## ©"doubtnut

India's Number 1 Education App

## PHYSICS

## BOOKS - NN GHOSH PHYSICS

 (HINGLISH)
## FUNDAMENTAL OF CURRENT

## ELECTRICITY

Examples

1. A cell of emf 2 V produces 0.3 A current when
connected to a resistor of $5 \Omega$. Calculate the terminal voltage and internal resistance of the cell.

## D Watch Video Solution

2. Two batteries of emfs 12 V and 6 V and intenal resistance $0.2 \Omega$ and $0.1 \Omega$, respectively are connected in opposition through a
resistor $3.7 \Omega$. Calculate the terminal voltage of the first battery following either path.

## D Watch Video Solution

3. Two cells of emfs 1.5 V and 2.0 V internall resistance $2 \Omega$ and $1 \Omega$ respectively have their negative terminals joined by a wire of $6 \Omega$ and positive terminals by another wire of $4 \Omega$. A
third wire of $8 \Omega$ connects the mid points of these two wires. Find the current through $8 \Omega$
and the potential difference at the ends of the third wire.

## D Watch Video Solution

4. Calculate the equivalent resistance between
the points $a$ and $b$ of the following network of conductors.

5. A regular hexagon is formed by six wires each of resistance $r \Omega$ and the corners are joined to the center by wires of the same resistance. If the current enters at one corner and leaves at the opposite corner, find the equivalent resistance of the conductor.

## - Watch Video Solution

6. A nicrome wire of length 100 cm and radius
0.36 mm has a resistance of $1.5 \Omega$. Calculate
the resistivity of nicrome and also its conductivity.

## D Watch Video Solution

7. The resistance of a wire at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ is
$5.2 \Omega$ and $7.85 \Omega$, respectively. Calcualte the mean temperature coefficient of resistance of the material of the wire.
8. Calculate the drif velocity of electrons in an aluminium wire of radius 2 mm when a current of 5A passes through it. (Atomic weight of aluminium $=27$, Avogardo number $=6 \times 10^{26}$ kg $\mathrm{mol}^{\wedge}(-1)$
and densityofalu $\min$ ium $=2710 \mathrm{~kg}$ $\mathrm{m}^{\wedge}(-3)^{\prime}$
9. Find the currents in the $Y$ connection of 3
resistances $\quad R_{1}=10 \Omega, \quad R_{2}=20 \Omega \quad$ and
$R_{3}=30 \Omega$. When the terminals of $R_{1}, R_{3}$ and
$R_{3}$ are maintained at potentials $V_{1}=10 \mathrm{~V}, V_{2}$
$=6 \mathrm{~V}$ and $V_{3}=15 \mathrm{~V}$.


- Watch Video Solution

1. A wire carries a constant current of 10A. How many coulombs and how many charge carriers pass a cross-rection of the wire in 20 seconds?
(charge of electron $=1.6 \times 10^{-19} \mathrm{C}$

## D Watch Video Solution

2. Two batteries of emf $\varepsilon_{1}$ and $\varepsilon_{2}$ produce a
current of 1.5 A when they are in opposition
and 2.5 A when they are in series. Find the ratio of the two emf's.

## D Watch Video Solution

3. In a battery of 10 cell supposed to be in series some are wrongly connected. The cells are sealed in a box. When a similar cell is
connected in opposition to the battery, the current produced by the combination through an external resistor of $14.5 \Omega$ is 0.075 A . How many cells are wrongly connected? What is the
emf of the battery and what is its internal resistance if emf of each cell is 1.5 V and internal resistance $0.5 \Omega$ ?

