©゙ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

NUCLEAR FISSION AND FUSION

Example

1. Calculate the binding energy of helium nucleus
$\left({ }_{2}^{4} \mathrm{He}\right)$ and express the quantity in MeV and J
Mass of helium nucleus $=4.0028 a m u$
Mass of proton
$=1.00758$ amu
Mass of neutron
$=1.00897 \mathrm{amu}$
2. Complete the nuclear reaction and calculate the energy released.
${ }_{.}^{7} \mathrm{Li}+\mid \mathrm{H}$ (proton) $\rightarrow{ }_{.}^{4} \mathrm{He}+?+Q$
$\begin{array}{ll}\text { Given that mass of lithium atom } & =7.01822 \mathrm{amu} \\ \text { Mass of proton } & =1.00812 \mathrm{amu} \\ \text { Mass of } \alpha-\text { particle } & =4.00390 \mathrm{amu}\end{array}$

- Watch Video Solution

3. Calculate how much coal is equivalent to 1 kg of ${ }^{235} \mathrm{U}$
. Given that 200 MeV is released per fission process and 8000 kcal is released as heat of combustion of 1 kg of coal. Avogadro constant $=6.1 \times 10^{26} \mathrm{Kgmol}^{-1}$
4. find the disintegration energy Q liberated in β^{-}and
β^{+}decays if the masses of the parent atom M_{p} the daughter atom M_{d} and an electron m are known.

- Watch Video Solution

5. Making use of the table of atomic masses given above find:
(a) the mean binding energy per nucleon in ${ }_{7}^{14} \mathrm{~N}$
(b) the binding energy of an alpha-particle in.$_{8}^{16} \mathrm{O}$.

D Watch Video Solution

6. Making use of the table of atomic masses given above find the energy required for the separation of an .${ }_{8}^{16} \mathrm{O}$ nucleus into 4 identical particle

- Watch Video Solution

7. Find the binding energy of a nucleus consisting of an equal number of protons and neutrons and with a radius one-and a -half times smaller that that of the .${ }^{27} \mathrm{Al}$ nucleus. Consult the atomic tables for required masses.
8. Find the difference in binding energies of a neutron and a proton in a B^{11} nucleus.Explain why there is the difference.

D Watch Video Solution

9. A particle of mass m strikes a stationary nucleus of mass M and activated an endoergic reaction. Show that the threshold kinetic energy required to initiate this reaction is $T_{t h}=\frac{m+M}{M}|Q|$. Where Q is the energy of the reaction.
10. Calculate the binding energy of the lithium atom
$\left({ }_{3}^{7} L i\right)$ from the following data: mass of proton
$=1.00759 \quad a m u$
mass of neutron
$=1.00898 \quad a m u$
mass of electron
$=0.00055 \quad a m u$
mass of lithium atom $=7.01818 \mathrm{amu}$

D Watch Video Solution

2. Find the minimum energy that a γ-ray must have to give rise to an electron -positron pair. Mass of electron $=0.00055 a m u$ Mass of positron $=0.00055 \mathrm{amu}$
3. Calculate the energy released by fission of 1 g of ${ }_{-92}^{235} \mathrm{U}$, assuming that an energy of 200 MeV is released by fission of each atom of ${ }^{235} U$. (Avogardo constant is $=6.023 \times 10^{26} \mathrm{kgmol}^{-1}$)

- Watch Video Solution

4. A reaction develop nuclear energy at the rate of
$3 \times 10^{4} k W$. How many atoms of ${ }^{215} U$ undergo fission per second? How much ${ }^{235} U$ is burnt in 1000 hours of operation ? (Assume that 200 Mev is released per fission and Avogadro constant is 6.023×10^{26} per kg mole)

- Watch Video Solution

5. Calculate the amount of energy set free by the annigilation of an electron and a positron. Given that mass of electron $=0.00055 \mathrm{amu}$ and positron $=$ 0.00055 amu .

- Watch Video Solution

6. Complete the following nuclear reactions:
(i) $\cdot 7 \cdot(14) N+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{8} \mathrm{O}+{ }_{1}^{1} \mathrm{H}$
(ii) . ${ }^{24} \mathrm{Mg}+{ }_{\cdot 2}^{4} \mathrm{He} \rightarrow{ }_{13}^{27} \mathrm{Al}+$
(iii) ${ }_{3} \mathrm{Li}+.{ }^{3} n \rightarrow .{ }^{4} \mathrm{He}+\cdot{ }_{1}^{3} \mathrm{H}$
7. Calculate the energy released in kilowatt-hours when 100 g of.${ }_{3}^{7} \mathrm{Li}$ are converted into ${ }_{2}^{4} \mathrm{He}$ by proton bombardment. Mass of $.{ }_{3}^{7} \mathrm{Li}=7.0183 \mathrm{amu}$, mass of proton $=1.0081 \mathrm{amu}$. Write down the nuclear reaction.

