

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

ELECTROMAGNETIC INDUCTION

Examples

1. The axles of the carriage of a train travelling at 72 km per hour anr 1.6 m long . Find the difference in potential at their ends if total intensity of the earth's field is $0.5 imes10^{-4}$ tesla and angle of dip is

 60° .

2. A copper disc of radius 10 cm rotates 20 times per scond with its axis parallel to a uniform magnetic field of 0.5 tesla . Calculate the induced emf between the centre and the edge of the disc.

Watch Video Solution

3. Calculate the maximum emf induced in a coil of 100 turns and $0.01m^2$ area rotating at the rate of 50 rps about an axis perpendicular to a uniform magnetic field of 0.05 T. If the resistance of the coil is 30Ω , what is the maximum power generated by it ?

4. Calculate the self induction of a solenoid (ironcored) of length 30 cm comprising of 100 turns and of radius 5 cm (μ_r of iron = 500)

Watch Video Solution

5. A coil of infucatance 0.2 mH and resistance 0.1Ω is connected to a cell of emf 1.5 V . Calculte (i) time constant of the circul, (ii) time in which current grow to 10 A. Also calculate the total energy stored in the core .

6. A rod closing the circuit shoew in the figure moves along a LI- shaped wire at a constant speed v under the action of the force F . The circult is in a unifron magnetic field perpendicluar to the plane .

Calculate F if rate of heat generation in the circuit is

Q.

Watch Video Solution

Exericises

1. A cicular loop of radius 10 cm and 500 turns in turend upside down on a horizontal table in 0.5 s . Calculate the mean emf generated .(Earth's vertical field $= 0.43 \times 10^4$ tesla)

2. A copper disc of radius 20cm makes 1200 revolution per minute about its axis which is parallel to a uniform magnetic field fo 0.01 tesla . Find the potential difference between the centre and the edge of the disc.

3. Find the difference of potential the ends of a horizaontal induction of earth's field = 2×10^{-5} tesla)

4. A rivulet , which 10m long is flowing northward along an insulated bed with a velocity of $0.3ms^{-1}$. Calculate the potenital difference between the water and the sides of the rivulet . $(B_0 = 34 \times 10^{-6} tesla \text{ and } dip = 60^\circ).$

5. Calculate the inductance of a coil of 100 turns of wire would on an iron ring of radius 10 cm and $10cm^2$ in cross-section, the relative permeability of iron being 700

View Text Solution

6. An all-metal aeroplane flies horizational at 600 km per hours at a place where the vertical induction is 4×10^{-5} tesla . If the wing -span is 10 m , will be the resulting p.d between the tips of the wings ?

7. A field of 0.2 tesla acts acts at right angles to a coil of area $100cm^2m$ with 50 turns. The coil is removed from the field in 0.1s . Find the emf induced

8. A milliivoltmere is conneceted between the rails of a truck . Calcuate the voltmeter reading when a train pases at 600 km per hours . The vertical

component of the earth's field is $2 imes 10^{-5}$ tesla and

the distance between the rails is 1.5 m.

9. Calculate the coefficient of self induction of a soleined of 500 turns and a length of 1 m. The area of cross-section is $7cm^2$ and permeability to the core is 1000.

10. Calculate the coefficient of self induction of a soleined of 500 turns when a current of 1.25 A produce a magnetic flux of one microweber.

[Hint : See exerices 5]

Watch Video Solution

11. A rectangular conductor of area $0.2m^2$ is placed in a unifrom magnetic field with a B-vector strenght of 2T with its normal at an angle 30° . Calculate the magnetic flux linked with the conductor.

12. The self inductance of a closely wound coils of 100 turns is 5 mH . What is the flux throught the coil when the current in it is 10 mA ?

[Hint : See exerices 5]

Exericises B

1. Half of the core of a solenoid of $2 \times 10^{-3}m^2$ cross -section , is made up of air and the other half iron ($\mu_r = 500$). The length of the solenoid is 2 m . If the number of turns is 1000, calculate its

coefficient of self induction .

2. A solenoid of 50 cm length and 8 cm diameter is would with 500 turns of wire . Another coil of 20 insulated wire is colsely wound over it at its middle region . Calculate the coefficient of mutual induction

[Hint : Use the formula $M=rac{\mu_0\mu_rN_1N_2S}{l}henry$]

View Text Solution

3. A metal wire of mass m sides without friction magnetic fields of induction B. A battery of constant emf ε is connected to the rails . What is the terminal speed of the slider ?

