## ©"doubtnut

India's Number 1 Education App

## PHYSICS

## BOOKS - NN GHOSH PHYSICS (HINGLISH)

## POTENTIAL AND FIELD DUE TO A

## DIPOLE

Example

1. $A B C$ is a small, isosceles right angledtriangle of hypotenuse 1 cm . A charge of $+4 p C$ (picocoulomb) is placed at the rightangled corner A and -20 pC and -20 pC at B and $C$ respectively. Show that this system of
charges may be treated as a dipole for all external points at large distances. Calculate the potential due to this system of charges of charges at a point on the prolongation of the side $A C$ at a distance 40 cm from $A$.
2. Calculate the binding energy of a dipole consisting of two charges $+4 p C$ and -4 pC separated by a distance $20 \mu$ (micron).

## D Watch Video Solution

3. A system consists of two identical dipoles
placed along the sides of a square $A B C D$ in
such a way that $+q$ and $+q$ lie at the corner A and C and $-q$ and $-q$ at the corner B .

Calculate the potential due to the system on
the diagonal $B D$ at a distance $r$ from the intersection of the diagonals of the square .

The length of each diagonal is 2 a .


## - Watch Video Solution

4. In a certain region of space, electric field is
along the $z$-direction throughout. The magnitude of electric field is, however, not
constant but increases uniformly along the
positive z-direction. At the rate of $10^{5} N C^{-1} m^{-1}$. What are the force and torque experienced by system having a total dipole moment equal to $10^{-7} \mathrm{Cm}$ in the negative $z$-direction?

## D Watch Video Solution

> 5. A dipole of moment
> $\vec{p}=10^{-7}(5 \hat{i}+\hat{j}-2 \hat{k}) \mathrm{C}$ is placed in an
electric field $\vec{E}=10^{7}(\hat{i}+\hat{j}+\hat{k}) V m^{-1}$
Find the torque experienced .

## - Watch Video Solution

## Exercise

1. $A B C$ is a very small equilateral triangles of side $0.5 \times 10^{-3} \mathrm{~m}$. A charge of +20 aC (attocoulomb) is placed at the corner A and two charges, each of $-10 a C$, at $B$ and $C$.

Calculate the potential at a point on the
prolongation of AC 2 cm away from $A$.
[Hint: 1 aC (attocoulomb $=10^{-18}$ coulomb]

## D Watch Video Solution

2. An electric dipole consists of two opposite charges of magnitude $1 \mu C$ (micro-coulomb) separated by a distance of 2 cm . The dipole is placed in an electric field of $10^{5} \mathrm{Vm}^{-1}$. (a)

What maximum torque does the field exert on
the dipole ? (b) How much work must an external agent do to turn the dipole end for
end, starting from a position of alignment $\theta=0 ?$

## D Watch Video Solution

3. Show that the potential at a point of coordinates ( $\mathrm{x}, \mathrm{y}$ ) with reference to the axis of
the dipole as $x$-axis and the line perpendicular to the axis and passing through the centre of the dipole as $y$-axis is
$V=\frac{1}{4 \pi \varepsilon_{0}}, \frac{p x}{\left(x^{2}+y^{2}\right)^{3 / 2}}$ and hence show
that the components of the field along $x$ - and
$y$-axis are given by,

$$
\begin{aligned}
& E_{x}=\frac{q}{4 \pi \varepsilon_{0}}, \frac{2 x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{5 / 2}} \\
& E_{y}=\frac{p}{4 \pi \varepsilon_{0}}, \frac{3 x y}{\left(x^{2}+y^{2}\right)^{5 / 2}}
\end{aligned}
$$

[Hint : Find the value of $\cos \theta$ and $r$ in terms of
$x$ and $y$ and substitute their values in the standard
formula
$\left.E_{x}=-\frac{\partial V}{\partial x} \operatorname{and} E_{y}=-\frac{\partial V}{\partial y}\right]$

## D Watch Video Solution

4. A dipole of moment $4 \times 10^{-14} \mathrm{C} \mathrm{m}$ is placed
with the its centre at one correct of a cube of
sidelength 20 cm and its axis coinciding with one of the edges at that corner. Calculate the potential and field at the diagonally opposite corner .

## D Watch Video Solution

5. Two dipole of moment $5 \times 10^{-12} \mathrm{C}$ m form
a cross with their axes ( - to + ) along the coordinate axes. Calculate the potential at a point 20 cm away in a directioin making an angle $30^{\circ}$ with the $x$-axis .
6. Find the locus of points where the electric field due to a dipole is (i) perpendicular to its axis , (ii) anti-parallel to the axis .
[Hint : $\tan \alpha=\frac{\tan \theta}{2}$ ]

## - Watch Video Solution

7. Find the locus of points where the electric
field (resultant) will always have a bearing of $45^{\circ}$ with the axis of the dipole.

## - Watch Video Solution

8. A dipole consisting of +10 nC
(nanocoulomb) and -10 nC separted by 2 cm oscillates in an electric field of strength $60000 \mathrm{Vm}^{-1}$. Calculate the frequency of vibration of the dipole if its moment of inertia about the axis of oscillation is $3 \times 10^{-10} \mathrm{kgm}^{2}$
[Hint : $\mathrm{t}=2 \pi \sqrt{\frac{I}{p E}}$ a formula similar to $\mathrm{t}=$ $2 \pi \sqrt{\frac{I}{m B}}$ in magnetism. ]

## Watch Video Solution

9. A system consists of charges $+q$ and $+q$ at
the opposite corners of a square of sides $2 a$ and $-q$ and $-q$ at the other two corners.

Calculate the potential and field at a distance $r$ from the centre of the square along a line parallel to the two sides of the square. Assume a $\ll r$.
10. Two identical dipoles have their axes at right angles to each other and also bisecting each other. Calculate the field at a distance $r$ from the point of intersection of their axes in a direction $\theta$ with the axis of one of the dipoles. The dipole moment of each dipole is equal to $p$.

## D Watch Video Solution

11. A system consists of charges $+q$ and $+q$ at
the opposite corners of a square of sides $2 a$ and $-q$ and $-q$ at the other two corners.

Calculate the potential and field at a distance $r$ from the centre of the square along a line parallel to the two sides of the square. Assume a $\ll r$.
12. Two electric dipoles, each of dipole moment $p=6.2 \times 10^{-30} \mathrm{C}$ m are placed with
their axes along the same line their centre a distance $d=10^{-8} \mathrm{~m}$ apart . Calculate the force of attraction between the dipoles .

## D Watch Video Solution

13. A point electric dipole with a moment $p$ is
placed in the external uniform electric field whose strength equals $E_{0}$. With $p \uparrow \uparrow E_{0}$. In
this case one of the equipotential surfaces enclosing the dipole from a sphere. Find the radius of this sphere.

## D Watch Video Solution

14. Calculate the energy released in the formation of 1 kg hydrogen chloride, given that the dipole moment of hydrogen chloride molecules is $3.44 \times 10^{-30} \mathrm{C} \mathrm{m}$ and the separation between hydrogen and chlorine
atoms in the equilibrium position is

## $1.01 \times 10^{-10} \mathrm{~m}$.

## D Watch Video Solution

15. A dipole of electric moment $p$ is located at a distance $r$ from a long thread charged with a
linear density $\lambda$. Find the force on the dipole if (a) if is placed parallel to the thread , (b) perpendicular to the thread.
[Hint : Field due to long thread $=\frac{1}{2 \pi \varepsilon_{0}} \frac{\lambda}{r}$ ]
$\square$
