©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

KINETIC THEORY OF GASES

Others

1. Caculate the root mean square velcity of molecules of a gas whose densilty is
$1.4 \mathrm{kgm}^{-3}$ at a pressure of 76 cm of mercury
(sp. gr. sp.of mercury $=13.6$ and $g=9.81 m s^{-2}$)

D Watch Video Solution

2. Calculate the root mean square velocity of
the molecules of hydrogen at $0^{\circ} C$ and $100^{\circ} C$.
Density of hydrogen at NTP $=0.0896 \mathrm{kgm}^{-3}$
and density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$

D Watch Video Solution

3. A certain mass of hydrogen occupies 100 cc at a pressure of $10^{5} \mathrm{Nm}^{-2}$ at $27^{\circ} \mathrm{C}$. What is the mass of hydrogen? Molecular weight of hydrogen is 2 and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

4. The temperature at which the root mean
square velocity of the gas molecules would becomes twice of its value at $0^{\circ} \mathrm{C}$ is

5. The molecular weight of a is 2 . Calculate the

 root mean square velocity of its molecules at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ givenn that $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
- Watch Video Solution

6. Calculate the root mean square velocity of a nitrogen molecule at NTP if the density of hydrogen under the same conditiion is $9 \times 10^{-2} \mathrm{kgm}^{-3}$
7. If root mean sqauare velocity of the molecules of hydrogen at NTP is $1.84 \mathrm{kms}^{-1}$, calculate the rms velocity of oxygen molecules at NTP. Molecular weights of hydrogen and oxygen are 2 and 32 respectively.

D Watch Video Solution

8. Calculate the number of molecules per unit
volume of a perfect gas at $27^{\circ} \mathrm{C}$ and 10 mm of
mercury. Density of mercury
$=13.6 \times 10^{3} \mathrm{kgm}^{-3} \quad$ and \quad Boltzmann
constant $=1.38 \times 10^{-23} J K^{-1}$

D Watch Video Solution

9. Calculate the molecular kinetic energyof
hydrogen at $100^{\circ} \mathrm{C}$. Molecular weights of hydrogne is 2 and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. Is it the same for all gases.

D Watch Video Solution

10. Calculate the kinetic energy per unit volume of a gas at a pressure of 10 mm of Hg .
(Density of $\mathrm{Hg}=13.6 \times 10^{3} \mathrm{kgm}^{-3}$ and $g=9.8 m s^{-2}$)

D Watch Video Solution

11. An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of $10^{-3} \mathrm{~mm}$ of mercury at $27^{\circ} \mathrm{C}$. Compute the number of air molecules contained in the bulb.

Avogadro constant $=6 \times 10^{23} \mathrm{~mol}^{-1}$,
density of mercury $=13600 \mathrm{kgm}^{-3}$ and

$$
g=10 m s^{-2}
$$

D Watch Video Solution

12. A vessel of water is put in a dry, sealed room of volume $50 \mathrm{~m}^{3}$ at a temperature $27^{\circ} \mathrm{C}$.

The saturated vapour pressure of water at $27^{\circ} \mathrm{C}$ is 40 mm of mercury. How much water will evaporate before the water is in equilibrium with its vapour?
(Relative
density
of
mercury

$$
=13.6, g=9.8 m s^{-2}
$$

$$
\left.=8.3 \mathrm{Jmol}^{-1} K^{-1}\right)
$$

D Watch Video Solution

13. A lamp of voume 50 cc was sealed off during manufacture at a pressure 0.1 newton per square metre at $27^{\circ} \mathrm{C}$. Calculate the mass of the gas enclosed in the lamp. Molecular weight of the gas $=10$ and $R=8.3 \mathrm{Jmol}^{-1} K^{-1}$
14. A cylinder of length 42 cm is divided into chambers of equal volumes and each half contains a gas of equal mass at temperature
$27^{\circ} \mathrm{C}$. The separator is a frictionless piston of insulating material. Calculate the distance by which the piston will be displacement if the temperature of one half is increaded to $57^{\circ} \mathrm{C}$.

- Watch Video Solution

15. A column of mercury of 10 cm length is contained in the middle of a narrow horizontal

1 m long tube which is closed at both the ends.