- Watch Video Solution

8. calculate the energy released in the nuclear fusion of isotopes of hydrogen
(i) $.{ }_{1}^{2} H+{ }_{.}^{2} H \rightarrow{ }_{2}^{3} H e+\cdot{ }_{0}^{1} n$
(ii) $\cdot{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+\cdot{ }_{0}^{1} n$

Given that mass of neutron $=1.00867 \mathrm{amu}$

mass of	$\cdot{ }_{1}^{2} H=2.01410 \quad a m u$	
mas of	$\cdot{ }_{1}^{3} H=3.01603 \quad a m u$	
mass of	$\cdot{ }_{2}^{3} H=3.0160$	$a m u$
mass of	$\cdot{ }_{2}^{4} H e=4.00260$	$a m u$

- Watch Video Solution

9. Using conservation laws show that an electron cannot absorb a photon completely.
[Hint : $h v=m c^{2}-m_{0} c^{2}$ and $\frac{h v}{c}=m v$]

D Watch Video Solution

10. Making use of the tables of atomic masses, determine the energies of the following reaction:
(a) $L i^{7}(p, n) B e^{7}$,
(b) $B e^{9}(n, \gamma) B e^{10}$,
(c) $L i^{7}(\alpha, n) B^{10}$,
(d) $O^{16}(d, \alpha) N^{14}$.

D Watch Video Solution

11. Taking the values of atomic masses from the tables, find the maximum kinetic energy of beta-particles emitted by $B e^{10}$ nuclei formed directly in the ground state.
12. A stationary.${ }_{82}^{200} \mathrm{~Pb}$ nucleus emits an α-particle with kinetic energy $T_{\alpha}=5.77 \mathrm{MeV}$. Find the recoil velocity of a daughter nucleus. What fraction of the total energy liberated in this decay is accounted for by the recoil energy of daughter nucleus?

- Watch Video Solution

13. Making use of the tables of atomic masses, find:
(a) the mean binding energy per one nucleon in O^{16} nucleus
(b) The binding energy of neutron and an alpha-particle in a B^{11} nuclues.

- Watch Video Solution

14. A nucleus X, initially at rest, undergoes alpha dacay
according to the equation ,
$-(92)^{A} X \rightarrow{ }_{Z}^{228} Y+\alpha$
(a) Find the value of A and Z in the above process.
(b) The alpha particle produced in the above process is
found to move in a circular track of radius $0.11 m$ in a uniform magnetic field of 3 Tesla find the energy (in

MeV) released during the process and the binding energy of the parent nucleus X
$: m(Y)=228.03 u, m\left(-(0)^{1} n\right)=1.0029 u$.
$m\left(-(2)^{4} H e\right)=4.003 u, m\left(-(1)^{1} H\right)=1.008 u$

- Watch Video Solution

15. A uranium nucleus.${ }^{235} U$ liberates 200 MeV per fission 1.5 kg of uranium reacts during explosion of a uranium bomb. What is the mass of an equivalent TNT bomb if the heating capacity of TNT is $4.1 \times 10^{6} \mathrm{~J} / \mathrm{kg}$?
16. Can a silicon nucleus $\left({ }_{14}^{31} \mathrm{Si}\right)$ transfrom into a phosphorus nucleus $\left({ }_{15}^{31} P\right)$? What particle would be emitted in the process ? What is their total energy? $m_{S i}=30.97535 a m u, m_{p}=30.97376 a m u$

D Watch Video Solution

17. Stationery nucleus . ${ }^{238} U$ decays by a emission generaring a total kinetic energy T :
${ }_{.}{ }^{238}$ $\rightarrow .{ }_{90}^{234} T h+.{ }_{2}^{4} \alpha$

What is the kinetic energy of the α-particle?
18. Find the maximum energy that a beta particle can have in the following decay
${ }^{\wedge} 176 L u \rightarrow{ }^{176} \mathrm{Hf}+e+\vec{v}$.
Alomic mass of ${ }^{\wedge} 176 L u$ is $175.942694 u$ and that of
${ }^{\wedge} 176 \mathrm{Hf}$ is $175.941420 u$.

- Watch Video Solution

