©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

MAGNETIC FIELD AND POTENTIAL

Examples

1. A bar magnet is 0.1 m long and has poles of
strength 50 Am. What is the magnetic B-field
at a point on its axis 0.15 m from its centre.

Also calculate the H -field at that point.

D Watch Video Solution

2. The intensities of magnetic field at two points on the axis of a bar magnet at distances of 10 cm and 20 cm from the middle point are in the ratio $18: 1$. Find the distance between the poles of the magnet.

D Watch Video Solution

3. A neutral point is found on the prolongation of the axis of a bar magnet at a distance of 10 cm from the nearer pole. If the length of the bar be 10 cm and $H=28 A \mathrm{~m}^{-1}$, find the pole strength of the magnet.

D Watch Video Solution

4. A magnet, whose poles are 10 cm apart is
placed in the magnetic meridian. The intensity due to the magnet balances the earth's field
$\left(3.6 \times 10^{-5} T\right)$ at a point 9 cm from either pole. Find the pole strength of the magent.

- Watch Video Solution

5. The magnetic moment of magnet is 1 joule per tesla. How much work is done in turning it through 90° from the magnetic meridian at a place where $B=1.6 \times 10^{-5} T$?
6. Find the stable equilibrium position of a magnet in a magnetic field.

D Watch Video Solution

7. Two magnets of magnetic moment m and 3 m are mounted so as to cross each other at an angle of 60°. The combination rests on a cork floating on water. Find the angle which
the weaker magnet makes with the meridian.
8. A magnet placed in the north pointing north position, balances the earth's field at a point, which is 27 cm from either pole. If it is broken into three pieces and one such piece is similarly placed, find the position of the neutral point.

- Watch Video Solution

9. Two short magnets of magnetic moment
$2 A m^{2}$ and $5 A m^{2}$ are placed along two lines
drawn at right angle to each other on the sheet of paper as shown in the figure. What is the magnetic field at the point of intersection of their axis?

D Watch Video Solution

Exercises A

1. An electron is moving with a velocity of
$2 \times 10^{6} \mathrm{~ms}^{-1}$ in the vicinity of a 0.1 m long bar
magnet of pole strength 50 Am in a direction perpendicular to the axis of the magnet at a distance of 0.15 m from the nearer pole. What is the force on the electron ? Charge of electron $=1.6 \times 10^{-19} C$
[Hint: Calculate B-vector of the field and apply $\left.F=q_{0} v B \sin \theta\right]$

- Watch Video Solution

Exercises

1. A magnetic needle of magnetic moment
$0.9 A m^{2}$ and pole strength 5 Am is pivoted so
that it is free to turn in a horizontal plane at a position where the earth's B-field is
3.6×10^{-5} tesla. It is in equilibrium at an angle 30° from the magnetic meridian when it is pulley by a string attached to its north pole in the easterly direction. what is the tension of the string ?
2. A magnet of length 0.1 m and pole strength
0.1 Am is freely suspended in a horizontal uniform magnetic field of intensity
$0.18 \times 10^{-4} T$. Find the torque tending to restore the magnet to its original position of rest when it is deflected by 30° from that position.

- Watch Video Solution

3. A bar magnet lies in a magnetic field of intensity 0.5×10^{-4} tesla. The torque
required to deflect it through 30° is
$2.5 \times 10^{-5} \mathrm{Nm}$. Calculate the magnetic moment of the magnet.

D Watch Video Solution

4. A magnet of length 0.2 m balances the earth's horizontal field at a point 0.2 m from the nearer pole. The magnet is placed with its north pole pointing south. Find its magnetic moment. [Horizontal induction of earth's field $=3.6 \times 10^{-5}$ tesla]
5. The intensities of magnetic field at two points on the axis of a bar magnet at distances 0.1 m and 0.2 m from its middle point are in the ratio 12.5:1. Calculate the distance between the poles of the magnet.

- Watch Video Solution

6. Two magnets of moments m and 2 m are mounted to form a cross. The combination
rests horizontally when suspended by a silk
fibre. Find the angle which the weaker magnet makes with the meridian.

D View Text Solution

7. A short magnet is placed horizontally in the magnetic meridian with its north pole pointing north. It is then found that there is a neutral point 20 cm from the middle of the magnet. If the magnet is turned through 180°, where will the neutral point be?
[Hint: When magne is placed with its north place pointing north, neutral point occurs at the broadside-on position. When it is rotated through 180°, the neutral point will shift to the end-on position.]

D View Text Solution

8. The intensities of a magnetic field at two points on the axis of a bar magnet at distance of 0.15 m and 0.2 m from its middle point are
in the ratio $75: 20$. Find the distance between the poles of the magnet.

