©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

UNITS AND DIMENSION

Example

1. Find the dimensions of the following

quantities :

(i)velocity, (ii)acceleration, (iii)force, (iv)angle, (v)angular velocity, (vi)density , (vii)pressure, (viii)kinetic energy, (ix)couple, (x)constant of gravitation, (xi)coefficient of viscosity, and (xii)permeability of a medium.

D Watch Video Solution

2. The value of a force acting on a body is 20 N in SI units. What is the value of this force in cgs, units that is, dynes ?
3. Check by the method of dimensions whether the following relations are true.
(i) $t=2 \pi \sqrt{\frac{l}{g}}$, (ii) $v=\sqrt{\frac{P}{D}}$ where $\mathrm{v}=$ velocity of sound $\mathrm{P}=$ pressure $\mathrm{D}=$ density of medium .
(iii) $n=\frac{1}{2 l}=\sqrt{\frac{F}{m}}$ where $\mathrm{n}=$ frequency of vibration $\mathrm{I}=$ length of the string, $\mathrm{F}=$ stretching force $m=m a s s$ per unit length of the string .
4. Assuming that the critical velocity of flow of
a liquid through a narrow tube depends on
the radius of the tube, density of the liquid and viscosity of the liquid, find an expression for critical velocity.

D Watch Video Solution

5. Show that $\frac{h}{m_{0} c}$ is of the dimensions of length where h is Planck constant , m_{0}, rest mass and c, velocity of light.
6. If density (D), acceleration due to gravity (g) and frequency (v) are taken as base quantities
, find the dimensions of force.

- Watch Video Solution

7. Find the dimensions of a in the formula
$\left(p+\frac{a}{V^{2}}\right)(V-b)=R T$

D Watch Video Solution

1. Obtain the dimensions of the following physical quantities :
(i)momentum,
(ii)moment,
(iii)impulse,
(iv)power, (v)power, (vi)frequency, (vi)angular acceleration, (vii)velocity gradient, (viii)surface tension, (ix)moment of inertia, (x) ε, permittivity of a medium , (xi)thermal conductivity, (xii)stress , (xiii)strain, (xiv)Young's modulus.
2. Acceleration due to gravity in the fps system
is 32.2. What is its value in SI units ?

D Watch Video Solution

3. The value of coefficient of viscosity in the cgs system is 12 . What is its value of the same in SI units ?

D Watch Video Solution
4. Surface tension of water in the CGS units is

72 dyne/cm. What is its value in SI units ?

- Watch Video Solution

5. The value of acceleration due to gravity is
$980 \mathrm{~cm} / \sec ^{2}$. What will be its value if the unit of length is kilometer and that of time is hour ?

- Watch Video Solution

6. Obtain the formula $t=k \sqrt{\frac{l}{g}}$ by the method of dimensions.

- Watch Video Solution

7. Assuming that the largest mass that can be moved by a flowing river depends on the velocity of flow, density of river water and acceleration due to gravity, show that the mass varies as the sixth power of velocity of flow.

- Watch Video Solution

8. The velocity of sound in a gas depends on its pressure and density . Obtain the relation between velocity, pressure and density.

- Watch Video Solution

9. The viscous force on a spherical body, when
it moves through a viscous liquid, depends on the radius of the body, the coefficient of
viscosity of the liquid and the velocity of the body.Find an expression for the viscous force.

D Watch Video Solution

10. The rate of volume flow of water through a canal is found to be a function of the area of cross-section of the canal and velocity of water. Show that the rate of volume flow is proportional to the velocity of flow of water.

D Watch Video Solution

11. Show that the following are the dimensions of energy.
(i) $m c^{2}$ where $\mathrm{m}=$ mass and $\mathrm{c}=$ velocity of light
(ii) $\frac{m P}{\rho}$ where $\mathrm{P}=$ pressure , $\rho=$ density of liquid and $\mathrm{m}=$ mass
(iii) mB where $\mathrm{m}=$ magnetic moment and B $=m a g n e t i c$ induction field.

D Watch Video Solution

12. Show that $R C$, where R is the resistance and

C is the capacitance, is of the dimension of
time.

- Watch Video Solution

13. Using force (F), length (L) and time (T) as base quantities, find the dimensions of
(i)mass, (ii)surface tension and (iii)Young's modulus.

- Watch Video Solution

14. If the units of length and force be increased three times, show that the unit of energy is increased nine times.

D Watch Video Solution

15. A gas bubble, from an explosion under water, oscillates with a period proportional to
$P^{a} d^{b} E^{c}$, where P is the static pressure , d is the density and E is the total energy of the explosion. Find the values of a, b and c.
16. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the drop, and density (ρ) of the liquid, then find the expression of T.

D Watch Video Solution

17. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of capacitance and magnetic
induction respectively. The dimensions of Y in MKSQ system are

D Watch Video Solution

18. If the velocity of light c, the gravitational constant G and Planck constant h are chosen as the fundamental units, find the dimensions of length , mass, and time in the new system.
19. The viscosity η of a gas is determined by its
density ρ, molecular velocity c and its mean
free path λ.Show that $\eta=k \rho c \lambda$ where k is a dimensionless constant.

- Watch Video Solution

20. Assuming that the vibration frequency of atoms in a crystal depends on the atomic mass m, the atomic spacing a and
compressibility β, find an expression for frequency.

D Watch Video Solution

21. If the resistance experienced by a spherical
body moving through a liquid is proportional to the square of the velocity.show that it is independent of viscosity.
22. The critical angular velocity ω_{c} of a cylinder inside another cylinder containing a liquid at which its turbulence occurs depends on viscosity η, density ρ and the distance d between the walls of the cylinders. Find an expression for ω_{c}.

D Watch Video Solution

23. Find the physical quantity whose value depends on the velocity of light c, mass of
electron m and Planck constant h and which has the dimension of distance.

D Watch Video Solution

24. The force of attraction between two points

1 kg masses I_{m} apart proposed as the unit of force and call it neodyne, the first Bohr orbit
$\left(0.5 \times 10^{-10} m\right)$ as the unit of length and call it neometre and the mass of electron
$\left(9 \times 10^{-31} \mathrm{~kg}\right)$ as unit of mass and call it
neogram.Find the value of 'neosecond' in this
system.

D View Text Solution

25. Find dimensionally the relation between reverberation period t of a room, its volume V,
its surface area A and the velocity of sound
C.Assume that period is proportional to the volume and inversely proportional to area.

D Watch Video Solution

26. The resistance R to the motion of a ship depends on the velocity v of the ship, I the length of ship, ρ the density of sea water and g the acceleration due to the gravity.Show that R is proportional to l^{3}.

D Watch Video Solution

