

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS (HINGLISH)

KINETIC THEORY OF GASES

Others

1. Caculate the root mean square velcity of

molecules of a gas whose densilty is

 $1.4kgm^{-3}$ at a pressure of 76cm of mercury (sp. gr. sp.of mercury = 13.6 and $g = 9.81ms^{-2}$)

Watch Video Solution

2. Calculate the root mean square velocity of the molecules of hydrogen at $0^{\circ}C$ and $100^{\circ}C$. Density of hydrogen at NTP $= 0.0896 kgm^{-3}$ and density of mercury $= 13.6 \times 10^3 kgm^{-3}$

3. A certain mass of hydrogen occupies 100cc at a pressure of $10^5 Nm^{-2}$ at $27^{\circ}C$. What is the mass of hydrogen? Molecular weight of hydrogen is 2 and $R = 8.3 Jmol^{-1}K^{-1}$.

Watch Video Solution

4. The temperature at which the root mean square velocity of the gas molecules would becomes twice of its value at $0^{\circ}C$ is

5. The molecular weight of a is 2. Calculate the root mean square velocity of its molecules at $0^{\circ}C$ and $100^{\circ}C$ givenn that $R = 8.3 Jmol^{-1}K^{-1}$

Watch Video Solution

6. Calculate the root mean square velocity of a nitrogen molecule at NTP if the density of hydrogen under the same conditiion is $9 \times 10^{-2} kgm^{-3}$

7. If root mean sqauare velocity of the molecules of hydrogen at NTP is $1.84 km s^{-1}$, calculate the rms velocity of oxygen molecules at NTP. Molecular weights of hydrogen and oxygen are 2 and 32 respectively.

Watch Video Solution

8. Calculate the number of molecules per unit volume of a perfect gas at $27^{\circ}C$ and 10mm of

9. Calculate the molecular kinetic energyof hydrogen at $100^{\circ}C$. Molecular weights of hydrogne is 2 and $R = 8.3 Jmol^{-1}K^{-1}$. Is it

the same for all gases.

10. Calculate the kinetic energy per unit volume of a gas at a pressure of 10mm of Hg. (Density of $Hg = 13.6 \times 10^3 kgm^{-3}$ and $g = 9.8ms^{-2}$)

Watch Video Solution

11. An electric bulb of volume 250cc was sealed during manufacturing at a pressure of $10^{-3}mm$ of mercury at $27^{\circ}C$. Compute the number of air molecules contained in the bulb. Avogadro constant $= 6 \times 10^{23}mol^{-1}$, density of mercury $= 13600 kgm^{-3}$ and

$$g=10ms^{-2}.$$

Watch Video Solution

12. A vessel of water is put in a dry, sealed room of volume $50m^3$ at a temperature $27^{\circ}C$. The saturated vapour pressure of water at $27^{\circ}C$ is 40mm of mercury. How much water will evaporate before the water is in equilibrium with its vapour? (Relative density of mercury

$$= 13.6, g = 9.8 m s^{-2}$$

and

$$= 8.3 Jmol^{-1}K^{-1}$$
)

Watch Video Solution

13. A lamp of voume 50 cc was sealed off during manufacture at a pressure 0.1 newton per square metre at $27^{\circ}C$. Calculate the mass of the gas enclosed in the lamp. Molecular weight of the gas = 10 and $R = 8.3 Jmol^{-1}K^{-1}$

14. A cylinder of length 42cm is divided into chambers of equal volumes and each half contains a gas of equal mass at temperature $27^{\circ}C$. The separator is a frictionless piston of insulating material. Calculate the distance by which the piston will be displacement if the temperature of one half is increaded to $57^{\circ}C$.

15. A column of mercury of 10cm length is contained in the middle of a narrow horizontal 1m long tube which is closed at both the ends. Both the halves of the tube contain air at a pressure of 76 cm of mercury. By what distance will the column of mercury be displaced if the tube is held vertically?