D Watch Video Solution

9. A short bar magnet is placed horizontally in
the magnetic meridian with its north pole pointing north and the neutral points are found 0.15 m from the centre of the magnet.

Find the distance between the neutral points
if the magnet is reversed.

D View Text Solution

10. A neutral point is found on the prolongation of the axis of a bar magnet at a distance of 0.1 m from the nearest pole. If the length of the bar be 0.1 m and the B-field of earth $=0.36 \times 10^{-4}$ tesla, find the pole strength of the magnet.

D View Text Solution

11. A magnet whose poles are 12 cm apart is
placed in the magnetic meridian. The field due
to this magnet counterbalances the earth's
horizontal field $\left(H=30 A m^{-1}\right)$ at a point 10 cm from each pole. Find the pole strength of the magnet.

D Watch Video Solution

12. A uniformly magnetized bar of brittle steel
is broken into two pieces, one twice as long as
the other, and the pieces are fastend together
at right angles to each other. How would the
combination thus formed set itself under the
action of the earth's magnetic force, if made to float on water?

D View Text Solution

13. Calculate the moment of a magnet, which
when placed at right angles to the horizontal
magnetic field of the earth of intensity $30 \mathrm{Am}^{-1}$ experiences a couple of 3×10^{-4} newton metre.
[Hint: $\quad B_{0}=\mu_{0} H_{0}=4 \pi \times 10^{-7} \times 30$ tesla and $\left.\tau=m B_{0} \sin \theta\right]$
14. A neutral point is found on the prolongation of the axis of a bar magnet of length 10 cm at 10 cm from the nearer pole.

How has the magnet been placed with respect to the magnetic meridian ? Calculate the magnetic moment of the magnetic given that B-vector of earth's field along the horizontal $=3.6 \times 10^{-5}$ tesla. Also calculate the torque required to deflect it through 30° from the magnetic meridian.

- View Text Solution

15. A bar magnet whose poles are 10 cm apart in the magnetic meridian with its north pole pointing south. The neutral point is at a distance of 20 cm from the nearest pole. Find the intensity of the resultant field at a point on the perpendicular magnet. (B-vector of earth's field along the horizontal $=4 \times 10^{-5}$ tesla)
16. A long, vertical magnet is placed at a perpendicular distance of 0.8 m from the centre of a horizontal magnetic needle of length 0.12 m ad pole strength 0.6 Am . If the moment of the couple acting upon the needle is $72 \times 10^{-7} \mathrm{Nm}$, Find the pole strength of the long magnet.
[Hint: Since the magnet is long, the effect of the distance pole may be neglected.]
17. A magnet placed in the magnetic merdian with its north pole pointing north of the earth produces a neutral point at a distance 0.15 m
from either pole. It is then broken into two equal pieces and one such piece is placed in a similar position. Calculate the position of the neutral point. where will the neutral point be if the other piece is placed over the previous one with like poles together?

D Watch Video Solution

18. Two short magnets of the same type, but of moments m and $2 m$ are mounted on a frame
so as to form a cross. If the combination is suspended at the centre with a vertical fibre,
find the direction in which it will set in the earth's magnetic field. Calculate also the magnetic B-field at a distance d from the centre of the cross on the prolongation of one of the arms.
19. Assuming $\theta=\pi / 2$ as the zero-energy position of a magnet in a magnetic field, show that the potential energy of a magent can be written as $u=-\vec{B} \cdot \vec{m}$. Hence find the stable equilibrium position of a magnet in a magnet in a magnetic field.

D Watch Video Solution

20. Show that the force of attraction between
two short magnets of moment m and m with
their centres d distance apart and their axes in
the same direction along the same lines is $\frac{\mu_{0}}{4 \pi} \frac{6 m m^{\prime}}{d^{4}}$

D Watch Video Solution

21. A bar magnet of moment $m=4.0 \mathrm{Am}^{2}$ lies
on a table horizontally in the earth's magnetic
field $H=30 A m^{-1}$. A student turns it and holds it erect on the table. What is the work done by the student.

D Watch Video Solution

22. Find the force between two small circular coils of radii $r_{1}=1 \mathrm{~cm}, r_{2}=2 \mathrm{~cm}$ and currents $I_{1}=1 A$ and $I_{2}=2 A$ placed at $d=20 \mathrm{~cm}$ apart with their planes parallel to each other.

- View Text Solution

Exercises B

1. Two bar magnets of length 0.1 m and poles strength 75 m each, are placed on the same
line. The distance between their centres is 0.2
m . what is the reultant force due to one on
the other when (i) the north pole of one faces
the south pole of the other, (ii) the north pole of one faces the north pole of the other?

D Watch Video Solution

