©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

DOPPLER EFFECT

Examples

1. A person standing on one side of a road
blows a whistle which has a frequency of

600 Hz . A cyclist passes at 16 kilometre per hour. What does the frequency of the whistle appear to be to the cyclist before and after passing ?
(Velocity of sound in air $=350 m s^{-1}$)

D Watch Video Solution

2. Two express trains moving at 100 kilometre per hour are travelling towards each other while one of them is whistling continuously. If
the frequency of the note is 1000 Hz , find the
apparent pitch to an observer in the other train (a) before the trains pass by each other and (b) after they have passed each other. (Velocity of sound in air $=340 \mathrm{~m} / \mathrm{s}$)

D Watch Video Solution

3. A source of sonic oscillations of frequency
$n_{0}=2000 \mathrm{~Hz}$ and a receiver are located on
the same normal to a wall. Both the source
and the receiver are stationary and the wall
recedes from the source with a velocity
$u=10 \mathrm{~cm} / \mathrm{s}$. Find the beat frequency registered by the receiver. The velocity of sound is $v=340 \mathrm{~m} / \mathrm{s}$

D Watch Video Solution

4. A source of sonic oscillations of frequency
$n_{0}=2000 H z$ and a receiver are located at the
same point. At the instant $t=0$ the source starts receding form the receiver with constant acceleration $a=10 \mathrm{~ms}^{-2}$. Find the
frequency registered by the reciver at the
instant $t=10 s . \quad$ Velocity of sound,
$v=340 m / s$

D Watch Video Solution

5. Two trains run at the same speed
$v=90 \mathrm{~km} / \mathrm{h}$ along a strainght track one after
the other with a separation $l=2 k m$. At the instant when they are located symmetrically relative to the point A at a distance $b=1 \mathrm{~km}$
form the track, both emit a brief signal of
frequency $n=500 H z$. What will be the
nature of the sound at A ? The speed of sound
is $V=350 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

Exercises

1. A train approaches a stationary observe at a speed of 75 kilometres per hour sounding a whistle of frequency 1000 Hz . What will be the apparent frequency of the whistle to the observes? Velocity of sound $=332 m s^{-1}$

D View Text Solution

2. A train is whistling while approaching a tunnel at a speed of 36 kmph . The driver hears
the echo of the whistle reflected from the
tunnel and estimates its frequency to be 850

Hz . Find the actual frequency of the whistle.

The velocity of sound in air $=330 \mathrm{~m} / \mathrm{s}$

D View Text Solution

3. An observer on a railway station platform observed that as the train passed the station
at 96 kmph, the frequency of the whistle appeared to drop by 400 Hz . Find the frequency of the whistle. (Velocity of sound $=1200 \mathrm{~km} / \mathrm{h})$
4. Two aeroplanes are approaching each other and their velocities are 160 and 240 kilometres per hour. The frequency of the note emitted by the first as heard by the passengers in the other is 1000 Hz . Calculate the true frequency of the note as heard by its own passengers. (Velocity of sound $=1200 \mathrm{kmph}$)
5. A man is standing beside a railway line
listening to the whistle of a passing train. The whistle which has frequency of 1000 Hz suffers an apparent change of 100 Hz . What is the speed of the train ? Velocity of sound $=333.3 m s^{-1}$

D View Text Solution

6. Show that Dopple effect is greater when the source approaches the observe than when the
observer approaches the source with the same

speed.

D View Text Solution

7. The wavelength of the spectral line coming from a star is changed by the motion of the star from $6000 \AA$ to $6001 \AA$. Find the velocity of the star with respect to the earth. (Velocity of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

D View Text Solution

8. A upersonic jet plane of Mach 1.5 is sighted overhead. How far will it be after 10 s ? (Velocity of sound $=340 \mathrm{~ms}^{-1}$)

- View Text Solution

9. Show that the frequency of sound vibrations
emitted by a source will appear to be doubled
to a listener fixed in space when the source approaches the listener with a speed equalling half the speed of sound.
10. The ratio of the apparent frequencies of the hom of a car when approching and receding a stationary observer is $11: 9$. What is the speed of the car, if the velocity of sound in air is $300 m / s$?

D View Text Solution

11. Can you go fast enough to have red light appear green $\quad \lambda($ red $)=6200 \AA$ and
$\lambda($ green $)=5400 \AA$.

