©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BHARATI BHAWAN PHYSICS

(HINGLISH)

VECTOR AND SCALARS

Others

1. If $\vec{a}=3 \vec{i}-2 \vec{j}$ and $\vec{b}=2 \vec{i}+3 \vec{j}$,
calculate (i) $\vec{a}+\vec{b}$, (ii) $\vec{a}-\vec{b}$, (iii) $\vec{b}-\vec{a}$

Watch Video Solution

2. Calculate the angle between the vectors
$\vec{a}=3 \vec{i}+2 \vec{j}$ and $\vec{b}=2 \vec{i}+\vec{j}$

- Watch Video Solution

3. If $\vec{A}+\vec{B}=\vec{A}-\vec{B}$ then which of the following is correct ?
(i) $\vec{A}=0 \quad$, (ii) $\vec{B}=0 \quad$, (iii) \vec{A} and \vec{B} are simultaneously zero, (iv) $\vec{A}+\vec{B}=0$

4. Show that the vectors
 $\vec{a}=2 \vec{i}+3 \vec{j}$ and $\vec{b}=6 \vec{i}-4 \vec{j}$ are at

 right angles to each other.
D Watch Video Solution

5. Find the dot and cross product of the vectors $\vec{a}=2 \vec{i}-3 \vec{j}+\vec{k}$ and $\vec{b}=-\vec{i}+3 \vec{j}+\vec{k}$
6. Show that numerically magnitude of a vector product gives the area of the parallelogram formed by the two component vectors as slides.

D Watch Video Solution

7. The coordinates of the initial point of a vector are $(2,3)$ and those of the terminal point are
$(10,6)$.Find the magnitude and direction of the vector.

D Watch Video Solution

8. If $\vec{a}+\vec{b}=\vec{c}$ and $a+b=c$, what is the angle between \vec{a} and \vec{b} ?

- Watch Video Solution

9. Find the equation of a line which passes through a given point of position vector \vec{c} and is parallel to a given vector \vec{b}.
10. A particle of mss $\mathrm{m}=2 \mathrm{~kg}$ moves with velocity $\vec{v}=2 \vec{i}+2 \vec{j}-\vec{k}$. Find its angular momentum about the origin when its position vector is $\vec{r}=\vec{i}+\vec{j}$

D Watch Video Solution

11. The velocity of a particle is
$\vec{v}=3 \hat{i}+2 \hat{j}+3 \hat{k}$. Find the vector component of the velocity along the line $\hat{i}-\hat{j}+\hat{k}$ and its magnitude.
12. The resultant of two forces \vec{P} and \vec{Q} acting at O at \vec{R}. If any traversal cuts them at A, B and C, respectively, show that $\frac{P}{O A}+\frac{Q}{O B}=\frac{R}{O C}$

- Watch Video Solution

13. $\vec{a}+\vec{a}=\vec{a}$ is (i) always possible, (ii)never possible, (iii)possible if \vec{a} is a null vector, (iv)possible if \vec{a} is a unit vector. Which is correct ?
14. $\vec{a}+\vec{b}=\vec{c}$ and $|\vec{a}|=|\vec{b}|=|\vec{c}|$

This is (i)impossible (ii)possible when angle between \vec{a} and \vec{b} is 60°, (iii)possible when angle between \vec{a} and \vec{b} is 120°, (iv)always possible.

- Watch Video Solution

15. If $\vec{a}+\vec{b}=\vec{c}$ and $c=\sqrt{a^{2}+b^{2}}$. What is the angle between \vec{a} and \vec{b} ?
16. The coordinates of the initial point of a vector are (1,2) and those of the terminal pt. are (5,9).Find the magnitude and direction of the vector.

D Watch Video Solution

17. If $\vec{a}=2 \vec{i}+3 \vec{j}$ and $\vec{b}=\vec{i}+\vec{j}$, find (i)
$\vec{a} \cdot \vec{b}$, (ii) $\vec{a} \times \vec{b}$ and (iii) $\vec{b} \times \vec{a}$

D Watch Video Solution

18. If $\vec{a}=2 \vec{i}-3 \vec{j}+2 \vec{k} \quad$ and $\vec{b}=\vec{i}+2 \vec{j}+\vec{k}$, find (i) $\vec{a} \cdot \vec{b}$, (ii) $\vec{a} \times \vec{b}$ and (iii) $\vec{b} \times \vec{a}$

