

PHYSICS

BOOKS - NN GHOSH PHYSICS (HINGLISH)

TERRESTRIAL MAGNETISM

1. The angle of dip at a particular place where the horizontal intensity is $30Am^{-1}$ is found

to be 38° . Calculate the total inte4nsity of

the earth's magnetic field there.

2. The true dip at a place is 30° . What is the

apparent dip when the dip circle is turned 60°

out of the magnetic meridian ?

Watch Video Solution

3. A magnetic needle is suspended by a thread at its centre and it becomes horizontal when a weight of 100mg is placed on its front end. If the pole strenght of the needle is 5Am, find the vertical intensity of the earth's field. $(g = 9.8m/s^2)$

Watch Video Solution

4. Calcualate the total induction at a place where the horizontal component is

 $25 imes 10^{-6}T$, and the dip 45°

Watch Video Solution

5. The vertical component of the earth's field at a place is $40Am^{-1}$ Calculate value of H_0 , if dip of the place is 30°

Watch Video Solution

6. The apparent dip at a place 30° away from the magnetic meridian is 60° Calculate the

7. The apparent dips in two mutually perpendicular planes are found to be δ_1 and δ_2 . Show that ture δ is related with δ_1 and δ_2 by $\cot^2 \delta = \cot^2 \delta_1 + \cot^2 \delta_2$ [note, This is the principle of cot-method of finding true dip of a place.

8. Considering the earth's magnetism to be due to a very powerful short magnet embedded at its centre placed with its south pole pointing north, show that, latutde (λ) of any place bears a definite relation with the dip (δ) of the place and that definite relation is $\tan \delta = 2 \tan \lambda$

View Text Solution

9. The earth is a bg dipole of moment $64 imes 10^{22} Am^2$. Calculate the horizontal and

vertical components of the earth's magnetic

field at a place of latitude 30° South.

(Radius of the earth = 6000 km)

View Text Solution

10. A dip needle indicates a dip of 60° at a place. When a small magnet is placed on the horizontal line through the centre of the dip needle with its north pole pointing north at a distnace 0.2m from the needle, the dip changes to 45° . Find the magnetic moment

of the magnet if the horizontal component of

the earth's field is $0.2 imes 10^{-4}$ tesla.

11. The magnetic moment of a dip needle is $0.5Am^2$ and it is set at a place where dip is 60° . A weight of 0.05g placed 4 cm from the axle cause the needle to hum the horizontal position Calculate the value of the horizontal and vertical components of the earth's field

12. The period of oscillation of a dip needle when vibrating in the magnetic meridian is 1.5s. In a plane at right angles to the magnetic meridian it is 2s. Find the dip of the place

View Text Solution

13. In an experiment of finding dip by the cotmethod it is found that the apparent dips in two mutually perpendicular planes are 30° and 20° . Calculate the true dip of the place.

14. The needle of a dip circle completes 4 oscillations in one minute while vibrating in a vertical plane at right angles to the megnetic meridian. The same needle oscillates 3 times per minute in a horizontal plane at the same place. Find the value of dip at the place

15. A magnetic needle is suspended by a thread at its centre and it shows a dip of 60° When a weight of 20 mg is placed at its front end, the dip is reduced to 30° . If the vertical component of the earth's firld is 4×10^{-5} testa, find the pole strength of the needle .

View Text Solution

16. Calculate the earth's total induction (B-vector) at a place where the H-vector of the

maagnetic field along the horizontal is $30 Am^{-1}$.

View Text Solution

17. A magnet vibrating horizontally at a place where the angle of dip is 45° and the total intensity of the earth's field is $40Am^{-1}$, makes 10 oscillations that it would make per minute at another place where the dip is 60° and the total intensity $50Am^{-1}$.

18. A dip circle is set in position after leveling and the dip is found to be α . Then it is rotated through 45° away from the magnetic meridian from this position and the dip is found to be β Show that true dip is given by $\cot^2 \delta = 2(\cot^2 \alpha + \cot^2 \beta - \sqrt{2} \cot \alpha \cot \beta)$

View Text Solution