

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

POTENTIAL AND FIELD DUE TO A DIPOLE

1. ABC is a small , isosceles right angledtriangle of hypotenuse 1 cm . A charge of +4pC (picocoulomb) is placed at the rightangled corner A and -20 pC and -20pC at B and C respectively. Show that this system of charges may be treated as a dipole for all external points at large distances . Calculate the potential due to this system of charges of charges at a point on the prolongation of the side AC at a distance 40 cm from A.

2. Calculate the binding energy of a dipole consisting of two charges +4pC and -4 pC separated by a distance 20μ (micron).

3. A system consists of two identical dipoles placed along the sides of a square ABCD in such a way that +q and +q lie at the corner A and C and -q and -q at the corner B. Calculate the potential due to the system on

the diagonal BD at a distance r from the intersection of the diagonals of the square . The length of each diagonal is 2a .

Р

D

Watch Video Solution

2q 🧲

B

constant but increases uniformly along the positive z-direction. At the rate of $10^5 NC^{-1}m^{-1}$. What are the force and torque experienced by system having a total dipole moment equal to 10^{-7} Cm in the negative z-direction?

electric field
$$\stackrel{
ightarrow}{E}=10^7 \Bigl(\hat{i}+\hat{j}+\hat{k} \Bigr) Vm^{-1}$$

Find the torque experienced .

1. ABC is a very small equilateral triangles of side 0.5×10^{-3} m . A charge of +20 aC (attocoulomb) is placed at the corner A and two charges , each of -10aC , at B and C . Calculate the potential at a point on the

prolongation of AC 2 cm away from A.

[Hint: 1 aC (attocoulomb = 10^{-18} coulomb]

2. An electric dipole consists of two opposite charges of magnitude $1\mu C$ (micro-coulomb) separated by a distance of 2 cm . The dipole is placed in an electric field of $10^5 V m^{-1}$. (a) What maximum torque does the field exert on the dipole ? (b) How much work must an external agent do to turn the dipole end for

end , starting from a position of alignment heta=0 ?

the dipole as y-axis is

3. Show that the potential at a point of coordinates (x,y) with reference to the axis of the dipole as x -axis and the line perpendicular to the axis and passing through the centre of

$$V=rac{1}{4\piarepsilon_{0}},\,rac{px}{\left(x^{2}+y^{2}
ight)^{3\,/\,2}}$$
 and hence show

that the components of the field along x- and

y-axis are given by,

$$E_x = rac{q}{4\piarepsilon_0}, rac{2x^2-y^2}{\left(x^2+y^2
ight)^{5/2}} \ E_y = rac{p}{4\piarepsilon_0}, rac{3xy}{\left(x^2+y^2
ight)^{5/2}}$$

[Hint : Find the value of $\cos \theta$ and r in terms of x and y and substitute their values in the standard formula

$$E_x = -rac{\partial V}{\partial x} ext{and} E_y = -rac{\partial V}{\partial y}]$$

Watch Video Solution

4. A dipole of moment 4×10^{-14} C m is placed with the its centre at one correct of a cube of

sidelength 20 cm and its axis coinciding with one of the edges at that corner . Calculate the potential and field at the diagonally opposite corner .

5. Two dipole of moment 5×10^{-12} C m form a cross with their axes (-to +) along the coordinate axes . Calculate the potential at a point 20 cm away in a directioin making an angle 30° with the x-axis .

7. Find the locus of points where the electric field (resultant) will always have a bearing of 45° with the axis of the dipole .

8. A dipole consisting of +10 nC (nanocoulomb) and -10 nC separted by 2 cm oscillates in an electric field of strength $60000Vm^{-1}$. Calculate the frequency of vibration of the dipole if its moment of inertia about the axis of oscillation is $3 \times 10^{-10} kgm^2$

[Hint : t =
$$2\pi \sqrt{\frac{I}{pE}}$$
 a formula similar to t = $2\pi \sqrt{\frac{I}{mB}}$ in magnetism.]

9. A system consists of charges +q and +q at the opposite corners of a square of sides 2a and -q and -q at the other two corners . Calculate the potential and field at a distance r from the centre of the square along a line parallel to the two sides of the square . Assume a < < r.

10. Two identical dipoles have their axes at right angles to each other and also bisecting each other . Calculate the field at a distance r from the point of intersection of their axes in a direction θ with the axis of one of the dipoles . The dipole moment of each dipole is equal to p .

11. A system consists of charges +q and +q at the opposite corners of a square of sides 2a and -q and -q at the other two corners . Calculate the potential and field at a distance r from the centre of the square along a line parallel to the two sides of the square . Assume a < < r.

12. Two electric dipoles , each of dipole moment $p = 6.2 \times 10^{-30}$ C m are placed with their axes along the same line their centre a distance $d = 10^{-8}$ m apart . Calculate the force of attraction between the dipoles .

Watch Video Solution

13. A point electric dipole with a moment p is placed in the external uniform electric field whose strength equals $E_0.$ With $p\uparrow\uparrow E_0.$ In

this case one of the equipotential surfaces enclosing the dipole from a sphere. Find the radius of this sphere.

Watch Video Solution

14. Calculate the energy released in the formation of 1 kg hydrogen chloride , given that the dipole moment of hydrogen chloride molecules is 3.44×10^{-30} C m and the separation between hydrogen and chlorine

atoms in the equilibrium position is $1.01 imes 10^{-10} \mbox{ m}$.

Watch Video Solution

15. A dipole of electric moment p is located at a distance r from a long thread charged with a linear density λ . Find the force on the dipole if (a) if is placed parallel to the thread , (b) perpendicular to the thread .

[Hint : Field due to long thread = $\frac{1}{2\pi\varepsilon_0}\frac{\lambda}{r}$]

