©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

SIMPLE HARMONIC MOTION

Examples

1. A particle executes simple harmonic motion
of period $16 s$. Two seconds later after it passes
through the center of oscillation its velocity is found to be $2 m / s$. Find the amplitude.

D Watch Video Solution

2. A body executing SHM has an amplititude of

10 cm and its time period is 1.5 s . Calcualte the
time taken by the body to travel a distance of
$5 \sqrt{3} \mathrm{~cm}$ from its rest position.

D Watch Video Solution
3. Write the equation for a particle in simple harmonic motion with amplitude a and angular frequency ε considering all distance from one extreme position and time when its is at the other extreme position.

- Watch Video Solution

4. Find the phase different between two particles executing simple harmonic motion with the same amplitude and frequency when
their phases at a certain moment are as shown in the figure.

D Watch Video Solution

5. A spring of force constant k and negligible mass is attached to a rigid mass m at one end and clamped to a strong support at the other.

The mass is displaced a little and then
released. Show that the body executes simple harmonic motion and calculate its time period.

If the spring is cut into three equal pieces and the same body is supported by one such piece in a smaller way, by how much will the time period be increased or decreased?

D Watch Video Solution

6. A uniform U-tube contains a very slightly mobile liquid to a height of 50 cm in each
limb. If the liquid in one lime is depressed and
then released, find the period of oscialltion of the liquid in the tube.

D Watch Video Solution

7. Two cubes of mass m_{1} and m_{2} are interconnected by a weightless spring of stiffness k and placed on a smooth horizontal
table. Then the cubes are drawn closer to each
other and released. Find the frequency of
oscillation.

D Watch Video Solution

8. A smooth horizontal disc rotates about the
vertical axis O (figure) with a constant angular
velocity ω. A thin uniform rod $A B$ of length l
performs small oscillation about the vertical axis A fixed to the disc at a distance a from the axis of the disc. Find the frequency ω_{0} of
these oscillations.

D Watch Video Solution

9. A mock - up of a CO_{2} molecule consists of
three balls interconnected by identical light springs and placed along a straight line in the
state of equilibrium. Such a system can freely perform oscillation of two types, as shown by the arrows in figure. Knowing the masses of the atomes, find the ration of frequencies of these oscillations

10. Two bodies with masses $m_{1}=1 \mathrm{~kg}$ and $m_{2}=$ 2 kg are connected by a spring of force constant $k=24 \mathrm{Nm}^{-1}$. The left ball is imparted an initial velocity $v_{0}=12 \mathrm{~cm} / \mathrm{s}$. Find (a) the frequency of the oscillations (b) the energy and the amplitude of the osciallations.

D Watch Video Solution

11. A particle of mass m is located in a one dimensional potential field where potential energy of the particle has the form $u(x)=$ $\left.\frac{a}{x^{2}}-\frac{b}{x}\right)$, where a and b are positive constants. Find the period of small oscillations of the particle.

D Watch Video Solution

12. Find the period of small osciallations in a
vertical plane performed by a small ball of
mass $m=50 \mathrm{~g}$ fixed at the middle of a thin horizontal string of length $\mathrm{I}=1 \mathrm{~m}$ and tensioned with a constant force $T=100 \mathrm{~N}$

D Watch Video Solution

Eexercies

1. A particle moves with a simple harmonic motion. If the velocities at distance of 4 cm and

5 cm from the equilibrium position are 13 cm per second and 5 cm per second respectively,
find the period and amplitude.
[Hint: Use the formula $\mathrm{v}=\omega \sqrt{a^{2}-x^{2}}$.]

D Watch Video Solution

2. A point describes simle harmonic motion in
a line 4 cm long. The velocity of the point while passing through the cente of the line is

12 cm per second. Find the period.
[Hint: use formula $v=\omega \sqrt{a^{2}-a^{1}}$]

D Watch Video Solution

3. A particle moves with simple harmonic motion in a straight line. When the distances of the particle from the equilibrium position are x_{1} and x_{2}, the corresponding velocities are u_{1} and u_{2}. Find the period of the moton.

D Watch Video Solution

4. The maximum velocity of a body undergoing

SHM is $0.004 \mathrm{~ms}^{-1}$ and its acceleration at
0.002 m from the mean position is $0.06 \mathrm{~ms}{ }^{-2}$.

