

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

NUCLEAR FISSION AND FUSION

Example

- 1. Calculate the binding energy of helium nucleus
- $\left(._{2}^{4}\,He
 ight)$ and express the quantity in MeV and J

Mass of helium nucleus	=	4.0028	amu
Mass of proton	=	1.00758	amu
Mass of neutron	=	1.00897	amu

2. Complete the nuclear reaction and calculate the energy released.

Watch Video Solution

3. Calculate how much coal is equivalent to 1kg of $.^{235} U$. Given that 200 MeV is released per fission process and 8000 kcal is released as heat of combustion of 1 kg of coal. Avogadro constant $= 6.1 \times 10^{26} Kgmol^{-1}$

4. find the disintegration energy Q liberated in β^- and β^+ decays if the masses of the parent atom M_p the daughter atom M_d and an electron m are known.

5. Making use of the table of atomic masses given above find:

(a) the mean binding energy per nucleon in $.^{14}_7 N$

(b) the binding energy of an alpha-particle in $._8^{16} O$.

6. Making use of the table of atomic masses given

above find the energy required for the separation of an

 $.^{16}_{8}$ O nucleus into 4 identical particle

Watch Video Solution

7. Find the binding energy of a nucleus consisting of an equal number of protons and neutrons and with a radius one-and a -half times smaller that that of the $.^{27}$ Al nucleus. Consult the atomic tables for required masses.

8. Find the difference in binding energies of a neutron and a proton in a B^{11} nucleus.Explain why there is the difference.

9. A particle of mass m strikes a stationary nucleus of mass M and activated an endoergic reaction. Show that the threshold kinetic energy required to initiate this reaction is $T_{th} = \frac{m+M}{M}|Q|$. Where Q is the energy of the reaction.

1. Calculate the binding energy of the lithium atom

 $\left(\begin{smallmatrix} 7\\ -3 \end{smallmatrix} \right)$ from the following data:

mass of proton	= 1.00759	amu
mass of neutron	= 1.00898	amu
${ m mass} { m of electron}$	= 0.00055	amu
mass of lithium atom	= 7.01818	amu

Watch Video Solution

2. Find the minimum energy that a γ -ray must have to

give rise to an electron -positron pair.

Mass of electron = 0.00055 amu

Mass of positron = 0.00055 amu

3. Calculate the energy released by fission of 1 g of $._{92}^{235}$ U, assuming that an energy of 200 MeV is released by fission of each atom of $.^{235}$ U. (Avogardo constant is $= 6.023 \times 10^{26} kgmol^{-1}$)

Watch Video Solution

4. A reaction develop nuclear energy at the rate of $3 \times 10^4 kW$. How many atoms of $.^{215} U$ undergo fission per second? How much $.^{235} U$ is burnt in 1000 hours of operation ? (Assume that 200 Mev is released per fission and Avogadro constant is 6.023×10^{26} per kg mole)

5. Calculate the amount of energy set free by the annigilation of an electron and a positron. Given that mass of electron = 0.00055 amu and positron = 0.00055 amu.

6. Complete the following nuclear reactions:

(i)
$$._{7}$$
 (14) $N + ._{2}^{4}He \rightarrow ._{8}O + ._{1}^{1}H$

- (ii) $.^{24}~Mg+.^4_2~He
 ightarrow.^{27}_{13}~Al+$
- (iii) . $_3 Li + .^3 n
 ightarrow .^4 He + .^3_1 H$

7. Calculate the energy released in kilowatt-hours when 100g of $._{3}^{7} Li$ are converted into $._{2}^{4} He$ by proton bombardment. Mass of $._{3}^{7} Li = 7.0183 amu$, mass of proton = 1.0081 amu. Write down the nuclear reaction.

Watch Video Solution

8. calculate the energy released in the nuclear fusion of isotopes of hydrogen (i) $\cdot_1^2 H + \cdot_1^2 H \rightarrow \cdot_2^3 He + \cdot_0^1 n$ (ii) $\cdot_1^2 H + \cdot_1^3 H \rightarrow \cdot_2^4 He + \cdot_0^1 n$

Given that mass of neutron = 1.00867 amu

mass of	$.{}^2_1H=2.01410$	amu
mas of	$.^3_1H=3.01603$	amu
mass of	$.{}^3_2H=3.0160$	amu
mass of	$A_{2}^{4} He = 4.00260$	amu

Watch Video Solution

9. Using conservation laws show that an electron cannot absorb a photon completely.

[Hint :
$$hv=mc^2-m_0c^2$$
 and $\displaystyle rac{hv}{c}=mv$]

10. Making use of the tables of atomic masses, determine the energies of the following reaction: (a) $Li^7(p, n)Be^7$, (b) $Be^{9}(n, \gamma)Be^{10}$, (c) $Li^{7}(\alpha, n)B^{10}$, (d) $O^{16}(d, \alpha) N^{14}$.

11. Taking the values of atomic masses from the tables, find the maximum kinetic energy of beta-particles emitted by Be^{10} nuclei formed directly in the ground state.

12. A stationary $._{82}^{200} Pb$ nucleus emits an α -particle with kinetic energy $T_{\alpha} = 5.77 MeV$. Find the recoil velocity of a daughter nucleus. What fraction of the total energy liberated in this decay is accounted for by the recoil energy of daughter nucleus ?

13. Making use of the tables of atomic masses, find:

(a) the mean binding energy per one nucleon in O^{16} nucleus

(b) The binding energy of neutron and an alpha-particle

in a B^{11} nuclues.

14. A nucleus X, initially at rest , undergoes alpha dacay according to the equation ,

 $_{-}\left(92
ight)^{A}X
ightarrow_{Z}^{228}Y+lpha$

(a) Find the value of A and Z in the above process.

(b) The alpha particle produced in the above process is found to move in a circular track of radius 0.11m in a uniform magnetic field of 3 Tesla find the energy (in MeV) released during the process and the binding energy of the parent nucleus X Given

that

$$egin{aligned} &: m(Y) = 228.03 u, m \Big(egin{aligned} &- (0)^1 n \Big) = 1.0029 u. \ &m \Big(egin{aligned} &- (2)^4 He \Big) = 4.003 u, m \Big(egin{aligned} &- (1)^1 H \Big) = 1.008 u \end{aligned}$$

Watch Video Solution

15. A uranium nucleus $.^{235} U$ liberates 200 MeV per fission 1.5 kg of uranium reacts during explosion of a uranium bomb. What is the mass of an equivalent TNT bomb if the heating capacity of TNT is $4.1 \times 10^6 J/kg$?

16. Can a silicon nucleus $(.^{31}_{14} Si)$ transfrom into a phosphorus nucleus $(.^{31}_{15} P)$? What particle would be emitted in the process ? What is their total energy? $m_{Si} = 30.97535 amu, m_p = 30.97376 amu$

17. Stationery nucleus $.^{238} U$ decays by a emission generaring a total kinetic energy T:

```
.^{238}_{92} 
ightarrow .^{234}_{90} Th + .^4_2 lpha
```

What is the kinetic energy of the α -particle?

18. Find the maximum energy that a beta particle can

have in the following decay

 $\hat{\ }$ 176 $Lu
ightarrow^{176} Hf + e + \overrightarrow{v}.$

Alomic mass of $\hat{\ }176Lu$ is 175.942694u and that of

^ 176Hf is 175.941420u.

