©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

INTRODUCTION TO MODERN PHYSICS

Examples

1. Calculate the velocity with which electrons in
a cathode ray tube strike the anode when 30,

000 V is operating between the cathode and anode of the tube. (mass of electron $=9 \times 10^{-31} \mathrm{~kg}, \quad$ charge of electron $\left.=1.6 \times 10^{-19} \mathrm{C}\right)$.

D Watch Video Solution

2. An electron entering a magnetic field of $0.01 T$ with a velocity of $10^{7} \mathrm{~ms}^{-1}$ describes a circle of radius 0.6 cm . Calculate e/m (specific charge) of the electron.
3. An electron is accelerated in between two plates maintained at 1000 V . What is the energy in eV acquired by the electrons? $\left(e=1.6 \times 10^{-19} C\right)$

- Watch Video Solution

4. A proton of mass $m=1.67 \times 10^{-27} \mathrm{~kg}$ moves uniformly in a space where there are uniform, mutually perpendicular electric and magnetic fields with $E_{z}=5 k V / m$ and
$B_{x}=40 m T$ at an angle $\phi=60^{\circ}$ with the $\mathrm{x}-$ axis in the $x y$-plane. Find the pitch of the trajectory after the electric field is switched off.

D Watch Video Solution

Exercise

1. An electron falls through a potential differsence of 1000 V and gives up
$1.6 \times 10^{-16} J$ of energy. What is the charge on the electron?

D Watch Video Solution

2. The forces of cathode ray particles due to electric and magnetic fields which are at right angles to each other balance each other. If the magnetic field has an intensity $0.1 T$, what is the intensity of the electric field? The velocity of cathode ray particles is $10^{6} \mathrm{~ms}^{-1}$. What p.d. is required to produce this velocity?

Watch Video Solution

3. An electron falls through a potential difference of $50,000 \mathrm{~V}$. What is the energy acquired by it?

- Watch Video Solution

4. An electron of energy 150 eV describes a circle in a magnetic field of 0.1 tesla. Calculate the radius of the curcle.
5. An electron is moving with a velocity of $10^{7} m s^{-1}$. Find its energy in electron volts.
(Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ and charge of electron $=1.6 \times 10^{-19} C$)

D Watch Video Solution

6. A horizontal stream of charged particles is
accelerated to velocity $3 \times 10^{7} \mathrm{~ms}^{-1}$
immediately before being allowed into an
electric field between teo horizontal plates
separated by 2 cm and maintained at a p.d. of

100 V . The stream is deflected by 5 mm .

Calculate elm of the charged particles of the stream. (Length of plates $=10 \mathrm{~cm}$).
[Hint: Electric field between plates = rate of change of potential]

D View Text Solution

7. Electrons move at right angles to a magnetic field of 1.5×10^{-2} Tesla with a
speed of $6 \times 10^{7} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times 10^{11} \mathrm{C} / \mathrm{kg}$. The radius of the circular path will be

D Watch Video Solution

8. In a cathode ray tube, electric and magnesity of the magnetic fields are simultaneously applied at right angles to each other and the intensity of the magnetic field is
so adjusted that the beam remains
undeflected. Show that the velocity of cathode
ray particles is given by $v=\frac{E}{B}$. Calculate this
velocity
when
$B=0.01 T$ and $E=50,000 \mathrm{~V} / \mathrm{m}$.

D Watch Video Solution

9. A non-relativistic enters into a right-handed
coordinate space with velocity $10^{4} m s^{-1}$ at an
angle of 60° with the x-axis in the xy-plane.
There is a uniform magnetic field of 50 mT along the y-axis. Find the pitch of the helical trajectory. What is the axis of the helix?
10. A non-relative proton enters at right angles to a uniform magnetic field of 30 mT . What is the frequency of revolution of the particle if the field is sufficiently deep?

- Watch Video Solution

11. A nonrelativistic electron enters a uniform magnetic field of 50 mT with a speed of $10^{6} \mathrm{~m} / \mathrm{s}$ at right angles to it and emerges
from the field after 0.1 nanosecond. What is the deviation produced the field ? Show that it does not depend on the initial speed of the electron.

