# ©゙’ doubtnut 

India's Number 1 Education App

## PHYSICS

# BOOKS - BHARATI BHAWAN PHYSICS 

## (HINGLISH)

## SPECIFIC HEAT CAPACITY OF GASES

## Others

1. If the density of air ate NTP is $1.293 \mathrm{kgm}^{-3}$ and its sp. heat capacity at constant volume is
$169 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$, calculate specific heat capacity at constant pressure. (Density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$ at $0^{\circ} \mathrm{C}$ and $J=4.2$ joule $c a l^{-1}$ )

## D View Text Solution

2. In an experiment using Regnault's method of determining specific heat capacity of a gas at constant pressue, a gas was stored in a reservoir of 50 - litre capacity at $10^{\circ} \mathrm{C}$ and 6 atmosphere pressure. The gas was heated to
$100^{\circ} C$ and passed through a calorimeter at
$10^{\circ} C$. When the temperature rose to $30^{\circ} C$
the calorimeter was detached from the heating bath. The pressure of the reservoir was found to fall to 4 atmosheric pressure in
the mean time. Calculate the specific heat capacity of the gas at constant pressure if the water equivalent of the calorimeter and its contents was 50 g . Mass of 1 liter of gas at NTP

$$
=1.25 \times 10^{-3} \mathrm{~kg}
$$

3. In a Jolly's differential calorimeter one of the
spheres of volume 1 litre was filled with experiemental gas at 10 atmospheric pressure.

When steady state was attained, the excess of steam that condensed on this sphere was
0.378 g . Calculate the specific heat capacity of
the gas at constant volume. (Initial temperature of gas $=15^{\circ} C, L$ of steam of

$$
100^{\circ} \mathrm{C}=540 \times 10^{3} \mathrm{calkg}^{-1}, J=4.2 \mathrm{Jcal}^{-1}
$$

and density of gas at 1 atmospheric pressure $=0.8 \mathrm{kgm}^{-3}$ )
4. Find the number of degrees of freedom of molecules in a gas. Whose molar heat capacity
(a) at constant pressure $C_{p}=29 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
(b) $C=29 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ in the precess ( pT ) $=$ constant.

## - Watch Video Solution

5. A vessel of volume $V=7.5$ litres contains a
mixture of ideal gases at temperature $T=300 K$. There are $n_{1}=0.1$ mole of oxygen
$\left(M_{1}=32\right), \quad n_{2}=0.2 \quad$ mole of nitorgen
( $\left.M_{2}=28\right)$ and $n_{3}=0.3$ mole of carbon dioxide $\left(M_{3}=44\right)$. Assuming the gases to be ideal, find (a) the pressure of the mixture, (b) the man molar mass $M$ of the mixture.

## D View Text Solution

6. A vessel contains a mixture consisting of $m_{1}=7 g \quad$ of $\quad$ nitrogen $\quad\left(M_{1}=28\right) \quad$ and $m_{2}=11 g$ of carbon dioxide $\left(M_{2}=44\right)$ at
temperature $T=300 K$ and pressure $p_{0}=1$ atm. Find the density of the mixture.

## D View Text Solution

7. The volume of each sphere of a Jolly's differential steam caloriment is 500 cc and the excess of steam condensed is $0.1 g$. Find the specific heat capacity of the gas at constant volume. The initial temperature of the gas is
$15^{\circ} \mathrm{C}$ and density of gas $6 \mathrm{kgm}^{-3}$. The latent heat capacity of steam $=540 \times 10^{3} \mathrm{calkg}^{-1}$.
8. Find the value of Joule's mechanical equivalent of heat from the following data: density of hydrogen at NTP is $0.09 \mathrm{kgm}^{-3}$, its specific heat capacity at constant pressure $=3400 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$ and ratio of specific heat capacities $(\gamma)=1.4$.

## - Watch Video Solution

9. The specific heat capacity of helium at constant pressure is $1250 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$.

Assuming that the gas is monatomic, calculate the mechanical equivalennt of heat. Densityy of gas at NTP $=0.1785 \mathrm{kgm}^{-3}$

## D Watch Video Solution

10. The difference in the two molar specific heat capacities of a gas is 2 calories. Calculate the mechaical equivalent of heat assuming
that the molar volume of a gas a NTP is
$0.0244 m^{3} . \quad\left(g=9.81 m s^{-2}\right.$ and density of mercury $=13.6 \times 10^{3} \mathrm{kgm}^{-3}$ )

## D Watch Video Solution

11. The velocity of sound thorugh $\mathrm{CO}_{2}$ at $0^{\circ} \mathrm{C}$
is $259 \mathrm{~ms}^{-1}$. The specific heat capacity of $\mathrm{CO}_{2}$
at constant pressure is $220 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$ and $\gamma=1.31$. Calculate the value of $J$.
12. One cubic metre of air at $27^{\circ} \mathrm{C}$ and $10^{5} \mathrm{Nm}^{-2}$ pressure weighs 1.18 kg . Calculate the value of the gas constant for 1 kg of the gas and calculate $c_{p}$ of air if $168 \mathrm{calkg}^{-1} \mathrm{~K}^{-1}$ and $J=4.2 \mathrm{Jcal}^{-1}$

## - Watch Video Solution

13. The density of gas at NTP $=2.468 \mathrm{kgm}^{-3}$
and $c_{p}=156 \mathrm{calkg}^{-} K^{-1}$. Find the ratio of specific heat capacities of the gas. Is it diatomic or tiratomic?

