©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

ELECTRIC CURRENT IN CONDUCTORS

Others

1. The carrier density (number of free electrons
per m^{3}) in metallic conductoirs is of the order
A. 10^{10}
B. 10^{-16}
C. 10^{22}
D. 10^{28}

Answer: D

D Watch Video Solution

2. When a current flows in a conductor, the order of magnitude of drift velocity of electrons through it is:
A. $1 \mathrm{~cm} / \mathrm{s}$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $10^{4} \mathrm{~m} / \mathrm{s}$
D. $10^{8} \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

3. The resistance of a metallic conductor increases with temperature due to.
A. chagne in carrier density
B. change in the dimensions of the conductor
C. increase in the number of collisioins among the carries
D. increase in the rate of collision between
the carries and the vibratioin atoms of

Answer: D

D Watch Video Solution

4. A piece of copper and another of germanium are cooled from room
temperature to $80 K$. The resistance of
A. each of them increases
B. each of them decreases

C. copper increases and that of germanium

decrreases

D. copper
 decreases
 and that of

germanium increases

Answer: D

D Watch Video Solution

5. A straight conductor of uniform crosssection carries a current I. Let $s=$ specific charge of an electron. The momentum of all
the free electrons per unit length of the conductor, due to their drift velocity only, is
A. $I s$
B. I / s
C. $\sqrt{I / s}$
D. $(I / s)^{2}$

Answer: B
(Watch Video Solution
6. Current flows through a metallic conductor
whose area of cross-section increases in the direction of the current. If we move in this direction.
A. the current will change
B. the carrier density will change
C. the drift velocity will increase
D. the drift velocity will decrease

Answer: D

7. A conducting ring of radius R has charge Q

distributed unevenly over it. If it rotates with
an angular velocity ω, the equivalent current will be
A. zero
B. $Q \omega$
C. $Q \frac{\omega}{2 \pi}$
D. $Q \frac{\omega}{2 \pi R}$

Answer: C::D

D Watch Video Solution

8. All the edges of a block with parallel faces
are unequal. Its longest edge is twice its
shortest edge. The ratio of the maximum to minimum resistance between parallel faces is.
A. 2
B. 4
C. 8

D. indeterminate unles the length of the

 third edge is specified
Answer: B

D Watch Video Solution

9. In the network shown below, the equivalent resistance between A and B is

Physics MCQ

A. $R / 2$
B. R
C. $2 R$
D. $4 R$

Answer: A

D Watch Video Solution
10. A and B are two points on a uniform ring of resistance R the $\angle A S C B=\theta$, whre C is the centre of the sign. The equivalent reisrtance between A and b
A. $\frac{R}{4 \pi^{2}}(2 \pi-\theta) \theta$
B. $R\left(I-\frac{\theta}{2 \pi}\right)$
C. $R \frac{\theta}{2 \pi}$
D. $R \frac{2 \pi-\theta}{4 \pi}$

Answer: A

- Watch Video Solution

11.

In the network shown, each resistance is equal
to R. The equivalent resistance between diagonally opposite corners is
A. R
B. $R / 3$
C. $2 R / 3$
D. $4 R / 3$

Answer: C::D
(Watch Video Solution

12. In the network shown in figure, the ring has

zero resistance. Find the resistance between A
and B.

A. $2 R$
B. $4 R$
C. $7 R$
D. $10 R$

Answer: A

D Watch Video Solution

13. The two ends of a uniform conductor are
joined to a cell of e.m.f. E and some internal
resistance. Starting from the midpoint P of
the conductor, we move in the direction of
current and return to P. The potential V at
every point on the path is plotted against the distance covered (x). which of the following graphs best represent the resulting curve ?
A.
(a) $\underbrace{\sqrt{\varepsilon}}_{x \rightarrow}$
B.
(b)

C.

D.

Answer: B

- Watch Video Solution

14. The emf of a cell is ε and its internal resistance is r. its terminals are connected to a resistance R. The potential difference between
the terminals is 1.6 V for $R=4 \Omega$, and 1.8 V for $R=9 \Omega$. Then,

$$
\begin{aligned}
& \text { A. } \varepsilon=1 V, r=1 \Omega \\
& \text { B. } \varepsilon=2 V, r=1 \Omega \\
& \text { C. } \varepsilon=2 V, r=2 \Omega
\end{aligned}
$$

$$
\text { D. } \varepsilon=2.5 V, r=0.5 \Omega
$$

Answer: B

- Watch Video Solution

15. N identical cells are connected to form a
battery. When the terminals of the battery are
joined directly (short - circuited), current I
flows in the circuit. To obtain the maximum
value of I,
A. all the cells should be joined in sereis

B. all the cells should be joined in parallel

C. two rows of $N / 2$ cells each should be joined in parallel
D. \sqrt{N} rows of \sqrt{N} cells each should be joined in parallel, given that \sqrt{N} is an integer

