© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

GAUSS THEOREM AND ITS APPLICATION

Examples

1. A shere of radius a is uniformaly charged
thoughout its volume with a volume change
density of σ. Calculate the electeric field at a distance r form the centre of the sphere when $(i) r<a(i i) w h e n r>a$.

D Watch Video Solution

2. If the field near the earth's surface is 300 V m^{-1} directed downwards, what is the surface density of change on the surface of the earth?
3. A soap bubble of radius 3 cm is chaged with 9 nC (nanocoulomb) Find the excess pressure inside the bubble surface tension of soap solution $=3 \times 10^{-3} m^{-1}$

D Watch Video Solution

4. Air given way when there is a gradient of potential of 3×10^{6} valts per matre. What is the maximum voltage to which a sphere of radius 1
cm can be charged ? What is the chage required ?

- Watch Video Solution

5. A sphere of radius 10 cm is chaged with 1 nC (nanocoulamb) ?Calculate the energy density of the medium at a distance of 20 cm from its centre.

(Watch Video Solution

6. Calculate the mutual force of attraction between two parallel plates 1 cm apart and
maintained at a potential differnce of 100 V Aera of rach plate $=10^{-2} m^{2}$

D Watch Video Solution

7. Two thin parallel threads carry a uniform charge with linear densities λ and $-\lambda$. The distance between the threads is equal to l. Find the potential of the electric field and the magnitude of its strength vector at the distance $r \gg l$ at the angle θ to the vector 1 (fig).
8. A metal ball of radius $R=1.5 \mathrm{~cm}$ has a charge
$q=10 \mu C$. Find the molecules of the vector fo the resultant force acting on a charge located on one half of the ball.

(D) Watch Video Solution

Examples A

1. A small ball carring $1 \mu C$ of change is
suspended over an infinite horizontal conducting
plane by means of an insulating spring of force constant $100 \mathrm{Nm}^{-1}$ Calculate the increase In length of the spring if the plane has a surface density of change equal to $-8.85 \times 10^{-6} \mathrm{Cm}^{-2}$

(D) Watch Video Solution

2. Calculate the surface density of change at a place on the earth's surface where the rate of fall of potential is 250 volts per metre.
[Hint : rate of fall of potential =electric $=E=\frac{\sigma}{\varepsilon_{0}}$ by Gauss's theorm.]
3. A spark passes though air when the potential gradient is 3×10^{6} volts per metre what must be the radious of an isoated metal sphere which can be changed to a potentiial of 3 million voilts before there are sparks in the air?
$\left[\right.$ Hint $: E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ and $\left.V=\frac{Q}{4 \pi \varepsilon_{o} r}, \therefore E=\frac{V}{r}\right]$

D Watch Video Solution

4. Calculate the change which must be placed on a sphere of radius 10 cm in order that the
repulsion per square mertre of the surface may
just balance the atmospheric pressure which is
$1.013 \times 10^{5} \mathrm{Nm}^{-2}$
$\left[\right.$ Hint $: P=\frac{\sigma}{2 \varepsilon_{0}}$ and $\left.Q=4 \pi r^{2} \sigma\right]$

D Watch Video Solution

5. An infinite changed sheet has $10^{-7} \mathrm{Cm}^{-2}$
surface density of change .How far apart are the equipotential surface differing by 5 voits?
[Hint: Elwctri intensity =rate of fall of potential .]
6. An isolated metal sphere whose diameter is 10 cm has a potential of 8000 voits. What is the energy density at the surface of the sphere?

(D) Watch Video Solution

7. What change must be placed on a soap bubble of radiuas 1.5 cm if the air pressure has to be the same inside and outside the bubble ? Assume the surface tension to be $27 \times 10^{-3} \mathrm{Nm}^{-1}$
8. An isolated sphere of radius 5 cm is charged to
a potential of 159 Kv (Kilovoits). Find the electrostatic force per unit area of the surface.
[Hint: Force per unit area
$=\frac{\sigma^{2}}{2 \varepsilon_{0}}$ and $\left.V=\frac{Q}{\left(4 \pi \varepsilon_{0} r\right)}=\frac{4 \pi r^{2} \sigma}{4 \pi \varepsilon_{0} r}=\frac{r \sigma}{\varepsilon_{0}}\right]$

- Watch Video Solution

9. A metal plate of radius 20 cm is charged positively to a potential of 6000 volts and placed at a distance of 5 cm from a parallel earth
connected plate .Find the total pull between the plates.

