びdoubtnut

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

HYDRODYNAMICS

Example

1. A bent tube is lowered into a stream of water as
shown in the figure. The velocity of the stream is
$v=2 m / s$. The closed upper end of the tube is at a
height $h_{0}=10 \mathrm{~cm}$ from the suface of water in the stream and has a small orifice. To what height will the water jet from the orifice spurt?

- Watch Video Solution

2. A cylinder of height $\mathrm{h}=1 \mathrm{~m}$ has a narrow vertical
slit along its wall running up to a length $\mathrm{I}=40 \mathrm{~cm}$
from the bottom. The width of the slit $b=1 \mathrm{~mm}$. The cylinder is filled with water with the slit closed. Find the force experienced by the vessel immediately after then slit is opened?

3. A lead sphere of density $\rho=11.3 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ is steadily in glycerine $\left(\rho^{\prime}=1260 \mathrm{~kg} \mathrm{~m}^{-3}\right.$ and $\eta=1.4 \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}$.) What is the maximum diameter of the sphere till which the flow around the sphere remains laminar? It is given that transition to turbulent flow corresponds to Reynolds number Re $=0.5$.

- Watch Video Solution

1. TheThe velocity of flow of water in the main water supply pipe is $1.0 \mathrm{~ms}^{-1}$. What is the velocity in the deliverty pipe if area of cross-section of the supply pipe is 16 times that of the delivery pipe?

- Watch Video Solution

2. Calculate the velocity of efflux of kerosene form a
tank in which the pressure is $4 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$ above the atmospheric pressure. The density of kerosene is $800 \mathrm{~kg} \mathrm{~m}^{-3}$
[Hint: $v=\sqrt{2 g h}]$
3. The reading of pressure meter attached with a closed pipe is $3.5 \times 10^{5} \mathrm{Nm}^{-2}$. On opening the
value of the pipe, the reading of the pressure meter is reduced to $3.0 \times 10^{5} \mathrm{Nm}^{-2}$. Calculate the speed of the water flowing in the pipe.

- Watch Video Solution

4. A metel plate 100 sq cm in area rests on a 2 - mm layer of castor oil, whose coefficient of viscosity is
1.55 SI units. Calculate the horizontal force
required to move the plate with a speed of 3 cm per
second.
[Hint:
$F=-\eta A \frac{d v}{d x}$. Here $\frac{d v}{d x}=\frac{3 \times 10^{-2} m s^{-1}}{2 \times 10^{-3}}=15 s^{-1}$
.]

- Watch Video Solution

5. Calculate the critical velocity of water through a narrow tube of radius 0.3 mm . Coefficient of viscosity of water is 0.0011 SI units and density of water $1000 \mathrm{~kg} \mathrm{~m}^{-3}$. Take Reynolds number as 1000.
6. Water is conveyed through a tube 8 cm in diameter and 4 km in length at the rate of 120 litres per minute. Calcualte the pressure difference required to maintain the flow. Coefficient of viscosity of water $=0.001$ SI units.
[Hint" " $V=\frac{\pi P r^{4}}{8 \eta l}$]

- Watch Video Solution

7. Find the terminal velocity acquired by a steel ball of diameter 3.2 mm falling under gravity through an oil of density $920 \mathrm{~kg} \mathrm{~m}^{-3}$ and viscosity
$1.64 \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}$. The density of steel may be taken as $7820 \mathrm{~kg} \mathrm{~m}{ }^{-3}$.

- Watch Video Solution

8. A steel ball-bearing of diameter 3 mm falls through glycerine and covers a distance of 25 cm in 10 sec . The specific gravity of steel and glycerine are
7.8 and 1.26 respectively. What is the viscosity of glycerine. Density of water $=1000 \mathrm{~kg} m^{-3}$.

- Watch Video Solution

9. An air bubble of radius 1 cm is found to rise in a cylindrical vessel of large radius at a steady rate of
0.2 cm per second. If the density of the liquid is $1470 \mathrm{~kg} m^{-3}$, find its viscosity. Take $g=9.8 \mathrm{~ms}^{-2}$

- Watch Video Solution

10. Calculate the velocity with which rain drops reach us if the diameter of rain drops is 1 mm and viscosity of air 18×10^{-6} SI units.
11. A bubble of air of 2 mm diameter rises in a liquid of viscosity 0.075 SI unit and density 1350 kg per cubic metre. Findthe terminal velocity of the bubble.

- Watch Video Solution

12. A vessel fitted with a horizontal capillary tube near its bottom is alternately filled with two liquids of specific gravity 0.8 and 0.9 . It empties itself in 40 and 30 minutes respectively. Calculate the ratio of their coefficient of viscosity.
13. A vessel of cross-section 20×10^{-4} square metres has a capillary tube of length 10 cm and internal radius 0.5 mm at the bottom. It is initially
filled with water to a height of 20 cm above the
capillary tube. Find the time taken by the vessel to expt one-half of its contents, given that the viscosity of water of 0.001 SI units. Density of water $=1000 \mathrm{~kg}$ per cubic metre.
[Hint : See example 5]

- Watch Video Solution

14. A tank is filled with water to a height H . A hole is punched in the wall at a depth h below the water surface. Find the distance x from the wall at which the stream strikes the floor. Could a hole be punched at another depth so that this second stream would have the same range? If so at what depth? For what value of h is range maximum?

- Watch Video Solution

15. In a horizontal oil pipeline of constant crosssectional area the pressure decrease between two point 300 km apart is 5000 pascal (1 pascal = 1
newton per square meter). What is the loss of energy per unit volume per unit distance?
[Hint : Loss in energy $=\frac{P_{1}}{\rho}-\frac{P_{2}}{\rho}$ because $\frac{P}{\rho}$ is pressure energy per unit mass and loss in energy per unti volume $=P_{1}-P_{2}$.]

- Watch Video Solution

16. A cylindrical vessel of hieght h and base area S is
filled with water. An orifice of area $s \ll S$ is made at the bottom of the vessel. Neglection viscosity find how soon the vessel would be emptied.
17. A horizontally oriented tube $A B$ of length I rotates with a constant angular velocity ω about a stationary vertical axis $O O^{\prime}$ passing through the end A (figure). The tube is filled with an ideal fluid.

The end A of the tube is open, the closed end B has a very small orifice. Find the velocity of the fluid relative to the tube as a function of the column
"height" h.

D Watch Video Solution

18. A horizontal cylindrical vessel with a small orifice
of area s is first filled with a liquid of density ρ and
then forced out through it by applying a constant force on the piston closing the cylinder. The time taken is t . The time taken is t . Calculate the work done.

- Watch Video Solution

19. Water flows out of a big tank along a horizontal tube of length I and radius r and bent at right angles at the other end. The rate of flow is Q .

Calculate the moment of the force exerted by the water on the tube about the other end. Neglect viscosity of water.

