©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

SECOND LAW OF THERMODYNAMICS

Others

1. A Carnot engine works between temperature
$0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. Calculate its efficiency.

- Watch Video Solution

2. Carnot engine working as a refrigerator between 260 K and 300 K receives 500 cal of heat from the freezing chamber. Calculate the heat rejected by it to the higher temperature reservior and also the work done per cycle to operate the refrigerator.
3. Calculate change in entropy when $5 g$ of pure ice melts to form water at $0^{\circ} C$ Given latent heat of ice is $80 \mathrm{cal} / \mathrm{g}$ at $0^{\circ} \mathrm{C}$.

- Watch Video Solution

4. A mass m of water at T_{1} is mixed with an equal mass of water at T_{2}. Find the change in entropy in the process Sp . Heat capacity of water $=C$.
5. Show that the entropy of a perfect gas can be written as $S=C_{v} \operatorname{Inp}+C_{p} \operatorname{In} V+S_{0}$ where S_{0} is a constant.

D View Text Solution

6. A Carnot engine works between two temperatures differing by $100^{\circ} \mathrm{C}$. If it absorbs

746 J of heat and gives 546 J of heat ot the sink, calculate the temperature of the source and sink.

- Watch Video Solution

7. In a two stage heat engine a quantity of heat Q_{1} is absorbed at a temperature T work
W_{1} is done and a quantity of heat Q_{2} expelled at a lower temperature T_{2} by the first state.

The second state absorbs the heat expelld by the first, does work W_{2} and expels a quanity of heat Q_{3} at a lower temperature T_{2} Calculate the effiency of the combination engine.
8. In a Carnot engine the temperature of the source and sink are T and $T^{\prime \prime}$, respectively. In
the first instant the temperature of the source
is increased by ΔT, keeping the sink at $T^{\prime,}$
and then $T^{\prime \prime}$ is decreased by ΔT keeping the
source at T. In which case does the engine have greater efficiency?

D View Text Solution
9. In a mechanical refrigerator the low temperature coils are at a temperature of $-13^{\circ} C$ and the compressed gas in the condenser at a temperature $27^{\circ} \mathrm{C}$. What is the theoretical coefficient of performance.

D Watch Video Solution

10. Find the efficiency of a cycle consisting of two isochoric and two adiabatic lines if the
volume of the ideal gas changes $n=10$ times
within the cycle. The working gas has $\gamma=1.5$.

D View Text Solution

11. Calculate the efficiency of a cycle consisting of two isobaric and two adiabtic lines, if the pressure changes $n=10$ times within the cycle. The working substances is an ideal gas of adiabatic exponent $\gamma=1.5$.
12. The heat capacity of a refrigerating chamber is 80000 cal . Calculate the time in which the temperature of the chamber is reduced from $0.5^{\circ} C$ ot $0^{\circ} C$ if the power of the motor working the machine is $300 W$. Ambient temperature $=27^{\circ} C$.

D Watch Video Solution

13. In a specific heat experiment $100 g$ of lead
(sp. Heat $=145 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$) at $100^{\circ} \mathrm{C}$ is
mixed with 200 g of water at 20°. Find the change in entropy.

D View Text Solution

14. The entropy of $v=4.0$ moles of an ideal gas increases by $\Delta S=23 J / K$ due to the isothermal expansion. How many times should the volume $v=4.0$ moles of the gas be increased ?

D Watch Video Solution

15. A brass rod is in thermal contact with a heat reservoir at $127^{\circ} C$ at one end and a heat reservoir at $27^{\circ} \mathrm{C}$ at the other end. Find the total change in entropy arising from the process of conduction of 1200 cal of heat through the rod. Does the entropy of the rod change?

D View Text Solution

16. Show that the entropy of a perfect gas is given by $S=C_{V} \operatorname{In} T+R \operatorname{In} V+S_{0}$

View Text Solution