## - Watch Video Solution

14. In the determination of the sp heat capacity of a gas at constant pressure by Regnaults, method $0.03 \mathrm{~m}^{3}$ of the gas was supplied from a reservoir at $10^{\circ} \mathrm{C}$ and 16 atmospheric pressure. The pressure of the gas was reduce to 2 atmospheres at te end of the experiment, the temperature remaiing
constant at $10^{\circ} \mathrm{C}$. The temperature of the oil
bath of the apparatus was maintained at $150^{\circ} \mathrm{C}$. The hot gas was led into a calorimeter
at $10^{\circ} \mathrm{C}$. The final temperature of the
calorimeter and its contents was $31.5^{\circ} \mathrm{C}$ and
its water equivalent was 210 g . If the density of the gas was 0.089 kg per cubic metre at NTP, calculate the specific heat capacity of the gas at constant pressure.

## D View Text Solution

15. One cubic metre of hydrogen at $0^{\circ} C$ and

76 cm and of Hg weighs 0.0896 kg . The specific
heat capacities of hydrogen at constant
pressure volume are 3409 and 2411 cal per kg per kelvin, respectively. Calculate the value of $J . \quad\left(g=9.81, m s^{-2}\right.$ density of mercury
$=13.6 \times 10^{3} \mathrm{~kg}$ per cubic metre)

## - Watch Video Solution

16. The gran -molecular sp heat capacity of hydrogen at constant pressure $=6.865$ cal and volume $=0.0224$ cubic metre and coefficient of expansioin of hydrogen at constant pressure $\alpha=\frac{1}{273.3}$ per kelvink.

Calculate the value of $J$. ( 1 atmospheric pressure $=1.013 \times 10^{5}$ newtons per square metre.)

## D View Text Solution

17. Two thermally insulated vessels 1 and 2 are
filled with air and connected by a short tube equipped with a valve. The volumes of the vessels, the pressures and temperatues of air in them are $V_{1}, p_{1}, T_{1}$ and $V_{2}, p_{2}, T_{2}$,
respectively. Find the air temperature and pressure after the opening of the valve.

## D View Text Solution

18. If the kinetic energy of the molecules in 5
litre of helium at 2 atm is $(E)$. What is the kinetic energy of molecules in 15 litre of oxygen at 3 atm in terms of $(E)$ ?
19. One mole of oxygen is mixed withone mole of helium. What is $\gamma$ of the mixture?

## D Watch Video Solution

20. Under standard conditions the density of a helium (atomic weight $=m_{1}$ ) and nitrogen
(atomic weight $m_{2}$ ) mixture is $\rho$. Find the concentration of the helium atoms in the mixture.
21. A gas consisting of $N$ - atomic molecules
has the temperature $T$ at which all degrees of
freedom (translational, rotational, and
vibrational) are excited. Find the mean energy
of molecules in such a gas. What fraction of
this energy corresponds to that of translational motion?

## Watch Video Solution

22. Find the molar mass and the number of degrees of freedom of $a$ gas if its heat capacities are as $c_{v}=650 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $c_{p}=910 \mathrm{Jkg}^{-1} \mathrm{~K}$.

## D Watch Video Solution

23. Find the rate $v$ with which helium flows out
of a thermally insulated vessel into vacuum
through a small hole. The flow rate of the gas
inside the vessel is assumed to be negligible
under these conditions. The temperature of helium in the vessel is $T=1.000 K$.

## D Watch Video Solution

24. Find the specific heat capacities $c_{v}$ and $c_{p}$
for a gaseous mixture consisting of 7.0 g of nitrogen and $20 g$ of argon. The gases are assumed to be ideal.
25. Calculate the values of the molecular mass
and gamma for a gaseous mixture consisting
of $n_{1}=m$ moles of oxygen and $n_{2}=3$ moles
of carbon dioxide. The gases are assumed to be ideal.

## D View Text Solution

26. How many atoms do the molecules of a gas
consist of if its $\gamma$ increases 1.2 times when the
vibrational degrees of freedom are frozen?

Assume the atoms to hbe linearly arranged.

- View Text Solution