## D View Text Solution

4. How you would arrange 24 cells, each of emf
1.5 V and internal resistance $0.5 \Omega$, to deliver maximum current to a resistor of $4 \Omega$ ? What is the maximum current?
5. A letter $A$ is constructed as a uniform wire of resistance $1 \mathrm{ohm} / \mathrm{cm}$. The sides of the letter are 20 cm long and the cross piece in the middle is 10 cm long while the vertex angle is
$60^{\circ}$ the resistance of the letter between the two ends of the legs is

## - Watch Video Solution

6. Calculate the the resistivity of the material of a wire whose resistance is $5 \Omega$, length 1 m and radius 0.6 mm .
7. The resistance of 100 m of copper wire of diameter $0.056 \times 10^{-2} \mathrm{~m}$ is $6.62 \Omega$. Calculate
(i) resistivity, (ii) Electrical conductivity of copper.

## - Watch Video Solution

8. Calcualte the resistance of a steel wire of
length 10 m and diameter 0.6 mm at $0^{\circ} \mathrm{C}$ and
$100^{\circ} \mathrm{C}$. (Electrical resistivity of steel $0^{\circ} \mathrm{C}$ is $15 \times 10^{-8} \Omega \mathrm{~m}$ and mean temperature coefficient of resistance of steel is $50 \times 10 i^{-4} K^{-1}$

## - Watch Video Solution

9. Three wires whose lengths are in the ratio
$3: 8: 18$ and radii in the ratio $1: 2: 3$ are connected in parallel. Find the ratio of the currents through them.
10. A moving coil galvanometer of resistance $50 \Omega$ is connected in series with a fixed resistance $50 \Omega$ and the combination to a cell of steady emf and negligible internal resistance. What is the shunt required to halve the current through the galvanometer?

## D View Text Solution

11. A resistance box, a battery and a galvanometer of resistance $G$ ohm are
connected in series. the galvanometer is
shunted by resistance of $S$ ohm, find the change in resistance in the resistance box be required to maintain the current from the battery unchanged.

## D Watch Video Solution

12. A shunt is to be applied to a galvanometer of $99 \Omega$ so that only $10 \%$ of the total current passes through it. Find the shunt required. What additional shunt will be required to send
$1 \%$ of the total current through the galvanometer?

## D View Text Solution

13. Two identical cells of emf 1.5 V and internal resistance $1 \Omega$ are joined in series and the combination is connected in parallel with a third cell of the same emf and internal resistance. Calculalte the terminal voltage of the cells.
14. A battery of emf 6 V internal resistance $5 \Omega$
is joined in parallel with another cell of emf of 10 V and internal resistance $1 \Omega$ and the combination is used to send current through
a resistor of $12 \Omega$. Calculate the current through each battery.

## D Watch Video Solution

15. A battery of emf 6 volts and internal resistance $1 \Omega$ is connected in parallel to
another battery of emf 8 V and internal resistance $2 \Omega$. The combination is then used to send current through an external resistance of $10 \Omega$. Find the current through the external resistance.

## D Watch Video Solution

16. Two batteries of emfs 24 V and 6 V and internal resistance $2 \Omega$ and $1 \Omega$ respectively are
joined in parallel, negative to negarive by a resistor of $2 \Omega$ and positive to positive by
another resistor of $4 \Omega$. Calculate the terminal voltages of the two batteries.

## D View Text Solution

17. The sides of a square $A B C D$ are formed of wires, each of resistance $r$ and $B$ is joined to $D$
by a wire of resistance $2 r$. Find the equivalent resistance of the skelton
(i) between $B$ and $D$, (ii) between $A$ and $C$ and
(iii) between A and B .
18. In a wheatstone bridge, the resistance of the arms of the bridge are $\mathrm{AB}=2 \Omega, \mathrm{BC}=4 \Omega$
, $\mathrm{AD}=1 \Omega$ and $\mathrm{DC}=3 \Omega$. The terminals of negligible resistance to $A$ and $C$. If $a$ galvanometer of resistance $100 \Omega$ is connected between $B$ and $D$, find the current in the galvanometer.