D Watch Video Solution

19. If $\vec{a}=x_{1} \vec{i}+y_{1} \vec{j}$ and $\vec{b}=x_{2} \vec{i}+y_{2} \vec{j}$
, find the condition that would make them
(i)perpendicular to each other, (ii)parallel to each other.
20. If $\vec{a}=4 \vec{i}-3 \vec{j}$ and $\vec{b}=6 \vec{i}+8 \vec{j}$, find the magnitude and direction of \vec{a}, of \vec{b}, of $\vec{a}+\vec{b}$ and of $\vec{a}-\vec{b}$

D Watch Video Solution

21. Three vectors which are coplanar with respect to a certain reactangular coordinate $\begin{array}{lrr}\text { system } & \text { are given } & \text { by } \\ \vec{a}=4 \vec{i}-\vec{j}, \vec{b}=-3 \vec{i}+2 \vec{j} & \text { and }\end{array}$
$\vec{c}=-3 \vec{j}$.Find
(i) $\vec{a}+\vec{b}+\vec{c}$,(ii)
$\vec{a}+\vec{b}-\vec{c}$.

- Watch Video Solution

22. Find the angle between
$\vec{a}=3 \vec{i}+3 \vec{j}-3 \vec{k} \quad$ and
$\vec{b}=2 \vec{i}+\vec{j}+3 \vec{k}$.

D Watch Video Solution
23. A car is driven eastward for a distance of 50 km , then northward for 30 km and then in a direction 30° east of north for 25 km .Draw a vector diagram and determine the total displacement of the car from the starting point.

D Watch Video Solution

24. A golfer takes his ball into the hole in the
three strokes.The first stroke displaces the ball 4 m north , the second stroke 2 m south-east, and the third stroke 1 m south-west.What
displacement would have been needed to get the ball into the hole in the first stroke ?

D View Text Solution

25. Four forces of magnitude $P, 2 P, 3 P$ and $4 P$ act along the four sides of a square $A B C D$ in cyclic order. Use the vector method to find the magnitude of resultant force.
26. Find the direction cosines and unit vector along the vector $\vec{r}=2 \vec{i}+\vec{j}+3 \vec{k}$.

D Watch Video Solution

27. Prove by the method of vectors that in a
triangle $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

D Watch Video Solution
28. Show that if $\vec{A} \cdot(\vec{B} \times \vec{c})=0$, then
\vec{A}, \vec{B} and \vec{c} are coplanar.

- Watch Video Solution

29. Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal in magnitude to the volume of the parallelpiped formed by the vectors \vec{a}, \vec{b} and \vec{c}
30. Prove that for a vector \vec{a} defined by $\begin{array}{lll}\vec{a}=a_{x} \vec{i}+a_{y} \vec{j}+a_{z} \vec{k}, & \text { the scalar } \\ \text { components } & \text { are given by }\end{array}$
$a_{x}=\vec{i} \cdot \vec{a}, a_{y}=\vec{j} \cdot \vec{a}$ and $a_{z}=\vec{k} \cdot \vec{a}$

D Watch Video Solution

31. If \vec{b} and \vec{c} be the intersecting facediagonals of a cube of edge a in the planes XOY and YOZ respectively with respect to a frame of reference erected at the point of intersection of the vectors and edges of the cube as the axes,
find (a) the components of the vector \vec{d}, where $\vec{d}=\vec{b} \times \vec{c}$ and (b) the values of $\vec{b} \cdot \vec{c}$ and $\vec{d} \cdot \vec{c}$.

D Watch Video Solution

32. Show that the position vector of a place on the surface of the earth with latitude and longitude $\alpha^{\circ} N$ and $\beta^{\circ} E$ respectively, is $\vec{r}=R \cos \alpha \sin \beta \hat{i}+R \cos \alpha \cos \beta \hat{j}+R \sin \alpha \hat{k}$, where R is the radius of the earth.The frame of reference is erected at the centre of the earth with the polar radius as the z-axis and the
intersection of the equatorial plane and the meridian plane through Greenwich as the y-axis.

D Watch Video Solution

33. A man rows a boat with a speed $10 \mathrm{~m} / \mathrm{s}$ along

N-E direction. The shore line is 15° south of east. . What are components of the velocity
vector along and perpendicular to shore?

