

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS (HINGLISH)

UNITS AND DIMENSION

1. Find the dimensions of the following quantities :

(i)velocity, (ii)acceleration, (iii)force, (iv)angle,
(v)angular velocity, (vi)density , (vii)pressure,
(viii)kinetic energy, (ix)couple, (x)constant of
gravitation, (xi)coefficient of viscosity, and
(xii)permeability of a medium.

Watch Video Solution

2. The value of a force acting on a body is 20 N in SI units. What is the value of this force in cgs, units that is , dynes ?

3. Check by the method of dimensions whether

the following relations are true.

(i)
$$t=2\pi\sqrt{rac{l}{g}}$$
 , (ii) $v=\sqrt{rac{P}{D}}$ where v= velocity

of sound P=pressure D=density of medium .

(iii)
$$n=rac{1}{2l}=\sqrt{rac{F}{m}}$$
 where n= frequency of

vibration I=length of the string, F=stretching

force m=mass per unit length of the string .

4. Assuming that the critical velocity of flow of a liquid through a narrow tube depends on the radius of the tube, density of the liquid and viscosity of the liquid, find an expression for critical velocity.

Watch Video Solution

5. Show that $\frac{h}{m_0c}$ is of the dimensions of length where h is Planck constant , m_0 , rest mass and c, velocity of light.

6. If density (D), acceleration due to gravity (g)

and frequency (v) are taken as base quantities

, find the dimensions of force.

Watch Video Solution

7. Find the dimensions of a in the formula $\left(p+rac{a}{V^2}
ight)(V-b)=RT$

1. Obtain the dimensions of the following physical quantities : (i)momentum, (ii)moment, (iii)impulse, (iv)power, (v)power, (vi)frequency, (vi)angular acceleration, (vii)velocity gradient, (viii)surface tension, (ix)moment of inertia, $(x)\varepsilon$, permittivity of a medium , (xi)thermal

conductivity, (xii)stress , (xiii)strain, (xiv)Young's modulus.

2. Acceleration due to gravity in the fps system

is 32.2. What is its value in SI units?

3. The value of coefficient of viscosity in the cgs system is 12. What is its value of the same in SI units ?

4. Surface tension of water in the CGS units is

72 dyne/cm . What is its value in SI units ?

5. The value of acceleration due to gravity is 980 cm/\sec^2 . What will be its value if the unit of length is kilometer and that of time is hour ?

6. Obtain the formula $t=k\sqrt{rac{l}{g}}$ by the

method of dimensions.

Watch Video Solution

7. Assuming that the largest mass that can be moved by a flowing river depends on the velocity of flow, density of river water and acceleration due to gravity , show that the mass varies as the sixth power of velocity of

flow.

8. The velocity of sound in a gas depends on

its pressure and density . Obtain the relation

between velocity, pressure and density.

9. The viscous force on a spherical body, when it moves through a viscous liquid, depends on the radius of the body, the coefficient of viscosity of the liquid and the velocity of the

body.Find an expression for the viscous force.

10. The rate of volume flow of water through a canal is found to be a function of the area of cross-section of the canal and velocity of water. Show that the rate of volume flow is proportional to the velocity of flow of water.

11. Show that the following are the dimensions of energy.

(i) mc^2 where m=mass and c=velocity of light

(ii) $\frac{mP}{\rho}$ where P=pressure , ρ =density of liquid

and m=mass

(iii)mB where m=magnetic moment and B=magnetic induction field.

Watch Video Solution

12. Show that RC, where R is the resistance and

C is the capacitance, is of the dimension of

13. Using force (F), length (L) and time (T) as base quantities , find the dimensions of (i)mass, (ii)surface tension and (iii)Young's modulus.

14. If the units of length and force be increased three times, show that the unit of energy is increased nine times.

15. A gas bubble, from an explosion under water, oscillates with a period proportional to $P^a d^b E^c$, where P is the static pressure , d is the density and E is the total energy of the explosion. Find the values of a,b and c.

16. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius(r) of the drop , and density (ρ) of the liquid , then find the expression of T.

Watch Video Solution

17. In the formula $X = 3YZ^2$, X and Z have

dimensions of capacitance and magnetic

induction respectively. The dimensions of Y in

MKSQ system are,

18. If the velocity of light c, the gravitational constant G and Planck constant h are chosen as the fundamental units, find the dimensions of length , mass, and time in the new system.

19. The viscosity η of a gas is determined by its density ρ , molecular velocity c and its mean free path λ . Show that $\eta = k\rho c\lambda$ where k is a dimensionless constant.

Watch Video Solution

20. Assuming that the vibration frequency of atoms in a crystal depends on the atomic mass m, the atomic spacing a and

compressibility β , find an expression for

frequency.

21. If the resistance experienced by a spherical body moving through a liquid is proportional to the square of the velocity.show that it is independent of viscosity.

22. The critical angular velocity ω_c of a cylinder inside another cylinder containing a liquid at which its turbulence occurs depends on viscosity η , density ρ and the distance d between the walls of the cylinders . Find an expression for ω_c .

Watch Video Solution

23. Find the physical quantity whose value depends on the velocity of light c, mass of

electron m and Planck constant h and which

has the dimension of distance.

24. The force of attraction between two points 1 kg masses I_m apart proposed as the unit of force and call it neodyne, the first Bohr orbit $(0.5 \times 10^{-10}m)$ as the unit of length and call it neometre and the mass of electron $(9 \times 10^{-31}kg)$ as unit of mass and call it neogram.Find the value of 'neosecond' in this

system.

25. Find dimensionally the relation between reverberation period t of a room, its volume V , its surface area A and the velocity of sound C.Assume that period is proportional to the volume and inversely proportional to area.

26. The resistance R to the motion of a ship depends on the velocity v of the ship, I the length of ship, ρ the density of sea water and g the acceleration due to the gravity.Show that R is proportional to l^3 .