©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

COMPOSITION AND RESOLUTION OF

VELOCITIES

Example

1. Three equla force, each of magnitude P, act along the side $A B, B C$, and $C A$ of a trangle.

Calculate the resultant force.

D Watch Video Solution

2. A ship is sailing north at the rate of 4 cm per second, the current is taking it east at the rate of 3 cm per second and a sailor is climbing a vertical pole at the rate of 2 cm per
second. Find the resultant velocity of the sailor in space.

D Watch Video Solution

3. To a man walking at the rate of $3 \mathrm{~km} / \mathrm{h}$ the rain appear to fall vetically douwnwards. When he increases his speed $6 \mathrm{~km} / \mathrm{h}$ it appears to meet him at an angle of 45° with vertically. Find the speed of rain.

- Watch Video Solution

4. The wind appears to blow form the north to
a man movinf in the north -east direction.
When he doubles his velocity the wind appears to move in the direction $\cot ^{-1} 2$ east of north. Find the actual direction of the wind.

- Watch Video Solution

5. A $2-m$ wide truck is moving with a uniform speed $v_{0}=8 \mathrm{~ms}^{-1}$ along a straight horizontal road. A pedestrian starts to cross the road with a uniform speed v when the
truck is $4 m$ away from him, The minimum value of v so that he can cross the road safely is.

D Watch Video Solution

6. Show that the direction of the shortest
route is at right angles to the river when the
velocity of the swimmer is greater than that of
the river. Show also that when the velocity of
the swimmer is less than that of the river, the
direction is $\tan ^{-1} v / \sqrt{u^{2}-v^{2}}$ where $\mathrm{v}=$ velocity of swimmer and $u=$ velocity of river.

D Watch Video Solution

Exercise

1. The greatest an least resultant of two forces acting at a point are 13 N and 5 N . Calculate each force.

D Watch Video Solution

2. A particle is acted on by forces $1,2,3$ and 4 N parallel to the side of a rectangle taken in order. Find resultant.

- Watch Video Solution

3. A pith ball of mass 1.5 g , suspended by a silk
fibre, is blown to one side by a horizontal current of air so that the fibre make an angle of 30° with the vertical. Find the force of air current on the ball.
4. The resultant of two equal velocities is equal to either. What is the angle between them?

D Watch Video Solution

5. A uniform rod of mass 3 kg and length 1 m is
suspended from a fixed point by means of two
strings of lengths 0.6 m and 0.8 which are
attached to the free ends of the rod. Find the tensions in the strings.

D Watch Video Solution

6. A river is $\frac{1}{2} \mathrm{~km}$ wide and flows at the rate of

3 kmph. A man, who can swim in still water at
the rate of 5 kmph wishes to reach the other bank of the river. In what direction should he start swimmin to cross the river (a) along the shortest route, (b) in the shortest possible
time ? Calculate how much time he will take to cross the river in the two cases.

D Watch Video Solution

7. To a man walking at 5 kmph rain appears to
fall vertically, and when he doubles his speed it appears to make an angle of 30° with the vertical. Find the actual velocity of the rain. In what direction will rain appear to fall if the man suddenly turns around when his speed is 5 kmph ?

Watch Video Solution

8. A ship is travelling due east at $10 \mathrm{~km} / \mathrm{h}$. A ship heading 30° east of north is always due north from the first ship. The speed of the second ship in km / h is

D Watch Video Solution

9. A motorboat going downstream overcome a raft at a point $\mathrm{A}, \tau=60 \mathrm{~min}$ later it turned back and after some time passed the raft at a
distance $l=6.0 \mathrm{~km}$ from the point A. Find the
flow velocity assuming the duty of the engine to be constant.

- Watch Video Solution

10. A man walking on a road with a velocity of

5 km per hour encounters rain falling vertically with a velocity of 25 km per hour. At what angle should he holds his umbrella in order to protect himself form the rain?
11. If the resultant of two forces of magnitudes
p and $2 p$ is perpendicular to p, then the angle between the forces is

D Watch Video Solution

12. Two cars are moving in the same direction with the same speed $30 k m / h r$. They are separated by a distance of $5 k m$, the speed of a car moving in the opposite direction of it
meets these two cars at an interval of 4 minutes, will be.