D View Text Solution
19. $A B C D$ is a square of side a meters and is mae up of wires of resistance $x \Omega / m$. Similar wires are connected across the diagonals AC and BD. Show that the effective resistance of the frame-work between the corners A and C is $(2-2 \sqrt{2}$ ax $\Omega$.

## D Watch Video Solution

20. A battery of 2 V and internal resistance $2 \Omega$
is used in wheatstone bridge. Find the current
through the galvanometer in the unbalanced position of the bridge when $P=1 \Omega, Q=2 \Omega$,
$R=2 \Omega, S=3 \Omega$ and $G=4 \Omega$.

## - View Text Solution

21. When one mole of zinc combines with sulphuric acid 445 kJ of heat is liberated and when a mole of copper is liberated from blue vitriol 235 kj of heat is absorbed. Avogadro number $=6.023 \times 10^{23}$, electronic charge $=$ $1.6 \times 10^{-19} \mathrm{C}$ and zinc or copper is divalent.

Use these data to find the emf of a Daniell cell.
[Hint: Energy liberated in the form of heat is converted into elecrical energy in a Daniel cell]

## D View Text Solution

22. Two resistors with temperature coefficients
of resistance $\alpha_{1}$ and $\alpha_{2}$ have resistances $R_{01}$
and $R_{02}$ at $0^{\circ} C$. Find the temperature
coefficient of the compound resistor consisting of the two resistors connected.
a.. In series and
b. in paralllel

## D Watch Video Solution

23. Show that if $E$ is the electric intensity inside a conductor of electrical conductivity $\sigma$,

Ohm's law may be coveniently put in the form, $\vec{J}=\sigma \vec{E}$ where $\mathrm{J}=$ current density in the conductor.

D View Text Solution
24. Show that drift velocity of electrons in a conductor is given by $u=\frac{J}{\neq}$ where J is the current density, $n$ is the number of mobile electrons per unit volume and $e$ is the charge carried by each electron. Calculate the same in
a copper wire of radius of 0.6 mm when a
current of 1A flows through it assuming that one mobile electron is available from one atom of copper. Atomic weight of copper $=$ 63.55, density of copper $=8930 \operatorname{kgm}^{\wedge}(-3)$
, Avogadroעmber $=6.01 \quad$ xx $\quad 10^{\wedge}(26) K g$
$\mathrm{mol}^{\wedge}(-1)$ and $e=1.6 \times x 0^{\wedge}(-19)^{\wedge} \mathrm{C}$

## - View Text Solution

25. A spherical silver electrode of radius 8 cm is
concentric with a spherical metal shell of radius 10 cm . The inter space contains an insulating material of resistivity $10^{6} \Omega \mathrm{~m}$.

Compute the resistance of the insulator.
[Hint: Resistance of a shell of radius $\mathrm{z}=\rho \frac{d z}{4 \pi z^{2}}$
. Integrate from $z=8$ to $z=100$

- Watch Video Solution

26. Two batteries of emf 12 V and 6 V and internal resistance $2 \Omega$ and $1 \Omega$ are connected in parallel and the combination is connected to a resisor of $2 \Omega$ through a key. Find the potential difference between the positive and negative terminals of the batteries (a) When
key is open, b) when key is closed. Find the emf and internal resistance of a single cell which would be equivalent to the combination.

## D View Text Solution

27. Find the potential difference the points a and $b$ of the circuit(figure). If $a$ and $b$ are joined by a wire what is the current through the $12-\mathrm{V}$ cell?

28. Twelve identical resistor are arranged on all edges of a cube. Then find the equivalent resistance between the corners 1 and 6 as shown in fig 5.126 (use nodal method).

29. Find the equivalent resistance between the
terminal points $a$ and $b$ of the circuits $1,2,3$
and 4.

circuit 1

circuit 3

circuit 2

circuit 4

- Watch Video Solution

30. A newtwork of conductors is in the form of
a triangle ABC in which $\mathrm{AB}=1 \Omega, \mathrm{BC}=2 \Omega$ and CA
$=3 \Omega$ and the angular points $\mathrm{A}, \mathrm{B}$ and C are joined to any point O inside the triangle by resistance $1 \Omega, 2 \Omega$ and $3 \Omega$, respectively. Find the equivalent resistance between $A$ and $B$.
[Hing: Assume current at the entrance and exit points].