16. One gram mole of oxygen at 27° and one atmospheric pressure is enclosed in vessel. (i) Assuming the molecules to be moving the V_{rms} , Find the number of collisions per second which the molecules make with one square metre area of the vessel wall. (ii) The vessel is next thermally insulated and moved with a constant speed V_0 . It is then suddenly stopped. The process results in a rise of the temperature of the gas by $1^{\circ}C$. Calculate the speed V_0 .

17. A vessel containing one gram -mole of oxygen is enclosed in a thermally insulated vessel. The vessel is next moved with a constant speed v_0 and then suddenly stopped. The process results in a rise in the temperature of the gas by $1^{\circ}c$. Calculate the speed v_0 .

18. A thermally insulated vessel with gaseous nitrogen at a temperature of $27^{\circ}C$ moves with velocity $100m/s^{-1}$. How much (in percentage) and in what way will the gas pressrue change if the vessel is brought to rest suddenly?

Watch Video Solution

19. A vessel of volume , V=5.0 litre contains

1.4g of nitrogen at a temperature T = 1800K.

Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

Watch Video Solution

20. A parallel beam of molecules moving with velocity v impinges on a wall at an angle θ to its normal. Find the pressure exerted by the beam on the wall assuming perfect elastic collisions. The concentration of the molecules in the beam is n.

21. How many degrees of freedom have the gas molecules, if under standard conditions the gas density is $1.3kgm^{-3}$ and the velocity of sound propagation in it is $C = 330ms^{-1}$.

Watch Video Solution

22. A vessel of capacity V = 101 contains $m_0 = 2g$ of nitrogen molecules at $27^\circ C$. Calculate the time in which half of it will escape into a vacuum through a hole of area

$$s=1cm^2$$
. You may take $ar{c}=c_{
m rms}$

23. Find the minimum radius of a planet of mean density $5500kgm^{-3}$ and temperature $400^{\circ}C$ which has retained oxygen in its atmosphere. Density of oxygen at STP $= 1.424kgm^{-3}$. $G = 6.6 \times 10^{-11}Nm^2kg^{-2}$

View Text Solution

24. A gaseous mixture enclosed in a vessel of volume V consists of one mole of a gas A with $\gamma = \left(\left. C_v \, / \, C_v
ight) = 5 \, / \, 3$ and another gas B with $\gamma=7/5$ at a certain temperature T. The relative molar masses of the gasses A and B are 4 and 32, respectively. The gases A and B do not react with each other and are assumed to be ideal. The gaseous mixture follows the equation $PV^{19/13} = cons \tan t$, in adiabatic processes.

(a) Find the number of moles of the gas B in the gaseous mixture.

(b) Compute the speed of sound in the gaseous mixture at T = 300K. (c) If T is raised by 1K from 300K, find the % change in the speed of sound in the gaseous mixture.

(d) The mixtrue is compressed adiabatically to 1/5 of its initial volume V. Find the change in its adaibatic compressibility in terms of the given quantities.

25. At constant volume the molar heat capacity of oxyhydrogen gas (mechanical mixture of hydrogen and oxygen) is n times greater than that of water produced by the chemical combination of the gases. Find n

Watch Video Solution

26. Calculate the kinetic energy of translation

of the molecules of 20g of CO_2 at $27^\circ C$.

27. Calculate the average momentum of a hydrogen molecule at $20^{\circ}C$. Boltzmann constant $= 1.38 \times 10^{-23} J K^{-1}$ and mass of a hydrogen molecule $= 3.2 \times 10^{-27} kg$.

Watch Video Solution

28. The maximum rarefaction produced by uptoto-date laboratory methods is 10^{-11} mm of mercury. What is the density of the rarest air at $17^{\,\circ}C$? Molecular weight of air $\,=28$ and

760mm of mercury $= 1.013 imes 10^5 Pa$.