Find its amplitude and period of vibration.
[Hint: Use $v_{m}=a \omega^{2} x$ numerically.[

D Watch Video Solution

5. A test tube of weight 5.6 g and external diameter 2.5 cm is allowed to float vertically in
water by placing 10.4 g of mercury at the bottom of the tube. The tube is depressed by a small amount and then released. Find the period of oscillation.
6. Find the phase difference between two particles executing simple harmonic motion with the same frequency if they are found inn
the states shown in the figures at four different points of time.

- Watch Video Solution

7. A body of mass 10 g executes SHM with amplitude $2 \times 10^{-2} \mathrm{~m}$ and time period 2 s

Calculate the energy of the particle.

D Watch Video Solution

8. A spring balance reading from 0 to 15 kg is

10 cm long. A body suspended from the spring
is found to oscillate vertically with a frequency
of 2 oscillations per second. How much does
the body weigh?
9. When the displacement is one-half the amplitude, what fraction of the total energy is kinetic and what fraction is potential? At what displacement is the energy half kinetic and half potential?

- Watch Video Solution

10. A particle moves according to the equation
$f+4 x=0$, where x is its instaneous
displacement and f its instaneous
acceleration. The maximum value of x is $20 \times 10^{-2} \mathrm{~m}$. How much time will the particle take to move from $x=0.02 \mathrm{~m}$ to $\mathrm{x}=0.08 \mathrm{~m}$?

- Watch Video Solution

11. Assuming that the atoms of a solid of atomic weight 24 behave like harmonic oscillators of frequency $3 \times 10^{15} h z$. Calculate their amplitude of vibration if the energy of a kg mole of the solid is 1.7×10^{4} joule.
12. The balance wheel of a watch vibrates with an angualr amplitude π radians and a period of 0.5 s. Find a) the maximum angular speed of the wheel, b) the angular speed of the wheel when its displacement is $\frac{\pi}{2}$ radians and c) the angular acceleration of the wheel when its displacement is $\frac{\pi}{4}$ radians.
[hint: use formulae of linear SHM for the angular SHM of the wheel]
13. A block is on a piston, which executes
simple harmonic motion in the vertical plane with a period of 1s. At what amplitude will the block and the piston separate? If the piston has an amplitude of 0.05 m , what is the maximum frequency at which the black and piston will remain in contact continously?
[hint: the block and piston will separate when acceleration of piston $=$ acceleration due to gravity.]

D Watch Video Solution

14. A body of mass $m=0.50 \mathrm{~kg}$ is suspended from a rubber cord with elasticity coefficient $k=50 N / M$. Find the maximum distance over which the body can be pulled down for the body's oscillations to remain harmonic. What is the energy of oscillation in this case?

Watch Video Solution

15. Two springs of force constants k_{1} and k_{2} are joined together and the combination is attached to a mass m resting on a frictionless table at one end and clamped to a fixed support at the other. Show the frequency of oscillation of the mass is
$f=\frac{1}{2 \pi} \sqrt{\frac{k_{1} k_{2}}{\left(k_{1}+k-(2)\right)} m}$
[Hint: Let the mass be displaced by x and the clamped end of the second spring by x^{\prime}. Then $\mathrm{mf}=-k_{1}\left(x-x^{\prime}\right)$. Considering the first spring and the mass as a single system we have $\mathrm{mf}=-k_{2} x^{\prime}$]

- Watch Video Solution

16. Two springs of force constants k_{1} and k_{2} are attached to two opposite sides of a cube of mass m resting on a frictionless table and clamped to two supports at their other ends.

Show that if the cube is displaced a little it will execute simple harmonic motion of frequency
$f=\frac{1}{2} \pi \sqrt{\frac{k_{1}+k_{2}}{m}}$

- View Text Solution

17. A point of mass m is suspended at the end of a massless wire of length I and crosssection A. If Y is the Young's modulus for the wire, obtain the frequency of oscillation for the simple harmonic motion along the vertical line.
[Hint: If x is the displacement of mass m from the equilibrium position then
$Y=\frac{\text { stress }}{\text { stra } \epsilon}=\frac{\frac{F}{A}}{\frac{x}{l}}$ or ${ }^{`} \mathrm{~F}=(\mathrm{YAx}) /(\mathrm{I})$ and this force acts opposite to x. Now proceed as in example 3.
18. Two mass m_{1} and m_{2} are suspended from
a massless spring of force constant k. When
the masses are in equilibrium, m_{1} is removed without disturbing the system. Find the angular frequency and amplitude of oscillations.

