$
B. $\frac{m g}{4}$

> C. $\frac{3 m g}{4}$
> D. $\frac{3 m g}{2}$

Answer: D

D Watch Video Solution

9. A uniform rod mass m and length L is free
to rotate about hinge O. A slight disturbance
cause the rod to rotate freely about O and it strikes the ground.

Vertical force applied by hinge on rod at the moment it strikes the ground is:
A. $m g$
B. $\frac{m g}{4}$
C. $\frac{3 m g}{4}$
D. $\frac{3 m g}{2}$

Answer: B

D Watch Video Solution

10. A spool of mass m has moment of inertia
$I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner
cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface
is sufficiently rough and th.e spool never slides on the surface.

For $\theta=0^{\circ}$, the acceletation of spool is
A. $\frac{F}{m}$
B. $\frac{F}{2 m}$
C. $\frac{F}{6 m}$
D. $\frac{F}{3 m}$

Answer: D

D Watch Video Solution

11. A spool of mass m has moment of inertia
$I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface is sufficiently rough and th.e spool never slides on the surface.

For $\theta=60^{\circ}$ the acceleration of spool is
A. $\frac{F}{m}$
B. $\frac{F}{6 m}$
c. $\frac{F}{2 m}$
D. zero

Answer: D
12. A spool of mass m has moment of inertia
$I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface is sufficiently rough and th.e spool never slides on the surface.

Regarding to the direction of frictional force, which of the following statement is correct?

A. For $0 \leq \theta \leq 90^{\circ}$, it always acts

 leftwardsB. For $0 \leq \theta \leq 60^{\circ}$, it acts leftwards and for $60^{\circ} \leq \theta \leq 90^{\circ}$ it acts rightwards
C. it becomes zero at certain angle θ between 0 to 90°
D. None of these

Answer: A

D Watch Video Solution

13. A spool of mass m has moment of inertia
$I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner
cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface is sufficiently rough and th.e spool never slides on the surface.

Regarding to the direction of rotation of spool which of the following statement is true?
A. spool rotates clockwise $0<\theta<90^{\circ}$
B. spool rotates anticlockwise $0<\theta<90^{\circ}$
C. spool rotates clockwise for $0 \leq \theta<60^{\circ}$
and anticlockwise for $60^{\circ}<\theta \leq 90^{\circ}$
D. spool rotates anticlockwise for
$0 \leq \theta<60^{\circ} \quad$ and clockwise for
$60^{\circ}<\theta \leq 90^{\circ}$

Answer: C

D Watch Video Solution

14. A spool of mass m has moment of inertia
$I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface is sufficiently rough and th.e spool never slides on the surface.

Maximum frictional force acting on the spool is:

> A. $\frac{F}{2}$ towards right
> B. $\frac{2 F}{3}$
> C. $\frac{5 F}{6}$
> D. $\frac{F}{6}$

Answer: B
(Watch Video Solution
15. A spool of mass m has moment of inertia $I=2 m R^{2}$ about its axis of symmetry. The inner and outer radius of spool R and $2 R$ respectively. Thread is wounded on the inner cylinder and its one end is pulled a force F acting at angle θ with horizontal. The surface is sufficiently rough and th.e spool never slides on the surface.

Maximum frictional force acting on the spool is:
A. 'for position 1, spool will rotate clockwise
B. for position 2, spool will hot rotate
C. for position 3, spool will rota.te anticlockwise
D. all of the above

Answer: D
16. A string wrapped around a cyliner of mass
m and radius R. The end of the string is
connected to block of same mass hanging vertically. No friction exists between the horizontal surface and cylinder.

Acceleration of hanging mass is:
A. g
B. $\frac{g}{2}$
C. $\frac{g}{4}$
D. $\frac{3 g}{4}$

Answer: D

D View Text Solution

17. A string wrapped around a cyliner of mass
m and radius R. The end of the string is
connected to block of same mass hanging
vertically. No friction exists between the horizontal surface and cylinder.