(a)

Ein 125
34. Prove that in any triangle $A B C$,
$\lambda \overrightarrow{A B}+\mu \overrightarrow{A C}=(\lambda+\mu) \overrightarrow{A D}$ where D is a point
on BC such that $\mathrm{BD}: \mathrm{DC}=\mu$: λ. Hence prove that if resultant of $\overrightarrow{A B}, 2 \overrightarrow{A C}$ and $3 \overrightarrow{B C}$ cuts BC and CA at E and F respectively, $3 \mathrm{EC}=\mathrm{BC}$ and $4 \mathrm{CF}=\mathrm{AC}$ and the resultant is $12 \overrightarrow{F E}$

- View Text Solution

35. A force $\vec{F}=5 \vec{i}+2 \vec{j}+\vec{k}$ displaces a body from a point with coordinates $(1,1,1)$ to
another point with coordinates (2,0,3).Calculate the work done by the force.All are in SI units.

D Watch Video Solution

36. If the sum and difference of two vectors are at right angles, show that the vectors are equal in magnitude.

D Watch Video Solution

37. With reference to a frame erected at the point of incidence with outward normal as z-axis
and two mutually perpendicular lines in the plane of incidence as x - and y-axes, write the unit vectors along incident, reflected and refracted rays taking θ and θ^{\prime} as angle of incidence and angle of refraction respectively.

D View Text Solution

38.

$(\vec{a} \times \vec{b})^{2}=\vec{a}^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$.

- Watch Video Solution

39. Show that if two vectors are equal in magnitude, their vector sum and difference are at right angles.

D Watch Video Solution

40. Find the area of the parallelogram whose
sides are represented by
$2 \hat{i}+4 \hat{j}-6 \hat{k}$ and $\hat{i}+2 \hat{k}$
41.

Show that
$(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})=-2(\vec{a} \times \vec{b})$
and use this result to find the area of a parallelogram whose diagonals are
$\hat{i}-2 \hat{j}-3 \hat{k}$ and $2 \hat{i}-3 \hat{j}+2 \hat{k}$

(D) Watch Video Solution

42. Express the law of reflection vectorially
taking the direction of unit vectors along the
incident ray and reflected ray as \hat{e} and \hat{e}^{\prime} and the outward normal to the reflector as \widehat{n}.

- View Text Solution

43. Use the result of the above problem to show
that a light ray reflected from three mutually perpendicular plane mirrors in succession reverses its direction.

- View Text Solution

44. Find the equation of a line through a point C of position vector $\vec{c}=3 \vec{i}+2 \vec{j}$ and perpendicular to the vector $\vec{b}=\vec{i}-\vec{j}$ in the $x y$-plane.

D Watch Video Solution

45. Find the moment of a force $\vec{F}=3 \vec{i}+2 \vec{j}$ acting at point $\vec{r}=\vec{i}+2 \vec{k}$ about a point of position vector $\vec{r}=\vec{i}+\vec{j}$.
46. If $\vec{P}+\vec{Q}=\vec{R}$ and $\vec{P}-\vec{Q}=\vec{S}$, prove
that $\vec{R}^{2}+\vec{S}^{2}=2\left(\vec{P}^{2}+\vec{Q}^{2}\right)$

- Watch Video Solution

47. Show that a vector remains invariant (unchanged) under rotation of coordinate axes.

D Watch Video Solution
48. Find the components of a vector
$\vec{A}=2 \hat{i}+3 \hat{j}$ along the directions of $\hat{i}+\hat{j}$ and
$\hat{i}-\hat{j}$

D Watch Video Solution

49. The force on a positively charged particle is given by $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$.In a certain space there is a magnetic field B along y-axis and an electric field along x-axis.A positively charged particle is projected into this space.Find the direction and magnitude of
minimum velocity so that it may pass on undeviated.

- Watch Video Solution

50. A point P lies on a vector \vec{a}.the position vector of the point is \vec{r}. Show that $\vec{a} \times \vec{r}$ is independent of the position of the point on the vector.
51. Show that if $\vec{u} \cdot \frac{d \vec{u}}{d t}=0$ the vector \vec{u} is of constant magnitude.

D Watch Video Solution

52. If $\vec{a}=m \vec{b}+\vec{c}$, find the scalar m.

D Watch Video Solution

53. Using vector method prove that in any triangle $A B C a^{2}=b^{2}+c^{2}-2 b c \cos A$.
54. Prove vectorially that $\sum_{S=0}^{S=N-1} \cos \frac{2 \pi S}{N}=0$
and $\sum_{S=0}^{S=N-1} \sin \frac{2 \pi S}{N}=0$

D View Text Solution