Both the halves of the tube contain air at a pressure of 76 cm of mercury. By what distance will the column of mercury be displaced if the tube is held vertically?
16. One gram mole of oxygen at 27° and one atmospheric pressure is enclosed in vessel.
(i) Assuming the molecules to be moving the
$V_{r m s}$, Find the number of collisions per second which the molecules make with one square metre area of the vessel wall.
(ii) The vessel is next thermally insulated and moved with a constant speed V_{0}. It is then
suddenly stopped. The process results in a rise of the temperature of the gas by $1^{\circ} C$.

Calculate the speed V_{0}.
17. A vessel containing one gram -mole of oxygen is enclosed in a thermally insulated vessel. The vessel is next moved with a constant speed v_{0} and then suddenly stopped.

The process results in a rise in the temperature of the gas by $1^{\circ} c$. Calculate the speed v_{0}.

- Watch Video Solution

18. A thermally insulated vessel with gaseous
nitrogen at a temperature of $27^{\circ} C$ moves
with velocity $100 \mathrm{~m} / \mathrm{s}^{-1}$. How much (in percentage) and in what way will the gas pressrue change if the vessel is brought to rest suddenly?

D Watch Video Solution

19. A vessel of volume , $V=5.0$ litre contains
$1.4 g$ of nitrogen at a temperature $T=1800 K$.

Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

D Watch Video Solution

20. A parallel beam of molecules moving with
velocity v impinges on a wall at an angle θ to
its normal. Find the pressure exerted by the beam on the wall assuming perfect elastic collisions. The concentration of the molecules in the beam is n.
21. How many degrees of freedom have the gas molecules, if under standard conditions the gas density is $1.3 \mathrm{kgm}^{-3}$ and the velocity of sound propagation in it is $C=330 \mathrm{~ms}^{-1}$.

- Watch Video Solution

22. A vessel of capacity $V=101$ contains $m_{0}=2 g$ of nitrogen molecules at $27^{\circ} C$.

Calculate the time in which half of it will
escape into a vacuum through a hole of area $s=1 \mathrm{~cm}^{2}$. You may take $\bar{c}=c_{\mathrm{rms}}$

D View Text Solution

23. Find the minimum radius of a planet of mean density $5500 \mathrm{kgm}^{-3}$ and temperature $400^{\circ} C$ which has retained oxygen in its atmosphere. Density of oxygen at STP

$$
=1.424 \mathrm{kgm}^{-3} \cdot G=6.6 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}
$$

D View Text Solution

24. A gaseous mixture enclosed in a vessel of
volume V consists of one mole of a gas A with
$\gamma=\left(C_{p} / C_{v}\right)=5 / 3$ and another gas B with
$\gamma=7 / 5$ at a certain temperature T. The relative molar masses of the gasses A and B
are 4 and 32, respectively. The gases A and B do not react with each other and are assumed to be ideal. The gaseous mixture follows the equation $P V^{19 / 13}=c o n s \tan t$, in adiabatic processes.
(a) Find the number of moles of the gas B in
the gaseous mixture.
(b) Compute the speed of sound in the gaseous mixture at $T=300 \mathrm{~K}$.
(c) If T is raised by 1 K from 300 K , find the $\%$
change in the speed of sound in the gaseous mixture.
(d) The mixtrue is compressed adiabatically to
$1 / 5$ of its initial volume V . Find the change in its adaibatic compressibility in terms of the given quantities.

- Watch Video Solution

25. At constant volume the molar heat capacity of oxyhydrogen gas (mechanical mixture of hydrogen and oxygen) is n times greater than that of water produced by the chemical combination of the gases. Find n

- Watch Video Solution

26. Calculate the kinetic energy of translation of the molecules of 20 g of CO_{2} at $27^{\circ} \mathrm{C}$.
27. Calculate the average momentum of a hydrogen molecule at $20^{\circ} \mathrm{C}$. Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$ and mass of a hydrogen molecule $=3.2 \times 10^{-27} \mathrm{~kg}$.

D Watch Video Solution

28. The maximum rarefaction produced by up-
to-date laboratory methods is $10^{-11} \mathrm{~mm}$ of mercury. What is the density of the rarest air
at $17^{\circ} C$? Molecular weight of air $=28$ and
760 mm of mercury $=1.013 \times 10^{5} \mathrm{~Pa}$.

- View Text Solution