Acceleration of cylinder is:
A. g
B. $\frac{g}{2}$
C. $\frac{g}{4}$
D. $\frac{3 g}{4}$

Answer: C
18. A string wrapped around a cyliner of mass m and radius R. The end of the string is connected to block of same mass hanging vertically. No friction exists between the horizontal surface and cylinder.

Distance moved by cylinder during time taken by it to complete one rotation is:
A. $2 \pi R$
B. πR
C. $3 \pi R$
D. $\frac{4 \pi R}{3}$

Answer: B

D View Text Solution
19. A string wrapped around a cylinder of mass m and radius R. The end of the string is connected to block of same mass hanging
vertically. No friction exists between the horizontal surface and cylinder.

Distance moved by hanging mass during the above time interval is:
A. $2 \pi R$
B. πR
C. $3 \pi R$
D. $\frac{4 \pi R}{3}$

Answer: C

D Watch Video Solution

20. A string wrapped around a cyliner of mass
m and radius R. The end of the string is
connected to block of same mass hanging
vertically. No friction exists between the
horizontal surface and cylinder.

Velocity of point of contact 'of cylinder at this moment is:
A. zero
B. $\sqrt{\frac{\pi R g}{2}}$ left wards
C. $\sqrt{\frac{\pi R g}{2}}$ rightwards
D. $\sqrt{\pi R g}$

Answer: B

- Watch Video Solution

21. A string wrapped around a cyliner of mass m and radius R. The end of the string is connected to block of same mass hanging vertically. No friction exists between the horizontal surface and cylinder.

Velocity of hanging block at this moment is: is:
A. $\sqrt{2 \pi R g}$
B. $\sqrt{8 \pi R g}$
C. $\sqrt{\frac{\pi R g}{2}}$
D. $\sqrt{45 \pi R g}$

Answer: D

D Watch Video Solution

22. A sphere a ring and a disc of same mass and radius are allowed to roll down three similar sufficiently rough inclined planes as
shown in the figure from same height.

Which of the follwing order is true for final $K E$ of the bodies?
A. sphere $>$ disc $>$ ring
B. ring $>$ disc $>$ sphere
C. disc $>$ ring $>$ sphere
D. disc $=$ ring $=$ sphere

Answer: D
23. A sphere a ring and a disc of same mass and radius are allowed to roll down three similar sufficiently rough inclined planes as shown in the figure from same height.

Which of the following order is true for final linear velocity of the bodies?
A. sphere $>$ disc $>$ ring
B. ring $>$ disc $>$ sphere
C. disc $>$ ring $>$ sphere
D. disc $=$ ring $=$ sphere

Answer: A

D Watch Video Solution

24. A sphere a ring and a disc of same mass and radius are allowed to roll down three similar sufficiently rough inclined planes as shown in the figure from same height.

Which of the following order is' true for tiine taken by the bodies to reach the bottom of incline?
A. sphere $>$ disc $>$ ring
B. ring $>$ disc $>$ sphere
C. disc $>$ ring $>$ sphere
D. disc $=$ ring $=$ sphere

Answer: D
25. A sphere a ring and a disc of same mass and radius are allowed to roll down three similar sufficiently rough inclined planes as shown in the figure from same height.

Which of the following order is true for frjctional force acting on the bodies during their rolling?
A. sphere $>$ disc $>$ ring
B. ring $>$ disc $>$ sphere
C. disc $>$ ring $>$ sphere
D. disc $=$ ring $=$ sphere

Answer: B

D Watch Video Solution

26. Two discs A and B are mounted coaxially
ona vertical axle. The discs have moments of inertia l and $2 l$ respectively about the common axis. Disc A is imparted an initial angular
velocity 2ω using the centre potential energy of a spring compressed by a distance x_{1}. Disc
B is imparted angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2}. Both the disc rotate in the clockwise direction.

The rotation $x_{1} /\left(x_{2}\right.$ is.
A. 2
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

D Watch Video Solution

27. Two discs A and B are mounted coaxiallay
on a vertical axle. The discs have moments of
inertia I and 2 I respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by a distance
x_{1} Disc B is imparted an angular velocity ω by a spring having the same spring constant and
compressed by a distance x_{2} Both the discs
rotate in the clockwise direction.