D Watch Video Solution

19. An ideal gas enclosed in a vertical
cylindrical container supports a freely moving
piston of mass M. The piston and the cylinder have equal cross - section area A. When the
piston is in equilibrium, the volume of the gas
is $\left(V_{0}\right)$ and the its pressure is $\left(P_{0}\right)$. The piston
is slightly displaced from the equilibrium
position and released. Assuming that the
system is completely isolated from its
surrounding, Show that the piston executes
simple harmonic motion and find the frequency of oscillations.

- Watch Video Solution

20. If the mass of a spring, m, is not negligible but small compared to the mass M suspended
from it, show that the period of oscillations is given by $T=2 \pi \sqrt{\left(M+\frac{m}{3}\right) / k}$, where k is the force constant of the spring.
[Hint: If x and v be the instaneous displacement and velocity of the lower end,
then the displacement of an element at a distance z from the fixed end is $x z / l$ and velocity $z v / l$. The kinetic energy of the spring $=$
$\left(\int_{0}^{t}\right) \frac{1}{2}\left(m \frac{d z}{l}\right) z^{2} \frac{v^{2}}{l^{2}}=\frac{1}{6} m v^{2}$
Total energy of the system = $\frac{1}{6} m v^{2}+\frac{1}{2} M v 6(2)+\frac{1}{2} k x^{2}=$ a constant. Differentiate anmd find T.]

D View Text Solution

21. A solid cylinder of mass m is attached to a horizontal spring with force constant k. The cylinder can roll without slipping along the horizontal plane. (See the accompanying figure.) Show that the center of mass of the
cylinder executes simple harmonic motion
with a period $T=2 \pi \sqrt{\frac{3 m}{2 k}}$, if displaced from mean position.

- Watch Video Solution

22. A point executes SHM about a fixed point

O . Its distance from O at a certain time is 1 cm
and 1 second later its distance from O is 5 cm .

After yet another second is distance is again 5 cm . Find the time taken for a complete oscillations.

D Watch Video Solution

23. A plank rests symmetrically on two
cylinders which are separated by a distance of
$2 l$ and rotate with uniform speed in opposite
direction. If the plank is displaced a little and
then released, show that the motion of the
plank is simple harmonic. Calculate the period of oscillations of the peak. The co-efficient of friction between the plank and either cylinder is μ.

D View Text Solution

24. A horizontal disc is oscillating in its own plane harmonically with amplitude a and period T. A body placed on the disc is about to slip on it. What is the coefficient of friction between the disc and the body?

Watch Video Solution

25. A body of mass m falls from a height h on to the pan of a spring balance, figure, The masses of the pan and spring are negligible.

The spring constant of the spring is k. The body gets attached to the pan and starts executing S.H.M. in the vertical direction. Find
the amplitude and energy of oscillation.

26. A particle executes SHM with period T about a point O. It passes through a point P with velocity V along OP. Show that the time that elapses when it again comes to P is given by $t=\left(\frac{T}{\pi}\right) \frac{\tan ^{-}(T V)}{2 \pi . O P}$

D View Text Solution

27. Two particles are in SHM with the same amplitude and frequency along the same line
and about the same point. If the maximum separation between them is $\sqrt{3}$ times their amplitude, what is the phase difference between them?

D View Text Solution

28. A small block of mass m resting at the bottom of a hemispherical cup of radius R is displaced a little and released. Determine the period of oscillations of the block, assuming the cup to be smooth and fixed rigidly to the
table on which it rests. How will period change if the cup is free to move on the table, it is smooth and its mass is M ?

D View Text Solution

29. If in the above problem the block is replaced by a small spherical ball of radius r and the cup is fixed, what will be the period of oscillations of the ball?

