©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

ISOTHERMAL AND ADIABATIC

 PROCESSOthers

1. A motor car tyre is pumped up to pressure of two atmosheres at $15^{\circ} \mathrm{C}$ when it suddenly bursts. Calculate the resulting drop in temperature of the escaping air $(\gamma=14)$.

D Watch Video Solution

2. A certain volume of dry air at $20^{\circ} \mathrm{C}$ is expanded to there times its volume (i) slowly,
(ii) suddenly. Calculate the final pressure and
temperature in eachh case. Atmospheric pressure $=10^{5} \mathrm{Nm}^{-2}, \gamma$ of air $=1.4$

D Watch Video Solution

3. A certain volume of a gas (diatomic) expandds isothermally at $20^{\circ} C$ until its
volume is doubled and then adiabatically until
its volume is again doubled. Find the final temperature of the gas, given $\gamma=1.4$ and that there is 0.1 mole of the gas. Also calculate
the work done in the two cases.
$R=8.3 J \mathrm{~mole}^{-1} K^{-1}$

D View Text Solution

4. The volume of one mode of an ideal gas
with adiabatic exponent γ is varied according to the law $V=a / T$, where a is constant.

Find the amount of heat obtained by the gas in this process, if the temperature is increased by ΔT.
5. In a polytropic process an ideal gas ($\mathrm{y}=1.40$) was compressed from volume
$V_{1}=10$ litres $\rightarrow v_{2}=5$ litres. The pressure increased from $p_{1}=10^{5} \mathrm{~Pa} \rightarrow p_{2}=5 \times 10^{5}$ Pa.Determine: (a) the polytropic expoment n, (b) the molar heat capacity of the gas for the process.

D Watch Video Solution

6. An ideal gas expands according to the law $p V^{2}=$ constant (a) Is it heated or cooled ?
(b) What is the molar heat capacity in this process?

- Watch Video Solution

7. A quantity of air at normal temperature is compressed (a) slowly (b) suddenly to one third of its volume. Find the rise in temperature, if any in each case, $\gamma=1.4$.
8. A volume of gas at atmospheric pressure is compressed adiabatically to half its original volume, Calculated the resulting pressure $(\gamma=1.4) .(1$ atmoshpere $=0.76$ mofmercury $)$

D Watch Video Solution

9. A gas of $\gamma=1.4$ and initial temperature
$0^{\circ} C$ is suddenly compressed to $1 / 5 t h$ its
original volume. Calculate the rise in temperature.

D Watch Video Solution

10. A volume of gas at $15^{\circ} C$ expands adiabatically until its volume is doubled. Find
the resultant temperture given that the ratio of specific heat capacity of the gas $=1.4$.
11. A gass of given mass at a pressure of $10^{5} \mathrm{Nm}^{-2}$ expands isothermally until its volume is doubled and then adiabatically until volume is again double. Find the final pressure of the gas. $(\gamma=1.4)$

D Watch Video Solution

12. A gram molecule of gas at $27^{\circ} \mathrm{C}$ expands isothermally untill its volume is doubled. Find
the amount of work done and heat absorbed.
Take $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

13. The tube of a motor car cotaining air at
$27^{\circ} C$ and 2 atmospheric pressure bursts
suddenly. Find the temperature of the air immediately after the tube bursts. $(\gamma=1.4)$

- Watch Video Solution

14. A certain mass of a gas is taken at $0^{\circ} \mathrm{C}$ in a cylinder whose walls are perfect insulators.

The gas is compressed (a) slowly, (b) suddenly
till its pressure is increased to 20 times the initial pressure $(\gamma=1.4)$. Calculate the final temperature in each case.

- Watch Video Solution

15. One cubic metre of argon at $27^{\circ} \mathrm{C}$ is adiabatically compressed so that the final
temperature is $127^{\circ} \mathrm{C}$. Calculate the new volume of the gas $(\gamma=5 / 3)$.

