©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

MAGNETIC EFFECT OF CURRENT

Examples

1. A small current element $5 \times 10^{-5} \mathrm{~A} m$ is
placed at the corner A along $A B$ of an
equilateral trianle $A B C$. Calculate the intensity of the magnetic field at B and C. Each side of the triangle is 20 cm .

D Watch Video Solution

2. A circular loop of mean radius 5 cm , which
has 40 turns of insulated copper wire, is placed in the magnetic meridian. A compass needle is placed at the center of the loop. What direction is produced by a current of 0.1

A through the coil? (H-vector of the earth's field at the place $=29 \mathrm{~A} m^{-1}$

D Watch Video Solution

3. A circulalr coil carrying a current of 0.5 A is initially set in the magnetic meridian. It is turned till the magnetic needle pivoted at its center becomes parallel to the plane of the coil. If in the position the plane of the coil is
30° away from the magnetic meridian, calcualte the horizontal component of the
earth's magnetic field. (Radius of coil $=5 \mathrm{~cm}$ and number of the turns $=50$)

D Watch Video Solution

4. A circular loop is placed in the magnetic meridian. Find the deflectioin it will produce in
a compass it will produce in a compass needle placed 10 cm from its center. H -vector of earth's field $=30 A m^{\wedge}(-1)^{\prime}$. Radius of the loop $=10 \mathrm{~cm}$ and number of turns $=10$. Current through the loop $=0.5 \mathrm{~A}$
5. Calcualte the magnetic field at the center of a square conductor carrying a current of $1 A$.

The square is 10 cm on each side.

- Watch Video Solution

6. Calculate the magnetic field at the center of a semicircular conductor carrying a current of I ampere. The radius of the semicircle is equal to a.
7. A thin wire of length $l=1 \mathrm{~m}$ is shipped into a semicircle with diameter. Calculate the force per unit length at the mid-point of the diameter when it carries a current $\mathrm{I}=8 \mathrm{~A}$.

8. A wire loop carrying a current I is placed in
the $x-y$ plane. (a) If a particle with charge $+Q$
and mass m is placed at the center P and given
a velocity \vec{v} along NP, find its acceleration. (b)
if an external uniform magnetic induction \vec{B}
$=B \hat{i}$ is applied, find the force and the torque
acting on the top due to this field.

D Watch Video Solution

Exercises

1. A current element of strength $2 \times 10^{-4} \mathrm{Am}$
is at the corner A of a cube $A B C D E F G H$ of sides
10 cm , the element lying along the edge $A B$.
Calcualte the B -field and H -field of the element at the diagonally opposite corner.

- Watch Video Solution

2. Two current elements of strengths 0.2 Am
0.4 A m from a cross at the center of a circle of
radius 10 cm . Calculate the magnetic field at a
point on the circle 30° away(anticlockwise)
from the first element.

D Watch Video Solution

3. What current must be passed through a vertical coil of 50 turns of average radius 8 cm
in order to neutralize the horizontal
component of the earth's field (15 Am^{-1} at its center?

- Watch Video Solution

4. A circular loop of 100 turns and radius 10 cm
is placed witih its plane at an angle of 60°
with the magnetic meridian. Calculate the angle made with the magnetic meridian by a small magnetic needle placed at the center of the loop when 1-A current is placed through it.

The horizontal component of the earth's field is $3.6 \times 10^{-5} \mathrm{~T}$.
5. A coil of 50 turns and radius 10 is placed
with its plant at right angles to the magnetic meridian. It is connected to a cell of steady emf and a rheostat. The current through the
coil is gradually increased till a compass needle at its center just turns through 180°.

Find the strength and direction of current through the coil.
(Horizontally intensity of earth's field $=30 \mathrm{~A}$ m^{-1}
6. Calcualte the current in amperes through a circular loop of 40 turns and mean radius 5 cm placed with its planein the magnetic meridian that will produce a deflection of 60° in a compass needle placed at its center. (The value of horizontal induction = $\left.3.5 \mathrm{xx} 10^{\wedge}(-5) \mathrm{T}\right)$

- Watch Video Solution

7. A circular coil has 63 turns, each of radius

22 cm . It is placed in the magnetic meridian. A
current of 0.5 A is passed through the coil.

What is the deflectio of a compass needle placed at its center is 45°. Calcualte the intensity of the earth's horizontal field.

D Watch Video Solution

8. A circular coil with 10 turns of mean radius

10 cm is placed in the magnetic meridian. A current of 0.5 A is passed through the coil.