D View Text Solution

12. Hall effect measurements were made using
a sodium conductor. The strength of the Hall
field was found to be $E=500 \times 10^{-6} \mathrm{Vm}^{-1}$
with a current density $J=2 \times 10^{6} A / m^{2}$ and
magnetic induction $B=1 T$. Find the
concentration of the conduction electrons in sodium.

D Watch Video Solution

13. Find the mobility of the conduction electrons in a copper conductor if in Hall effect measuremaents performed in the magnetic fileld of induction $B=100 m T$ the transverse electric field strength of the given conductor turned out be $\eta=3 \cdot 1 \cdot 10^{3}$ times less than that of the longtudinal electric field.

Watch Video Solution

14. A parallel plate capacitor with area of each
plate equal to S and the separation between
them to d is put into a stream of conducting
liquid with respectivity ρ. The liquid moves parallel to the plates with a constant velocity v
. The whoel system is located in a unifrom magentic field of induction B, vector B being parallel to the plates are interconnected by means of an exteranal resistance R. What amount of power is genrated in that
resistance? At what value of R is the generated power the highest? What is this highest power equla to ?

D Watch Video Solution

15. A straight round copper conductor of radius $R=5.0 \mathrm{~mm}$ carries a current $I=50 A$

Find the potentail difference between the axis of the conductor and its surface. The concentration of the conduction electrons in copper is equal to $n=0.9 \cdot 10^{33} \mathrm{~cm}^{-3}$.
16. The resistivity of indium arsenide arsenide is $\rho=2.5 \times 10^{-3} \Omega m$ and its Hall constant is
$C_{H}=10^{-2} \mathrm{~m}^{3} / \mathrm{c}$. Find the concentration and mobility of the charge carriers in this material.

- View Text Solution

17. Electrons are observed to be ejected in
various directions with negligible speed from
the negative plate of a parallel plate capacitor
when the plate is illuminated by a certain wavelength. The plates are separated by a distance d and a potential difference V is maintained between them. Show that none of these electrons will reach the positive plate if a magnetic field is applied at right angles to the electric field and that the magnetic induction has a value $B>\left(\frac{2 m V}{e d^{2}}\right)^{\frac{1}{2}}$ where m and e are the electron mass and charge respectively.
18. Electrons accelerated by a p.d. of $V=5000$
volts are allowed to impinge normally on a plate. If the current constituted by the impinging electrons be $I=0.02 m A$, find the force experienced by the plate. Assume complete absorption of electrons by the plate. $m=9.0 \times 10^{-31} \mathrm{~kg}$ and $e=1.6 \times 10^{-19} C$

D View Text Solution

19. A thick wire of radius $r=5 \mathrm{~mm}$ carries a steady current $I=10 A$. An electron leaves its
surface perpendicularly with velocity
$v_{0}=10^{6} \mathrm{~m} / \mathrm{s}$. Find the maximum distance
from the surface of the wire before it turns back.

D View Text Solution

20. An electron starting at angle $\alpha=60^{\circ}$ with
a uniform magnetic induction $B=0.1 T$ moves with velocity $v=10^{6} \mathrm{~ms}^{-1}$. A screen is
held at right angles to the field at a distance
$l=5 \mathrm{~cm}$ from the strating point. Find the
distance r from the straight point to the point on the screen where the electron strikes.

D View Text Solution

21. An electron beam accelerated by a p.d. of
$V=100 \mathrm{~V}$ enters into a magnetic field
perpendicular out the plane of the page. The
space occupied by the field is width $d=10 \mathrm{~cm}$.

A screen is held at right angles to the initial
direction of motion of the beam at a distance
$b=20 \mathrm{~cm}$ from the nearer edge of the field.
find the distance ' δ ' of the point where the beam strikes the screen from the point where
it whould strike had there been no field.

D View Text Solution