## D Watch Video Solution

31. Find the resistance of the infinite series of the circuit in figure between the points a and b.
[Hint: From an infinite series if we separate out the first unit, the remaining circuit will still
be an infinite series and hence will have the

## same equivalent resistance]



- Watch Video Solution

32. Calculate the equivalent resistance of the circuit shown in figure between the points a and $b$.


## - Watch Video Solution

33. A current of 8 A is to be sent through a resistor of $5 \Omega$ Calcualte the least number of cells required for the purpose when each cell has emf 2 V and internal resistance $0.5 \Omega$.

## D View Text Solution

34. N cells, each of emf $\varepsilon$ and internal resistance $r$, are arranged in a ring in series.

Two points including n cells on one side and N -n cells on the other side are connected to a resistor R. Calcualte the current through R (figure)

35. Calcualte the equivalent resistance between the terminals of the cell (figure) The resistance of each equivalent is $1 \Omega$ and the intersecting diameters have resistance $2 \Omega$ each.

## D View Text Solution

36. Find the potential difference between the point $a, b$ of the given circuit figure. [Hint:
$\left.V_{a b}=\sum i r-\sum \varepsilon\right]$


## D Watch Video Solution

37. A part of a circuit in the steady state with the currents flowing in the branches and the values of resistance are shown in figure.

Calculate the energy stored in the capacitor
$C=4 \mu F$.


## - Watch Video Solution

38. Calculate the current through the 5-V cell of the figure.


## - Watch Video Solution

39. In the circuit in figure there are $n$ repetitions of the same loop. What resistance should be connected across the end points so that the equivalent resistance between a and b may be independent of $n$ ? What is this equal to?
40. There is an infinite wire grid with square cells (Fig). The resistance of each wire between neighbouring joint connections is equal to $R_{0}$
. Find the resistance $R$ of the whole grid between points $A$ and $B$.

Instruction. Make use of principles of
symmetry and superposition.


## D Watch Video Solution

41. Two metals balls of the same radius a are
placed in a homogenous poorly conducting media with resistivity $\rho$. Find the resistance if
they are separated by a large distance.
[Hint: Use $j=\sigma E$ to evaluate total current through mid-plane and then use $\mathrm{V}=\mathrm{IR}$ ]

## D View Text Solution

42. Show that if one collision takes place in every $\tau$ seconds then the resistivity is given by $\rho=\frac{m}{\neq^{2} \rho}$, where all the terms have their usual meaning.
43. A straight copper-wire of length 100 m and cross-sectional area $1.0 \mathrm{~mm}^{2}$ carries a current
$4.5 A$. Assuming that one free electron
corresponds to each copper atom, find
(a) The time it takes an electron to displace
from one end of the wire to the other.
(b) The sum of electrostatic forces acting on
all free electrons in the given wire. Given resistivity of copper is $1.72 \times 10^{-8} \Omega-m$ and density of copper is $8.96 \mathrm{~g} / \mathrm{cm}^{3}$.
44. A constant voltage is applied to n groups of resistors in siries where each group has $m$ identical resistros in parallel. One resistor burns out in one group. Find the percentage increase of current in each resistor of the faulty group, and the percentage decrease of current in each resistor of the second group.
45. If $\alpha_{1}$ is the temperature coefficient of resistance at $t_{1}^{\circ} C$ find $\alpha_{2}$ at $t_{2}^{\circ} C$
[hint: $\alpha=1 / \mathrm{R}(\mathrm{dR}) / \mathrm{dt})$ and $\mathrm{R}=\mathrm{R}$ _(0)
(1+at+btp^(2))]

- View Text Solution

