©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS

(HINGLISH)

DIODE, TRIODE \& TRANSISTER

Examples

1. In a diode valve the space-charge limited
current at 100 V is 100 mA . What is the space-
charge current at 150 V ?

- Watch Video Solution

2. In a diode valve the saturation current at

750 K is 100 mA . What is the saturation
current at 800 K ? Work function of metal is 1.6
eV.

- Watch Video Solution

3. The equation of the working part of the characteristic of a diode can be written as
$I=0.75 \times 10^{-3} V-2 \times 10^{-3} A . \quad$ Calculate
the load current, voltage and power dissipated
at the plate when a load of resistance 1000Ω and 100 V from a source are applied.

D Watch Video Solution

4. In the normal operating region, the characteristics of a certain triode may be
written as

$$
I_{p}=10^{-5}\left(160 V_{S}+2.22 V_{p}\right)
$$

Determine analytically the values of
μ, r_{p} and g_{m}.

D Watch Video Solution

5. The current conducted by the p-n junction of a semiconductor diode is $100 \mu A$ at a voltage of $-1 V$. Calculate the current at a voltage of $+0.2 V$.
6. Calculate the electrical resistivity and conductivity of a silicon crystal if every 10 mollion silicon atoms is replaced by an atom of indium. Given that intrinsic carrier density of silicon $=1.5 \times 10^{16} \mathrm{~m}^{-3}$, atomic weight of silicon $=28.09$, density of silicon $=2330 \mathrm{~kg} \mathrm{~m}^{-3}$, mobility of electrons
$\left(\mu_{n}\right)=0.135$, that of holes $\left(\mu_{p}\right)=0.018$, By
how many times is the conductivity increased
?

- Watch Video Solution

Exercises

1. A diode has Child's constant $K=0.2$
(current in mA and voltage in volts). Calculate
the voltage across the tube, across a load of resistance 10000Ω and source the voltage when the tube produces a current of 12.8 mA through the load.
2. In a certain triode, the output is 5 mA with an anode potential of 200 V and grid potential
-3 V . When he potential is increased to 260 V ,
the current rises 10.7 mA . A charge in grid
voltage to $-4 V$ restores the current to the original value. Find the constant of the valve

- Watch Video Solution

3. A triode valve of anode slope resistance
$20 k \Omega$ is used with an anode load resistance of
$50 \mathrm{k} \Omega$. If an alternating signal of 0.5 V (rms
value) is applied to the grid, find the output if the amplification factor of the valve is 15 .

D Watch Video Solution

4. The voltage of a triode amplifier with a resistive load of $5 k \Omega$ is 10 while with a resistive load of $12 k \Omega$. It is 15 . Calculate the amplification factor and plate resistance of the triode.
5. The plate resistance of a triode is $7.7 k \Omega$, and the transconductanace is 2.6 millimho. If only the plate voltage is increased by 50 V , what is the increase in the plate current ?

What change in grid voltage will now bring the plate current to its former value ?

- Watch Video Solution

6. Determine the conductivity of pure germanium at $27^{\circ} \mathrm{C}$. The concentration of the carriers at this temperature is $2.2 \times 10^{19} \mathrm{~m}^{-3}$.

The mobility of electrons $=0.36$ and that of holes $=0.17$

D Watch Video Solution

7. In a p-n junction diode the reverse saturation current is $10 \mu A$. What will be the forward current for a voltager of 0.2 V ?

D Watch Video Solution
8. Assume that the silicon diode in the given
circuit requires a minimum current of 1 mA to
be above the (knee-point voltage $=0.7 \mathrm{~V}$) of its
$I-V$ characteristics. Assuming that the
voltage across the diode is independent of
current above the knee-point, find the maximum value of R so that the voltage is above the knee-point if $V_{B}=5 A$. Also find the
value of R to establish a current of 5 mA in the
circuit for the since voltage.

D Watch Video Solution

9. The base current of a transistor is $105 \mu A$ and the collector current is 2.05 mA .

Determine the alue of β, I_{C} and α. If a
change of $27 \mu A$ in the base current produces
a change of 0.65 mA in the collector, find $\beta_{a c}$.

D Watch Video Solution

10. In a silicon transistor, a change of 7.89 mA in the emitter current produces a change of
7.89 mA in the collector current. What change in the base current will bring the same change in the collector current?

D View Text Solution

11. In a silicon transistor the base current is
changed by $20 \mu \mathrm{~A}$. This results in a change of
0.02 V in the base to emitter voltage and a
changed of 2 mA in the collector current
(a) Find the input resistance $r_{b}, \beta_{a c}$ and transconductance g_{m} of the transistor
(b) The transistor is used as an amplifier with a
load resistance of $5 k \Omega$. What is the voltage gain of the amplifier?

D Watch Video Solution

12. In triode valve, for a grid voltage
$V_{g}=-1.2 V$, the plate current I_{p} (in mA) ad
the plate voltage are given by the relation
$I_{p}=-50+0.1 V_{p}$, when the grid voltage is
changed to -3.2 V and the plate voltage is
kept at 150 V , plate current of 5 mA is observed. Calculate the valve constant and the
voltage amplification for $20 k \Omega$ load in the plate circuit.
13. In the accompanying circuit (Fig. 5.9) the value of β is 100 . Find $I_{B}, V_{C E}, V_{C E}$ and $V_{B C}$, when $I_{C}=1.5 m A$. Is the transistor in active, cut-off or saturation state?

- Watch Video Solution

14. In the accompanying circuit Fig. 5.10, if it is assumed that when that input voltage at the base resistance is $5 \mathrm{~V}, V_{B E}$ is zero and $V_{C E}$ is
also zero, what are I_{B}, I_{C} and β ? When the input is zero, I_{B} is zero. What will be the output waveform if the input waveform is as shown in the figure? What is the practial use of this current?

(D) View Text Solution
15. In the given circuit Fig. 5.11, the base current is $10 \mu \mathrm{~A}$ and the collector current is 52 mA. Can this transistor be used as an amplifier ?

D View Text Solution

16. In the given circuit (Fig. 5.12) calculate the
value of the collector current if its
$I_{C D}=10 \mu A$ and $\alpha=0.97$. Assume a voltage
drop between base and emitter of 0.15 V
$\left[\right.$ Hint : $\left.I_{C}=\alpha I_{C}+I_{C O}\right]$

- Watch Video Solution

17. Calculate the emiter current and collector voltage of the circuit given in Fig. 5.13

- View Text Solution

18. A transistor connected in common emitter configuration has $V_{C C}=8 V, V_{L}=0.5 \mathrm{~V}$ and
$R_{L}=800 \Omega$. If its $\alpha=0.96$ determine
collector emitter voltage, (ii) its base current.

- Watch Video Solution

19. In a transistor collector load is $4 k \Omega$
whereas the zero signal current is 1 mA . (a)
What is the operating point if $V_{C C}=10 \mathrm{~V}$?
(b) What will be the operating point if
$R_{L}=5 k \Omega ?$
[Hint : Operating point is zero signal collectorm current and $V_{C O}$]

- Watch Video Solution

