©゙’ doubtnut

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

ELECTROMAGNETIC INDUCTION

Examples

1. The axles of the carriage of a train travelling at 72
km per hour anr 1.6 m long. Find the difference in potential at their ends if total intensity of the
earth's field is 0.5×10^{-4} tesla and angle of dip is 60°.

- Watch Video Solution

2. A copper disc of radius 10 cm rotates 20 times per scond with its axis parallel to a uniform magnetic
field of 0.5 tesla . Calculate the induced emf between the centre and the edge of the disc.

- Watch Video Solution

3. Calculate the maximum emf induced in a coil of 100 turns and $0.01 \mathrm{~m}^{2}$ area rotating at the rate of 50
rps about an axis perpendicular to a uniform magnetic field of 0.05 T . If the resistance of the coil is 30Ω, what is the maximum power generated by it ?

- Watch Video Solution

4. Calculate the self induction of a solenoid (ironcored) of length 30 cm comprising of 100 turns and of radius $5 \mathrm{~cm}\left(\mu_{r}\right.$ of iron $\left.=500\right)$
5. A coil of infucatance 0.2 mH and resistance 0.1Ω is connected to a cell of emf 1.5 V . Calculte (i) time constant of the circul, (ii) time in which current grow to 10 A. Also calculate the total energy stored in the core .

- Watch Video Solution

6. A rod closing the circuit shoew in the figure moves along a LI- shaped wire at a constant speed v under the action of the force F. The circult is in a unifron magnetic field perpendicluar to the plane .

Calculate F if rate of heat generation in the circuit is

Q.

- Watch Video Solution

1. A cicular loop of radius 10 cm and 500 turns in turend upside down on a horizontal table in 0.5 s .

Calculate the mean emf generated .(Earth's vertical
field $=0.43 \times 10^{4}$ tesla)

- Watch Video Solution

2. A copper disc of radius 20 cm makes 1200 revolution per minute about its axis which is parallel to a uniform magnetic field fo 0.01 tesla . Find the potential difference between the centre and the edge of the disc.
3. Find the difference of potential the ends of a horizaontal induction of earth's field $=2 \times 10^{-5}$ tesla)

- View Text Solution

4. A rivulet, which 10 m long is flowing northward along an insulated bed with a velocity of $0.3 \mathrm{~ms}^{-1}$.

Calculate the potenital difference between the water and the sides of the rivulet $\left(B_{0}=34 \times 10^{-6}\right.$ tesla and dip $\left.=60^{\circ}\right)$.
5. Calculate the inductance of a coil of 100 turns of wire would on an iron ring of radius 10 cm and $10 \mathrm{~cm}^{2}$ in cross-section, the relative permeability of iron being 700

- View Text Solution

6. An all-metal aeroplane flies horizational at 600 km per hours at a place where the vertical induction is 4×10^{-5} tesla . If the wing -span is 10 m , will be the resulting p.d between the tips of the wings?
7. A field of 0.2 tesla acts acts at right angles to a coil of area $100 \mathrm{~cm}^{2} \mathrm{~m}$ with 50 turns. The coil is removed from the field in 0.1 s . Find the emf induced

- Watch Video Solution

8. A milliivoltmere is conneceted between the rails
of a truck. Calcuate the voltmeter reading when a
train pases at 600 km per hours . The vertical
component of the earth's field is 2×10^{-5} tesla and the distance between the rails is 1.5 m .

- Watch Video Solution

9. Calculate the coefficient of self induction of a soleined of 500 turns and a length of 1 m . The area of cross-section is $7 \mathrm{~cm}^{2}$ and permeability to the core is 1000.

- Watch Video Solution

10. Calculate the coefficient of self induction of a soleined of 500 turns when a current of 1.25 A produce a magnetic flux of one microweber.
[Hint : See exerices 5]

- Watch Video Solution

11. A rectangular conductor of area $0.2 m^{2}$ is placed in a unifrom magnetic field with a B-vector strenght of 2 T with its normal at an angle 30°. Calculate the magnetic flux linked with the conductor.
12. The self inductance of a closely wound coils of

100 turns is 5 mH . What is the flux throught the coil when the current in it is 10 mA ?
[Hint : See exerices 5]

D Watch Video Solution

Exericises B

1. Half of the core of a solenoid of $2 \times 10^{-3} \mathrm{~m}^{2}$
cross -section, is made up of air and the other half iron $\left(\mu_{r}=500\right)$. The length of the solenoid is 2 m .

If the number of turns is 1000 , calculate its coefficient of self induction .

- Watch Video Solution

2. A solenoid of 50 cm length and 8 cm diameter is would with 500 turns of wire . Another coil of 20 insulated wire is colsely wound over it at its middle region . Calculate the coefficient of mutual induction
[Hint : Use the formula $M=\frac{\mu_{0} \mu_{r} N_{1} N_{2} S}{l} h e n r y$]
3. A metal wire of mass m sides without friction magnetic fields of induction B. A battery of constant $\operatorname{emf} \varepsilon$ is connected to the rails. What is the terminal speed of the slider?