View Text Solution

4. A wire with a resistance p per unit length is bent in the from of the letter A of vertical angle 2α . There is a magnetic field B perpendicular into the plane of the letter . Calculate the current flowing in the loop when the cross-piece cut moves down at a constant speed v . Assume that it maintains contact

with the sides as it moves down .

View Text Solution

5. A copper bar of mass m sides under gravity on two smooth parallel rails I distance apart and set at angle α to the horizontal . At the lop , the rails are joined by a resistor R. Calculate the steady velocity of the bar the n when there is a unifrom magnetic field B perpedicular to the plane of the rails .

6. A copper bar of mass m rest at right angles to two parallel horizontal I distance apart. The rails are connected by a resistor R at one end and kept open at the other ends. Ther is a uniform upward magnetic fields of induction B.The bar is pulled away from the closed end by a constant force F. Calculate the terminal velocity of the bar when μ is the coefficient of frction between the rails and the bar.

View Text Solution

7. A rod of mass m length I can rotate without friction about the centre of a vertical ring . There is

a unifrom mafgnetic filed B into the plane of the ring . A variable emf ε is applied between the centre and the rotating end of the rod . Caulcate the current which keeps the rod rotating with unifrom speed ω and the emf requried to maintain the required current

View Text Solution

8. Two coils of self inductance L_1 and L_2 are connected by in parllel and the then to cell of emf ε and of resistance R throught a Key . Find the instantaneous current throught L after the key is closed.

9. A pure inductance is connected in parallel to a resistor R and then connected to a cell of emf ε and of resistance R through at key . Find the instantaneous current through L after the key is closed .

View Text Solution

10. Two long parallel horizonal rails , a distance d apart and each having a resistance λ per unit length are jointed at one end by a resitance R. A perfectly

conducting rod MN of mass m is free to slide along the rails . A variable force F is applied to the rod MN , such that ,as the rd moves, a constant current i flows through R.

(a) Find the velocity v and the force F as function of the function of the distance x of the rod from R.

A frank The A Coloration

(b) What fraction η of the work done by F per second in converted into heat ?

11. A rod of length I and mass m rests on two smooth parallel conductors shorted at one end by an inductor L and open at the end . The circuits is in a unifrom field B perpendcular in to the plance . The conductor is suddenly imparted an initial velocity V_0 direction to the right . Show that the motion is simple harmonic . Find its angular frequency and

amplitude .

12. A sqare frame with side a=5 cm and a , long straight conductor carrying steady current I=5 A are located in the same plane . The inductance and the resistance of the frame are L=0.1 mH and $R = 1\Omega$.

The frame is turned suddenly through 180 about the side parallel to the conductor which is at a distance b=10 cm .Find the charge through the frame .

View Text Solution

13. Two parallel vertivcal inetallic ralis AB and CD are serparated by l= 1 m. They are connected at the ends by resistance R_1 and R_2 as show in the figure . A horizationl metallic bar L of mass m= 0.2 kg slides without friction vertically down the rails under the action of gravity . These is a unifrom horizonal magnetic field of a B = 0.6T perpendicular to the plane to rails . It is observed that when the termainal veloctity is attained , the power disspated in R_1 and R_2 are $P_1 = 0.76W$ and $P_2 = 1.2W$ respectively. Find the terminal velocity of bar L and the values of R_1 and R_2

14. A cylinder space of radius R is filled with a unifrom magnetic induction a parallel to the axis of the space . If B change at the rate .Find the electric

field at a distance (i) r < R (ii) r > R

15. An electromagnetic eddy current brak a consists of a disc of conductivity σ and thickness d rotating about axis through its centre between rectangular

poles of face area A at a distance from the centre from the centre . Calculate the torque tending to show down the disc .

View Text Solution

16. A solenoid has an inductance of 10 H and a resistance $R=5\Omega$. It is connected ta a 10 V battery

. How long will be it take for the magnetic energy to

reach $\frac{1}{4}$ of its maximum value ?

View Text Solution

17. In the circuits show $\varepsilon = 15V, R_1 = 1\Omega, R_2 = 1\Omega, R_3 = 2\Omega$ and L = 15H. Find the current i_1, i_2, i_3 (i) immediately after the switch is closed (ii) immediately after the opening from the closed position (iii) sufficiently long after , the switch is opened f rom the colsed position,

18. A semicircular wire of radius R= 20 cm rotates in its own plance about one end with angular velocity w = 10rad/s in uniformm magnetic field B=5 mT perpendicular into the plane of the wire gtFind the voltage developend between the ends of the wire

