©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

TERRESTRIAL MAGNETISM

Others

1. The angle of dip at a particular place where
the horizontal intensity is $30 \mathrm{Am}^{-1}$ is found
to be 38°. Calculate the total inte4nsity of the earth's magnetic field there.

D Watch Video Solution

2. The true dip at a place is 30°. What is the apparent dip when the dip circle is turned 60° out of the magnetic meridian ?

D Watch Video Solution
3. A magnetic needle is suspended by a thread
at its centre and it becomes horizontal when a weight of 100 mg is placed on its front end. If the pole strenght of the needle is 5 Am , find the vertical intensity of the earth's field. $\left(g=9.8 m / s^{2}\right)$

- Watch Video Solution

4. Calcualate the total induction at a place
where the horizontal component is
$25 \times 10^{-6} T$, and the $\operatorname{dip} 45^{\circ}$

- Watch Video Solution

5. The vertical component of the earth's field at a place is $40 \mathrm{Am}^{-1}$ Calculate value of H_{0}, if dip of the place is 30°

- Watch Video Solution

6. The apparent dip at a place 30° away from
the magnetic meridian is 60° Calculate the
true dip at the place

D View Text Solution

7. The apparent dips in two mutually perpendicular planes are found to be δ_{1} and δ_{2}
. Show that ture δ is related with δ_{1} and δ_{2} by $\cot ^{2} \delta=\cot ^{2} \delta_{1}+\cot ^{2} \delta_{2}$ [note, This is the principle of cot-method of finding true dip of a place.
8. Considering the earth's magnetism to be due to a very powerful short magnet embedded at its centre placed with its south pole pointing north, show that, latutde (λ) of any place bears a definite relation with the dip
(δ) of the place and that definite relation is $\tan \delta=2 \tan \lambda$

- View Text Solution

9. The earth is a bg dipole of moment $64 \times 10^{22} \mathrm{Am}^{2}$. Calculate the horizontal and
vertical components of the earth's magnetic field at a place of latitude 30° South.
(Radius of the earth $=6000 \mathrm{~km}$)

D View Text Solution

10. A dip needle indicates a dip of 60° at a
place. When a small magnet is placed on the
horizontal line through the centre of the dip
needle with its north pole pointing north at a
distnace 0.2 m from the needle, the dip
changes to 45°. Find the magnetic moment
of the magnet if the horizontal component of the earth's field is 0.2×10^{-4} tesla.

D View Text Solution

11. The magnetic moment of a dip needle is
$0.5 A m^{2}$ and it is set at a place where dip is
60°. A weight of 0.05 g placed 4 cm from the axle cause the needle to hum the horizontal position Calculate the value of the horizontal and vertical components of the earth's field
12. The period of oscillation of a dip needle when vibrating in the magnetic meridian is 1.5s. In a plane at right angles to the magnetic meridian it is 2 s . Find the dip of the place

D View Text Solution

13. In an experiment of finding dip by the cotmethod it is found that the apparent dips in two mutually perpendicular planes are 30° and 20°. Calculate the true dip of the place.

- View Text Solution

14. The needle of a dip circle completes 4 oscillations in one minute while vibrating in a vertical plane at right angles to the megnetic meridian. The same needle oscillates 3 times per minute in a horizontal plane at the same place. Find the value of dip at the place

- Watch Video Solution

15. A magnetic needle is suspended by a
thread at its centre and it shows a dip of 60°

When a weight of 20 mg is placed at its front end, the dip is reduced to 30°. If the vertical component of the earth's firld is 4×10^{-5} testa, find the pole strength of the needle .

D View Text Solution

16. Calculate the earth's total induction (Bvector) at a place where the H -vector of the
maagnetic field along the horizontal is $30 A m^{-1}$.

D View Text Solution

17. A magnet vibrating horizontally at a place where the angle of dip is 45° and the total intensity of the earth's field is $40 A m^{-1}$, makes 10 oscillations that it would make per minute at another place where the dip is 60° and the total intensity $50 \mathrm{Am}^{-1}$.
18. A dip circle is set in position after leveling and the dip is found to be α. Then it is rotated through 45° away from the magnetic meridian from this position and the dip is found to be β Show that true dip is given by $\cot ^{2} \delta=2\left(\cot ^{2} \alpha+\cot ^{2} \beta-\sqrt{2} \cot \alpha \cot \beta\right)$

- View Text Solution