D View Text Solution
30. A vertical U-tube has one of the its arms
bent at θ from the vertical and then filled with
a liquid of density ρ up to a height h in the
vertical arm. Calculate the period of oscillations of the liquid when disturbed a little and released.

D Watch Video Solution

31. A block of mass M executes SHM with amplitude a and time period T. When it passes
through the mean position, a lump of putty of
mass m is dropped on it. Find the new amplitude and time period.

D Watch Video Solution

32. A plank with a body of mass m places on it starts moving straight up according to the law
$y=a(1-\cos \omega t t)$, whee $\quad y$ is the
displacement from the initial position, $\omega=11 s^{-1}$. Find $:$
(a) the time dependence of the force that the body exerts on the plank if $a=4.0 \mathrm{~cm}$, plot
this dependence,
(b) the minimum amplitude of oscillation of the plank at which the body starts falling behind the plank,
(c) the amplitude of oscillation of the plank at which the body springs up to a height $h=50 \mathrm{~cm}$ relative to the initial position (at the moment $t=0$).

Watch Video Solution

33. A small sleeve of mass $m=1 / 10 \mathrm{~kg}$ can move along the diameter of a horizontal disc, which slides without friction along a guide rode. The sleeve is tied to the end of the rod with the aid of a massless spring whose force constant $k=10 \mathrm{~N} / \mathrm{m}$. When the spring is not under tension, the sleeve is at the oscillations of the sleeve when the disc rotates about its axis at the angular speed ω equal to a) $6 \mathrm{rad} / \mathrm{s}$,
b) $15 \mathrm{rad} / \mathrm{s}$.

D View Text Solution
34. A string of length $\mathrm{l}=1 \mathrm{~m}$ and tensioned by a weight $M=4 \mathrm{~kg}$ has two masses, each of mass
$=10 \mathrm{~g}$, attached to it at distance $\frac{l}{4}$ and $\frac{3}{4}$
from one of the ends. Find the frequency of oscillations of the masses in the two cases.
a) When the masses are displaced equally in the same direction b) when the masses are displaced equally in opposite directions.

D Watch Video Solution

35. A block of mass $m_{1}=1 \mathrm{~kg}$ is attached to a
spring of force constant $k=24 \mathrm{~N} / \mathrm{cm}$ at one
end and attached to a string tensioned by mass $m_{2}=5 k g$. Dedcue the frequency of
oscillaitons of the system. If m_{2} is initially supported in hand and then suddenly released, find

(a) instantaneous tension just after m_{2} is released. Itbr. (b) the maximum displacement of m_{1}.
(c) the maximum and minimum tensions in the string during oscillations.

Watch Video Solution

36. A rubber cord of force constant $k=100$
N / m and $\mathrm{l}=1 \mathrm{~m}$ is attached to a particle of mass
$\mathrm{m}=1 \mathrm{~kg}$ at one end and fixed to a vertical wall
at the other. The body is displaced by $x_{0}=$
25 cm so as to stretch the cord and then released. Calculate the time particle takes to reach the wall.

- Watch Video Solution

37. Find the frequency of oscillations of the system in the figure. The bar is rigid and light.
[Hint: A spring of force constant k_{1} at a distance a is equivalent to a spring of force constant $k_{1}\left(\frac{a}{b}\right) o^{2}$ at a distance b)

38. A pipe in the form of a half ring is placed on a horizontal surface. If it is rotated through
a small angle, and then released, assuming
that it rolls without sliding determine the period of oscillations. The center of gravity of such a body is at distance $\frac{2 r}{\pi}$) from the center where r is the radius of the ring.

Hint: $(\exists(c)=\alpha r \hat{i}$ and
$\overrightarrow{a_{c}}=\overrightarrow{a_{c}}+\left(\vec{a}_{G / c}\right)_{\text {tangent }}+\left(\vec{a}_{G / c}\right)_{\text {normal }}$

D View Text Solution

39. An endless cord consists of lengths 21 and
$2 l^{\prime}$ and their masses per unit length are m and m^{\prime}. It is placed in stable equilibrium over
a smooth peg as shown in the figure. It is
slightly displaced and left to itself. Show that
motion is simple harmonic. Find the period of

oscilattions.

$$
j
$$

D View Text Solution