D View Text Solution

4. A wire with a resistance p per unit length is bent
in the from of the letter A of vertical angle 2α.
There is a magnetic field B perpendicular into the plane of the letter. Calculate the current flowing in
the loop when the cross-piece cut moves down at a
constant speed v. Assume that it maintains contact with the sides as it moves down .

D View Text Solution

5. A copper bar of mass m sides under gravity on two smooth parallel rails I distance apart and set at angle α to the horizontal. At the lop , the rails are joined by a resistor R. Calculate the steady velocity of the bar the n when there is a unifrom magnetic field B perpedicular to the plane of the rails.

- View Text Solution

6. A copper bar of mass m rest at right angles to two parallel horizontal I distance apart . The rails are connected by a resistor R at one end and kept open at the other ends. Ther is a uniform upward magnetic fields of induction B.The bar is pulled away from the closed end by a constant force F. Calculate the terminal velocity of the bar when μ is the coefficient of frction between the rails and the bar .

D View Text Solution

7. A rod of mass m length I can rotate without friction about the centre of a vertical ring . There is
a unifrom mafgnetic filed B into the plane of the ring. A variable emf ε is applied between the centre and the rotating end of the rod . Caulcate the current which keeps the rod rotating with unifrom speed ω and the emf requried to maintain the required current

- View Text Solution

8. Two coils of self inductance L_{1} and L_{2} are connected by in parllel and the then to cell of emf ε and of resistance R throught a Key. Find the instantaneous current throught L after the key is closed.
9. A pure inductance is connected in parallel to a resistor R and then connected to a cell of emf ε and of resistance R through at key . Find the instantaneous current through L after the key is closed.

D View Text Solution

10. Two long parallel horizonal rails, a distance d apart and each having a resistance λ per unit length are jointed at one end by a resitance R. A perfectly
conducting rod MN of mass m is free to slide along the rails . A variable force F is applied to the rod MN , such that ,as the rd moves, a constant current i flows through R .
(a) Find the velocity v and the force F as function of the function of the distance x of the rod from R.

(b) What fraction η of the work done by F per second in converted into heat?
11. A rod of length I and mass m rests on two smooth parallel conductors shorted at one end by an inductor L and open at the end. The circuits is in a unifrom field B perpendcular in to the plance. The conductor is suddenly imparted an initial velocity V_{0} direction to the right. Show that the motion is
simple harmonic. Find its angular frequency and
amplitude.

D View Text Solution

12. A sqare frame with side $a=5 \mathrm{~cm}$ and a, long straight conductor carrying steady current I=5 A are located in the same plane. The inductance and the resistance of the frame are $\mathrm{L}=0.1 \mathrm{mH}$ and $R=1 \Omega$.

The frame is turned suddenly through 180 about the
side parallel to the conductor which is at a distance $\mathrm{b}=10 \mathrm{~cm}$. Find the charge through the frame .

D View Text Solution

13. Two parallel vertivcal inetallic ralis $A B$ and $C D$ are serparated by $\mathrm{I}=1 \mathrm{~m}$. They are connected at the ends by resistance R_{1} and R_{2} as show in the figure .

A horizationl metallic bar L of mass $\mathrm{m}=0.2 \mathrm{~kg}$ slides without friction vertically down the rails under the
action of gravity . These is a unifrom horizonal magnetic field of a $B=0.6 T$ perpendicular to the plane to rails . It is observed that when the termainal veloctity is attained, the power disspated in R_{1} and R_{2} are $P_{1}=0.76 W$ and $P_{2}=1.2 W$ respectively. Find the terminal velocity of bar L and the values of R_{1} and R_{2}

- View Text Solution

14. A cylinder space of radius R is filled with a unifrom magnetic induction a parallel to the axis of the space. If B change at the rate .Find the electric
field at a distance (i) $r<R$ (ii) $r>R$

- Watch Video Solution

15. An electromagnetic eddy current brak a consists of a disc of conductivity σ and thickness d rotating about axis through its centre between rectangular
poles of face area A at a distance from the centre from the centre . Calculate the torque tending to show down the disc.

- View Text Solution

16. A solenoid has an inductance of 10 H and a resistance $R=5 \Omega$. It is connected ta a 10 V battery
. How long will be it take for the magnetic energy to reach $\frac{1}{4}$ of its maximum value ?

- View Text Solution

$$
\begin{aligned}
& \text { 17. In the } \quad \text { circuits } \quad \text { show } \\
& \varepsilon=15 V, R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=2 \Omega \text { and } L=15 H
\end{aligned}
$$

. Find the current i_{1}, i_{2}, i_{3} (i) immediately after the
switch is closed (ii) immediately after the opening from the closed position (iii) sufficiently long after, the switch is opened from the colsed position,
18. A semicircular wire of radius $R=20 \mathrm{~cm}$ rotates in
its own plance about one end with angular velocity
$w=10 \mathrm{rad} / \mathrm{s}$ in unifornm magnetic field $\mathrm{B}=5 \mathrm{mT}$ perpendicular into the plane of the wire gtFind the voltage developend between the ends of the wire