What is the defelctioin of a compass needle placed at the center of the coil? If the coil is
rotated, at wht angle will the needle placed to
the plane of the coil? If the coil is rotated, at what angle will the needle set parallel to the plane of the coil?)H of earth's field $=30$ $A m^{\wedge}(-1)^{\wedge}$

D Watch Video Solution

9. A current of 0.1A passes through a circular
coil, 15 cm in diameter and consisting of 50
closely wound time of fine insulated wire.

Calculate the intensity of field (H-vector) (i) at
the center of the coil, (ii) at a point on its axis
7.5 cm from the center.

D Watch Video Solution
10. Calculate the magnetic field at the center of a regualr hexagon, 10 cm on each side, when the current through the wire forming the hexagon is 5 A .
11. Two long, straight parallel conductors each carrying 2A current in the same direction are

10 cm apart. Calculate the magnetic field at a distance a) at a point which is midway between the wires b) at a point which is 15 cm from one wire and 5 cm from the other.

- Watch Video Solution

12. Calculate the magnetic field at the orthocenter of an equilateral triangle, 20 cm
on each side. The current through the wire forming the triangle is 10A.

D Watch Video Solution

13. Calculate the magnetic field at the corner of a right angled triangle ABC, A being 90°, when two long conductors each carrying 2 A pass perpendicular to the plane of the triangle through the corners B and C. The sides of the trianlge are $A B=3 \mathrm{~cm}, A C=4 \mathrm{~cm}$.
14. The circular coil of tangent galvanometer is
set at right angles to the magnetic meridian. It
is found that the coil has gone through 20°
from its initial position. Calcualte the
horizontal intensity of the earth's magnetic
field. The coil has only two turns of mean radius 8 cm .

- Watch Video Solution

15. A long thin wire is placed along the y-axis
(just outside) of a frame of refernce. There exists a uniform magnetic field of $10^{-6} \mathrm{~T}$ along the x-axis. Calculate the magnetic field at the points $(0,0,2 m),(0,2 m, 0)$ and $(2 m, 0,0)$ when the wire carries 10A current. Revise the calculation for a thick wire.
16. A circular loop of radius 10 cm carries a current of 15 A . At its center is placed a small
loop of radius 1 cm with 50 turns and a current of $1 A . A$) what is the B-vector of the magnetic
field produced by the large loop at its center?
(b) What is the H-vector of the field? (c) What torque acts on the small loop when its plane is perpendicular to the plane of the large loop?

D Watch Video Solution

17. Two long straight conductors carrying current I are located at the corners A and B of an equilateral triangle $A B C$ of side $2 a$ and they are perpendicular to the plane of the triangle.

Calcualte the force on a conductor carrying the same current and placed along the median $C D$ and equal to it in length.

D View Text Solution

18. A thin disc of dielectric material, with a total charge +q distributed uniformly over its
surface rotates n times per second about an axis perpendicualr to the surface of the disc and passing through its center. Find the magnetic induction at the center of the disc.

The radius of the disc is equal to r.

D Watch Video Solution

19. A conductor of lengh I is placed in the eastwest line on a table. Suddenly a certain amount of charge is passed through it when it, is found to jump to a height h. Calculate the amount of charge passed through it. The earth's horizontal magnetic induction is B .
[Hint: idt=q]
20. A long wire is bent into the shape shown in
the figure. Without cross-contact at P .
Determine the magnitude and direction of B at the center of the circular portion of radius

R when a current I flows as indicated.

- View Text Solution

21. Two long straight conductors are connected radially to two arbitary points A and B of a circular conductor. Calculate the magnetic field at the center of the coil.

- View Text Solution

22. Calculate the force of attraction per unit
length between two long straight conductors

10 cm apart, each carrying 5A, when they are at
(i) 0°
(ii) 90°
(iii) 60° inclinationi to each other.
[Hint: $\Delta F=\frac{\mu_{0} I_{1} I_{2} \cos \theta}{2 \pi d}$

D View Text Solution

23. A wire of c.s.S $=2.5 \mathrm{~mm}^{2}$ is bent to make
the three sides of a square and is free to turn
about the horizontal axis \in fity Find the magnetic induction B which is vertically upward if the frame is deflected by $\theta=30^{\circ}$)
from the vertical when a current $\mathrm{I}=16 \mathrm{~A}$ is passed through the wire. The density of the wire $\sigma=8900 \mathrm{kgm}^{-3}$

D View Text Solution

24. A current I flows along a thin-walled, long,
half-cylinder of radius R (figure) Find the magnetic induction at a point on the axis of the cylinder

D Watch Video Solution

25. Find the magnetic induction at the point O of the following figures if the wire carrying a current $\mathrm{I}=15 \mathrm{~A}$ has the shapes shown here. The radius of the curved part $\mathrm{R}=5 \mathrm{~cm}$, the linear parts of the wire are very long.

- View Text Solution

