©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS

(HINGLISH)

POLARIZATION

Example

1. At what angle must a beam of light on the
surface of water, which has an index of
refraction of 1.33 for the given light, so that the reflect light may be plane polarized?

D Watch Video Solution

2. Calculate the phase difference introduced by a quartz plate of thickness 20 micron between ordinary and extraordinary light.

Given
that
$\mu_{0}=1.5443, \mu_{e} 1.5533$ and $\lambda=6000 \AA$.

Which light travels faster in quartz?
3. Calculate the thickness of a quarter- wave plate for light of wavelength $4000 \AA$ for which $\mu_{0}=1.5632$ and $\mu_{e}=1.5541$.

D Watch Video Solution

4. Show that when a ray of light is incident on
the surface of a transparent medium at the polarizing angle, the reflected ray and the refracted ray are at right angles to each other.

Exercise

1. The index of refraction of glass, for sodium
light is 1.63 . At what angle must a beam of sodium light fall on the surface of a glass slab so as to be plane polarized by reflection?
2. For a slab of flint glass, the angle of polarization is found to be $57^{\circ} 24^{\prime}$. Calculate the refractive index of flint glass.

D Watch Video Solution

3. A ray of light is incident on the surface of a glass plate of index of refraction 1.55 at the polarizing angle. Calculate the angle of refraction.
4. Calculate the thickness of a quartz quarterwave plate for sodium light $(\lambda=5893 \AA)$ given that the index of refraction of quartz for ordinary and extraordinary rays are 1.5442 and 1.5533 respectively.

D Watch Video Solution

5. Calculate the phase difference introduced
by a calcite crystal plate of thickness 30 micron between ordinary and extraordinary
light of wavelength 6000Å. Given that $\mu_{0}=1.554$ and $\mu_{e}=1.547$.

D Watch Video Solution

6. You have to design a half-wave plate of quartz crystal for light of wavelength 5800Å.

Calculate the thickness of the plate rquired for the purpose
$\mu_{e}=1.5508$ and $\mu_{0}=1.5418$.

D Watch Video Solution

7. A sheet of cellophane acts as a half-wave plate for light of wavelength $4000 \AA$. If the index of refraction did not change with wavelength, how would the sheet behave with respect to light of wavelength $8000 \AA$?

D View Text Solution

