©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

INTENSITY AND PITCH OF MUSICAL

NOTES

Examples

1. The disc of a siren revolves 600 times in on eminute and it is in unison with a tuning fork of frequency 480 Hz . Calculaate the number of holes in the disc.

- Watch Video Solution

2. Calculate the intensiyt of the wave
$y=0.002 \sin (4000 t-10 x) . \quad$ Density of
medium $=1.29 \mathrm{kgm}^{-3}$
3. A smoked plate falls vertically under gravity
and a tuning fork traaces waves on it. It was
found from the trace that there 10 waves are spaced over 4.2 cm . Calculate the frequecny of the tuming fork.

D Watch Video Solution

4. At a distance $r_{0}=20 m$ form an isotropic point source of sound the loudness level is
$L_{0}=30 d B$. Neglicting the damping of the
sound wave, find : (a) the loudness level at a distacne $r=10 m$ form the source, (b) the distance form the source at which sound is not heard.

- Watch Video Solution

Exercise

1. A siren with 20 holes in its disc given 5 beats
per second with a closed pipe sounding its
fundamental note when the disc makes 2400
revolution per minute. What is the effective length of the pipe? (velocity of sound in air $=360 m s^{-1}$)

D Watch Video Solution

2. A siren wth a ring of 200 holes is making 132
revolutions per mintue and is found to emit a note which is an octave higher than of a tuning fork. Find the frequency of the latter.
3. A note of frequency 300 Hz has an intensity of 1 microwatt per square metre. What is the amplitude of the air vibrations caused by this sound ? (Density of air $=1.293 \mathrm{kgm}^{-3}$ and velocity of sound in air $=332 \mathrm{~ms}^{-1}$)

- Watch Video Solution

4. The disc of a siren has 100 holes and rotates
at the rate of 1000 revolutions per mintue.
Find the frequency and wavelength of the
note emitted by the siren. (Velocity of sound in

$$
\text { air }=350 \mathrm{~m} / \mathrm{s})
$$

D Watch Video Solution

5. A smoked plate falls vertically under gravity.

A tuning fork traces wave on it. It is found that
the lengths of two conscutive grounps of 10
waves are 5.143 and 6.64 cm respectively. What is the frequecny of the fork?
6. A pointer attached to a vibrating fork presses a smoked cylinder lightly. The cylinder is suddenly rotated through one complete revolution in 0.75 seconds. The pointer traces

192 waves on the cylinder. Calculate the frequency of the tuning fork.

D Watch Video Solution

7. The minimum intensity of audibility of a
source is 01^{-12} watt $/ \mathrm{m}^{2}$. If the frequency of
the note is 1000 Hz , calculate the amplitude of
vibrations of air particles. Density of air $=1.293 \mathrm{kgm}^{-3}$ and velocity of sound $=340 m s^{-1}$
$\left[\right.$ Hint $\left.\quad a=\sqrt{\frac{I}{2 \pi^{2} n^{2} \rho C}}\right]$

D Watch Video Solution

8. Calculate the intensity of a note of frequency 1000 Hz if the amplitude of vibration is $10^{-9} \mathrm{~cm}$. Density of air
$=1.3 \mathrm{kgm}^{-3}$ and velocity of sound
$=340 \mathrm{~ms}^{-1}$

- Watch Video Solution

9. Calculate the amplitude of vibrations of air particles when a wavee of intensity 10^{-3} watt / m^{2} is produced by a tuning fork of frequency 540 Hz . Velocity of sound in air $=340 \mathrm{~ms}^{-1}$ and density of air $=1.3 \mathrm{kgm}^{-3}$
10. S_{1} and S_{2} are two loudspeakers with the same frequency of 165 Hz and acoustic output 1.2×10^{-3} and 1.8×10^{-3} watt respectively. They vibrate in the same phase. P is a point at a distance 4 m from S_{1} and 3 m from S_{2}.
(a) How are the phases of the two waves arriving at P related ?
(b) What is the intensity of P if S_{1} is turned off
$\left(\begin{array}{ll}S_{2} & \text { on }\end{array}\right) ?$
(c) What is the intensity of sound at P if S_{2} is turmed off?
(d) What is the intensity at P with S_{1} and S_{2}
on?
[Hint : For phase relationship see example 6 of chapter 1. Intensity is inversely proportional to square of the distance]

D View Text Solution

11. The intensity of a sound wave 20 m away
from the sound source is $3 n W / m^{2}$. Find the intensity of the wave 32 m away from the source, if the half -thickness for sound of this
frequency is 120 m .
12. Calculate the interval between two sound waves of frequencies 1000 Hz and 400 Hz .

Express the interval on logarithmic scale and in centioctaves.
[Hint absolute interval $=n_{1} / n_{2}$ interval on
\log scale $\log n_{1} / n_{2}$, interval in centioctaves
$\left.=\frac{\log n_{1} / n_{2}}{\log 2} \times 100.\right]$
13. At a distance $r=100 \mathrm{~m}$ from a isotropic point sources of sound 200 Hz the loudness level is $L=50 d B$. The standard intensity level, i.e., intensity level just audible to human ear is $I_{0}=0.1 \mathrm{nW} / \mathrm{m}^{2}$. Find the sonic power of the source.

- Watch Video Solution

14. A plane sound wave propagates along the x -axis. At the point $x=0$, the loudness level is
$L_{0}=60 \mathrm{~dB}$. Find : (a) the loudness level at
$x=50 m$, (b) the co-ordinates x at which the sound is not heard any more (μ, the absorption coefficient of the medium $=0.04 m^{-1}$ Audible level of sound $=1 \mathrm{~dB}$)

- Watch Video Solution