D Watch Video Solution

16. A gas at constant pressure P_{1}, volume V_{1} and temperture T_{1} is suddenly compressed to $\frac{V_{1}}{2}$ and then slowly expanded to V_{1} again.Find the final temperature and pressure.

- Watch Video Solution

17. A cubic metre of dry air at NTP is allowed to
expand to 5 cubic metres (i) isothermally, (ii) adiabatically. Calculate in each cae, the pressure, temperature and work done. ($\gamma=1.4$ and $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{Nm}^{-2}$)

- Watch Video Solution

18. A mole of a monatimic perfect gas is adiabatically comporessed when its temperature rises from 27° to $127^{\circ} C$.

Calculate the work done.
[Hint: Work done $=R \frac{T-T^{\prime}}{\gamma}-1$, for monatomic gas $\left.=\frac{5}{3}\right]$

- Watch Video Solution

19. A piston can freely move inside a horizontal cylinder closed from both ends. Initially, the piston separates the inside space of the cylinder into two equal parts each of volmek
V_{0} in which an ideal gas is contained under the same pressure p_{0} and at the same
temperature. What work has to be performed
in order to increase isothermally the volume of one part of gas η times compared to that of the other by slowly moving the piston?

D Watch Video Solution

20. A certain mass of nitrogen was
compressed $\eta=5.0$ times (in terms of
volume), first adiabatically, and then
isothermally. In both cases the initial state of
the gas was the same. Find the ratio of the
respective works expended in each compression.

D Watch Video Solution

21. Demonstrate that the process in which the work performed by an ideal gas is alphaortional to that corresponding
increment of its internal energy is decribed by
the equation $p V^{n}$ - const, where n is a constant.

D Watch Video Solution
22. In a certain polytropic process the volume of argon was increased $\alpha=4.0$ times. Simultaneously, the pressure decreased $\beta=8.0$ times. Find the molar heat capacity of argon in this process. Assuming the gas to be ideal.

D Watch Video Solution

23. On mole of argon expands polytropically, the polytropic constant being 1.5 , that is, the
process proceeds according to the law $p V^{1.5}=$ constant. In the process, its temperature change by $\Delta T=-26 K$. Find
a. the amount of heat obatined by the gas.
b. the work performed by the gas.

D Watch Video Solution

24. An ideal gas has an adiabatic exponent γ.

In some process its molar heat capacity varies
as $C=\alpha / T$, where α is a constant Find :
(a) the work performed by one mole of the gas
during its heating from the temperature T_{0} to
the temperature η times higher,
(b) the equation of the process in the variables p, V.

D Watch Video Solution

25. (a) A polytropic process for an ideal gas is represented by $P V^{x}=$ constant, where $x \neq 1$. Show that molar specific heat capacity for such a process is given by
$C=C_{v}+\frac{R}{1-x}$.
(b) An amount Q of heat is added to a mono atomic ideal gas in a process in which the gas performs a work $\frac{Q}{2}$ on its surrounding. Show that the process is polytropic and find the molar heat capacity of the gas in the process.

- Watch Video Solution

26. If a gas of a volume V_{1} at pressure p_{1} is compressed adiabatically to volume V_{2} and pressure p_{2}, calculate the work done by the gas.

Watch Video Solution

27. The relation between internal energy U, pressure P and volume V of a gas in an adiabatic process is
$U=a+b P V$ where a and b are constants.
What is the effective value of adiabatic constant γ ?
28. Molar heat capacity of an ideal gas varies
as $C=C_{v}+\alpha T, C=C_{v}+\beta V$
and $C=C_{v}+a p$, where α, β and a are constant. For an ideal gas in terms of the variables T and V.

D Watch Video Solution

29. One mole of an ideal gas at temperature T expands slowly according to the law $\frac{p}{V}=$ constant.

Its final temperature is T_{2}. The work done by the gas is

D Watch Video Solution

30. A diatomic ideal gas is heated at constant volume until its pressure becomes three times.

It is again heated at constant pressure until its volume is doubled. Find the molar heat capacity for the whole process.