When disc B is brought in contact with disc A,
they acquire a common angular velocity in
time t . The average frictional torque on one disc by the other during this period is
A. $\frac{2 I \omega}{3 t}$
B. $\frac{9 I \omega}{2 t}$
C. $\frac{9 I \omega}{4 t}$
D. $\frac{3 I \omega}{2 t}$

- Watch Video Solution

28. Two discs A and B are mounted coaxially
ona vertical axle. The discs have moments of inertia l and $2 l$ respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the centre potential energy of a spring compressed by a distance x_{1}. Disc
B is imparted angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2}. Both the disc rotate in the clockwise direction.

The loss of kinetic energy the above process is

$$
\begin{aligned}
& \text { A. } \frac{I \omega^{2}}{2} \\
& \text { B. } \frac{I \omega^{2}}{3} \\
& \text { C. } \frac{I \omega^{3}}{4} \\
& \text { D. } \frac{I \omega^{3}}{6}
\end{aligned}
$$

Answer: B
(Watch Video Solution
29. Two discs A and B are mounted coaxially
on a vertical axle. The discs have moments of inertia I and $2 I$ respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by a distance
x_{1}. Disc B is imparted an angular velocity ω by
a spring having the same spring constant and
compressed by a distance x_{2}. Both the discs
rotate in the clockwise direction.

A small object of uniform density rolls up a
curved surface with an initial velocitiy v. It
reaches upto a maximum height of $\frac{3 v^{2}}{4 g}$ with respect to the initial position. The object is:
A. ring
B. solid sphere
C. hollow sphere
D. disc

Answer: D

D View Text Solution

MATCH THE COLUMN

1. Match the statements, situations in Column

I with that in Column II. One or more matching
is possible.

- View Text Solution

2. Match the statements, situations in Column

I with that in Column II. One or more matching

is possible.

3. Match the statements, situations in Column

I with that in Column II. One or more matching

is possible.

4. Match the statements, situations in Column

I with that in Column II. One or more matching

is possible.

5. For different bodies of circular cross-section

 of same mass and radius R are situated at rest at the top of a rouogh inclined plane ofheight h.At $t=0$ they all begin to roll without slipping wooden.

(D)

(S) Direction of friction force cannot be determined.

$$
6 .
$$

(D) View Text Solution

7. In column various bodies of same mass and

 radius R are being lowered on a rough horizontal surface.
8. All the rigid bodies lie in smooth horizontal
plane.
(C)

(R) Angular momentun increases.
(5) Linear momentum !increases.

(A$)$

Rod is massless, dumb-bell is placed on a smooth horizontal: surface.
(II)

(A)

(P) Conservation of 'angular momentum

A small particle of mass m is given an initial velocity in horizontal plane and winds its cord around the fixed vertical shaft of radius a.

(Q) Conservation of kinetic energy.

A smooth rod rotates with angular velocity ω_{0}. A small. sleeve starts sliding aiong the rod.
!
(C) Two iceskaters approach each (R) other at ecual speeds ajong parallel path separated by some distance. They link hands as they 'pass by and pull each other to. reduce their separation.
(D)

(S) Work done by internal forces. total mechanical energy.

9.

D View Text Solution

10. Each object shown in column I has mass
$2 m$. The ring has mass m and radius R. The other components rod, lamina have total mass
m. The shaded part in any figure represent a
lamina axis I and II are in plane of figure, moment of inertia about their axis is represented by I_{1}, I_{2}. Moment of inertia about
axis through O and perpendicular to plane of figure is give by I_{0}.

11. A spol is lying on a rough horizontal
surface. Forces F_{1}, F_{2}, F_{3} and F_{4} act in
different directions, as represented in column
I. Match the information in column I with II.

- View Text Solution

12. Column I shows a rigid body of circlar cross-section projected on a rough surface, with indicated velocity and angular velocity.

Friction is sufficient for pure rolling.