- View Text Solution

12. A bullet is fired with a speed of $670 \mathrm{~ms}^{-1}$.

Find the angle made by the shock wave with the line of motion of the bullet. What is the

Match number of the wave? (Velocity of sound in air $=335 \mathrm{~ms}^{-1}$)
[Hint $\left.: \sin \theta=V / V_{s}\right]$

- View Text Solution

13. A sonometer wire under tension of 64 N
vibrating in its fundamental mode is in
resonance with a vibrating tuning fork. The
vibrating portion of the sonometer wire has a
length of 10 cm and mass of 1 kg . The vibrating
tuning fork is now moved away from the
vibrating wire with a constant speed and an
observer standing near the sonometer hears
one beat per second. Calculate the speed with
which the tuning fork is moved, if the speed of
sound in air is $300 \mathrm{~m} / \mathrm{s}$.
14. A receiver and a source of sonic oscillations of frequency $v_{0}=2000 \mathrm{~Hz}$ are located along the x-axis. The source swings simple harmonically along the axis with a constant frequency and amplitude $a=50 \mathrm{~cm}$. If the frequency band -width registered by the stationary receiver is $\Delta v=200 \mathrm{~Hz}$, find the value of oscillation frequency of the source. Speed of sound in air $=340 \mathrm{~ms}^{-1}$

D View Text Solution

15. A train approaching a hill at a speed of 36 kmph sounds a whistle of frequency 500 Hz when it is at a distance of 1 km . A wind blows at 36 kmph in the direction of the motion of the train. Find (i) the frequency of the whistle as heard by an observer on the hill, (ii) the distance from the hill at which the echo from
the hill is heard by the driver and its
frequency. Velocity of sound $=1200 \mathrm{kmph}$

- Watch Video Solution

16. A source of sound of frequency $1000 H_{Z}$ moves unifornly along a straight line with
velocity 0.8 times velocity of sound. An observer is located at a distance $l=250 m$ from this line. Find
(a) the frequency of the sound at instant when the source is closest to the observer.
(b) the distance of the source when he observer no change in the frequency.

D Watch Video Solution

17. A source of sound of frequency 2000 Hz moves towards a wall velocity $u=6 \mathrm{~cm} / \mathrm{s}$ and
the wall moves towards the source at $v=3 \mathrm{~cm} / \mathrm{s}$. What is the beat frequency registered by a receiver moving towards the wall at $w=2 \mathrm{~cm} / s$, it being in between the source and the wall ? Velocity of sound $=340 \mathrm{~m} / \mathrm{s}$

D View Text Solution

18. A stationary source sends forth
monochromatic ($n=500 H z$) sound. A wall
approaches it with velocity $u=5 \mathrm{~cm} / \mathrm{s}$. The velocity of sound in the medium is
$v=340 \mathrm{~m} / \mathrm{s}$. What is the wavelength and
frequency of the sound wave reflected from
the wall ?

19. A source of sonic oscillations of frequency
$n_{0}=1500 \mathrm{~Hz}$ moves at right angles to the
wall with velocity $u=2.0 \mathrm{~m} / \mathrm{s}$. Two stationary
receivers R_{1} and R_{2} are located on a straight line coinciding with the line of motion of the source in the sequence: R_{1}-source- R_{2}-wall.

Which reciver registers the beat and what is
the beat frequency? The velocity of sound, $v=340 \mathrm{~m} / \mathrm{s}$.
20. When a spectral line of wavelength
$\lambda=0.60 \mu m$ is observed in the directions of the opposite edge of the solar disc ($R=7.0 \times 10^{8} \mathrm{~m}$) along its equator, there is a difference in wavelength equal to
$\Delta \lambda=8.0 p m$. Find the period of the sun's revolution about its own axis.

$\left\{\frac{\text { Observer }}{\text { Large Distance }}\right.$

21.

A whistle emitting a sound of frequency $440 H$
z is tied to string of 1.5 m length and rotated with an angular velocity of $20 \mathrm{rad} / \mathrm{sec}$ in the horizontal plane. Then the range of frequencies heard by an observer stationed at a large distance from the whistle will $(v=330 m / s)$
22. A source of sound is moving along a circular orbit of radius 3 meter with an angular velocity of $10 \mathrm{rad} / \mathrm{s}$. A sound detector located far away from the source is executing linear simple harmonic motion along the line
$B D$ with an amplitude $B C=C D=6$ meters
. The frequency of oscillation of the detector is 5 $\frac{5}{\pi}$ per second. The source is at the point A when the detector is at the point B. If the source emits a continuous sound wave of frequency 340 Hz , Find the maximum and the minimum frequencies recorded by the
detector.

D Watch Video Solution

23. A bus is moving towards a huge wall with a
velocity of $5 \mathrm{~m} / \mathrm{s}^{-1}$. The driver sounds a horn
of frequency 200 Hz . The frequency of the beats heard by a passenger of the bus will be

$H z$ (Speed of sound in air $\left.=342 m / s^{-1}\right)$

D Watch Video Solution

24. A train approaching a crossing at a speed of $100 \mathrm{~km} / \mathrm{h}$ sounds a whistle 400 Hz when it is
1.5 km from the crossing. There is no wind and the speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. What frequency is heard by an observer 1.0 km on the strainght road from the crossing at right angles.