- View Text Solution

10. Two parallel plates which are 0.2 cm apart are raised to a potential diffence of 1200 voits .If the
space between them is filled with air, calculate the mutual pull per unit area.

- Watch Video Solution

11. The sir prssure is the same inside and outside a changed soap bubble of radius 1 cm .If the surface tension is $0.03 \mathrm{Nm}^{-1}$ aclaculate the potential in voits.

D Watch Video Solution

12. A spsrk passes though air when the potential gradient at the surface of a chaged conductor is $3 \times 10^{6} V M^{-1}$ What must be the radius of a metal sphere (insulated) which may be raisid to a pottential of 2×10^{6} voits before spking
occurs? How much energy will be be stored just before there ios a spark?

- View Text Solution

13. Two concentric sphericl shells of radii a and b
(bgt a) are uniformamly changed and carry equal changes q. Find the electric firld at a distance r
from their common centre when
$(i) r<a(i i) a<r<b(i i i) r>r$.
[Hint: Draw coaxial cylindrical gaussion surface and appy Gauss thearem]
14. Two concentric sphericl shells of radii a and b
(bgt a) are uniformamly changed and carry equal changes q. Find the electric firld at a distance r from their common centre when $(i) r<a(i i) a<r<b(i i i) r>r$.
[Hint: Draw coaxial cylindrical gaussion surface and appy Gauss thearem]

D Watch Video Solution

15. Calculate the elecric flux though a hemisphere of radius R. The electric field E is unfrom and is
(a) parallel,(b) perpendicular to axis of the hemisphere.

D Watch Video Solution

16. Two point charges q and $-q$ are separated by a distance $2 l$. Find the flux strength vector across the circle of radius R placed with its centre coinciding with the of line joining the two charges in the perpendicular plane.

- Watch Video Solution

17. Show by the priciple of superpostion that is a cavity is removed from a uniformly chaged sphere the field inside the cavity is $\rho a / 3 \varepsilon_{0}$ where ρ is the centre ofchnages and \vec{a} is the vector from the centre of the sphere to the centre of the cavity.
18. A point changes 60 nC is placed at the centre of a a thick, inssulated, metallic spherical shell has radii 10 and 12 cm Find the electric firld at distance 511 and 15 cm from the centre what is the force between the point changes and the shell?

- View Text Solution

19. It has been experimentally observed that the electric field in a large region of earth's atmosphere is directed vertically down. At an
altitude of 300 m , the electric field $60 \mathrm{Vm}^{-1}$. At an altitude of 200 m , the field is $100 \mathrm{~V} \mathrm{~m}^{\wedge}(-1)$, the field is $100 \mathrm{Vm}^{-1}$. Calculate the net amount of charge contained in the cube of 100 m edge, located between 200 and 300 m altitude.

D Watch Video Solution

20. There is an infintely long straight wire
carrying a charge of liner density $\lambda=40 \mu C / m$
Calculate the potential diffence between point 1
and 2 if point 2 is $n=2$ times fayher from the wire then point 1.
(
21. Two parallel infinite plates are chaged oppositely with densites $+\sigma_{2}$ four point $1,2,3,4$
are located as difference between 2 and 1 is
$V_{2-V_{1}}(\mathrm{a})$ which of the densites $\left(+\sigma_{1}\right.$ or σ_{2} is larger in magnitude? (b) what is the potential diffence beween 4 and 3 ?

- View Text Solution

22. An infintie nonconducting sheet a surface density of change σ Around the foot og the perpendicular from a point P a circle of radius r is
drawn. Find the valume of r at which the field at P product by changes inside this circle is half of the total strength of the feld due to the entire sheet. The distance of the point P is a from the plane.

- View Text Solution

23. A place large aluminium sheet is connected to
a bettery of emf $\varepsilon=12 \mathrm{~V}$ The sheet develops
surface density of charge $\sigma=0.9 n C / m^{2}$
Calculate the potential at apoint distant $x=2$
along the normal to the sheet At what distance potential is zero?

D View Text Solution

24. Small identical balls with equal charge are fixed at the vertices of a reggular hexagon after of N sides ,each of length a At a certain instant one of the ball is releases and after a sufficiently long time the adjacent ball is released .The kinetic energies of the two releases balls differ by k at a sufficenlty long distance from the polygon . Determine the charge on each ball.