D Watch Video Solution

13. A man wants to cross a river 500 m wide.

His rowing speed in still water is 3 kmph . The river flows at a speed of 2 kmph . If the man's walking speed on the shore is 5 kmph , (a) find
the path he should take to get to the point directly opposite to his starting point in the
shortest time. (b) How long does it take to get there?

D Watch Video Solution

14. Find the speed of two objects if ,when they move uniformly towards each other, they get 5 m closer in every second and when they move uniformly in the same direction with their original speed, they get 4 m closer every 10s
15. The resultant of two forces of magnitude 5

N and 3 N trisects the angle between them.

Calculate the angle between them.

D Watch Video Solution

16. Two bodies were thrown simultaneously
from the same point, one, straight up, and the other, at an angle of $\theta=60^{\circ}$ to the horizontal. The initial velocity of each body is equal to $v_{0}=25 \mathrm{~m} / \mathrm{s}$. Neglecting the air drag,
find the distance between the bodies
$t=1.70 s$ later.

D Watch Video Solution

17. Two particles, 1 and 2, move with constant velocities v_{1} and v_{2} along two mutually perpendicular straight lines toward the intersection point O . At the moment $t=0$ the particles were located at the distances l_{1} and l_{2} from the point O . How soon will the distance
between the particles become the smallest? What is it equal to?

D Watch Video Solution

18. An aeroplane has to go from a point O to another point A, at distance d due 37° east of north. A wind is blowing due north at a speed of $20 \mathrm{~m} / \mathrm{s}$. The air speed of the plane is v. (a)

Find the direction in whihc the pilot should head the plane to reach the point A. (b) Find
the time taken by the plane to go from O to A

D Watch Video Solution

19. Two boats A and B moved away from a boy anchored in the middle of a river. A moved along the river and B at right angle to it.

Having moves off equal distances from the boy, the boats returned. Find the ratio of the
times of motion of the boats, if the velocity of
each boat with respect to still water is η times greater than the velocity of water current.

D Watch Video Solution

20. A boat moves relative to water with a velocity which is $n=2.0$ times less than the river flow velocity. At what angle to the stream direction must the boat move to minimize drifting?
21. A car window pane of length 25 cm is hinged at the top and 5 cm of its lower portion is covered by a fixed pane. Calculate the maximum anlgle by which the window pane can be raised outward without letting rain water enter into the car when it races through rain (falling vertically at 20 kmph) at 60 kmph .

- View Text Solution

22. On a two lane road, car (A) is travelling with a speed of $36 \mathrm{kmh}^{-1}$. Tho car B and C approach car (A) in opposite directions with a speed of $54 \mathrm{kmh}^{-1}$ each. At a certain instant, when the distance ($A B$) is equal to ($A C$), both being $1 \mathrm{~km},(B)$ decides \rightarrow overtake A before
C does, What minimum accelration of car (B)
is required to avoid and accident.

D Watch Video Solution

23. A train of length $l=350 \mathrm{~m}$ starts moving rectilinearly with constant acceleration
$w=3.0 \cdot 10^{-2} m / s^{2}, t=30 s$ after the start
the locomotive headlight is switched on (event
1), and $\tau=60 s$ after that event the tail signal
light is switched on (event 2). Find the distance between these events in the reference frames fixed to be train and to the

Earth. How and at what constant velocity V relative to the Earth must a certain reference
frame K move for the two events to occur in it at the same point?
24. A short fired at a moving train ($u=30 \mathrm{~km} / \mathrm{h}$)
at an angle $\theta=$ arc $\sin 1 / 5$ with the track enters a compartment of dimension
$a \times b=12 m \times 14 m$ through a corner away
form the engine and passes out through the diagonally opposite corner. Calculate the speed of the shot.
25. The velocity of water current in a river changes with distance along the perpendicular to the river according to the law $u=\frac{2 u_{0}}{d} y$ for $0 \leq y \leq \frac{d}{2} \quad$ where $\quad u_{0}=$ velocity in the mid-stream $d=$ width of the river

$$
=\frac{2 u_{0}}{d}(d-y) \text { for } \frac{d}{2} \leq y \leq d .
$$

A boat travels from a point O on one block of the river to the opposite bank and its steering angle is constantly changed to keep its relative velocity perpendicular to the river current. Calculate the time in which the boat
will reach the other bank. The velocity of the boat in still water is u_{0}.

- View Text Solution