Answer: B

D Watch Video Solution

16. N identical cells, each emf E and internal resistance r are joined in series. Out of N cells, n cells are wrongly connected i.e., their terminals are connected in reverse of the required for series connection $\left(n<\frac{N}{2}\right)$. Let E_{0} be the emf of resulting battery and r_{0} be its internal resistance. Then

$$
\begin{aligned}
& \text { A. } \varepsilon_{0}=(N-n) \varepsilon, r_{0}=(N-n) r \\
& \text { В. } \varepsilon=(N-2 n) \varepsilon, r_{0}=(N-2 n) r \\
& \text { С. } \varepsilon_{0}=(N-2 n) \varepsilon, r_{0}=N r
\end{aligned}
$$

$$
\text { D. } \varepsilon=(N-n) \varepsilon, r_{0}=N r
$$

Answer: C::D

D Watch Video Solution

17. n identical cells, each of emf E and internal
resistance r, are joined in series to form a
closed circuit. Find the potential difference across any one cell.
A. zero
B. ε

> C. $\frac{\varepsilon}{n}$
> D. $\frac{n-1}{n} \varepsilon$

Answer: A

D Watch Video Solution

18. n identical cells, each of emf ε and internal
resistance r, are joined in series to from a closed circuit. One cell a is joined with
reversed polarity. The potential difference across each cell, except A, is

$$
\begin{aligned}
& \text { A. } \frac{2 \varepsilon}{n} \\
& \text { B. } \frac{n-1}{n} \varepsilon \\
& \text { C. } \frac{n-2}{n} \varepsilon \\
& \text { D. } \frac{2 n}{n-2} \varepsilon
\end{aligned}
$$

Answer: A

- Watch Video Solution

19.

In the circuit shown above, the conductor $X Y$
is of negligible resistance. Then
A. current will flow through $X Y$ if $\varepsilon_{1} \neq \varepsilon_{2}$
B. current will flow through $X Y$ if

$$
\frac{\varepsilon_{1}}{R_{1}} \neq \frac{\varepsilon_{2}}{R_{2}}
$$

C. current will flow through $X Y$ if

$$
\frac{\varepsilon_{1}+\varepsilon_{2}}{R_{1-}+R_{2}} \neq \frac{\left|\varepsilon_{1}-\varepsilon_{2}\right|}{R_{1}-R_{2}}
$$

D. no current will flow through $X Y$

Answer: D

D Watch Video Solution

20.

The Wheatstone bridge shown in the above
figure is balanced. If the positions of the cell C and the galvanometer G are now interchanged, G will show zero deflection
A. in all cases
B. only if all the resistances are qual
C. only if $R_{1}=R_{3}$ and $R_{2}=R_{4}$
D. only if $R_{1} / R_{3}=R_{2} / R_{4}$

Answer: A

D Watch Video Solution

21.

In the circuti shown above the the voltmeter is of large resistance. The emf of the cell is ε. The reading of the voltmeter is
A. zero
B. $\frac{\varepsilon}{10}$
C. $\frac{\varepsilon}{5}$
D. $\frac{\varepsilon}{2}$

Answer: C::D

D Watch Video Solution

22. A Galvanometer of range $10 \mathrm{~m} A$ has a coli of resistance 1Ω. To use it as an ammeter of
range $1 A$, the required shunt must have a resistance of
A. $\frac{1}{101} \Omega$
B. $\frac{1}{100} \Omega$
C. $\frac{1}{99} \Omega$
D. $\frac{1}{9} \Omega$

Answer: C::D

D Watch Video Solution

23. A milliammeter of range of 10 mA gives
full-scale deflection for a current of $100 m A$,
when a shunt of 0.1Ω is connected in parallel
to it. The coil of the milliammeter has a

resistance of.

A. 0.9Ω
B. 1Ω
С. 1.1Ω
D. 0.11Ω

Answer: A

D Watch Video Solution
24. A, B and C are voltmeters of resistances
$R, 1.5 R$ and $3 R$ respectively. When some potential difference is applied between x and y the voltmeter readings are $V_{A}, V_{-} \mathrm{B}$ and V_C, then

A. $V_{A}=V_{B}=V_{C}$
B. $V_{A} \neq V_{B}=V_{C}$
c. $V_{A}=V_{B} \neq V_{C}$

D. $V_{B} \neq V_{A}=V_{C}$

Answer: A

- Watch Video Solution

25. An ammeter and a voltmeter are joined in sereis to a cell. Their readings are A and V respectively. If a resistance is now joinding parallel with the voltmeter. Then
A. both A and V will increase
B. both A and V will decrease
C. A will decrease, V will increase
D. A will increase, V will decrease

Answer: D

D Watch Video Solution

26. In a moving -coil instrument, the coil is is
suspended in a radial magnetilc field instead
of a uniform magnetic field. This is done to
A. increase the sensitivity of the instrument
B. increase the accuracy of the instrument
C. make the instrument compact and portable
D. make its deflection proportional to the
current through it

Answer: D

D View Text Solution
27. Acell of internal resistance r drives a current through an external resistance R. The power delivered by the cell to the external resistance is maximum when
A. $R=r$
B. $R \gg r$
C. $R \ll r$
D. $R=2 r$

Answer: A

- Watch Video Solution

28. When an electric heater is switched on, the current flowing through it (i) is plotted against time (t). Taking into account the variation of resistance with temperature, which of the following best represents the resulting curve

(b)

C. ${ }^{\text {(c) }} \stackrel{i}{l}^{i_{t}}$

Answer: B

- Watch Video Solution

29. Figure 7.37 shows a network of three resistances. When some potential difference is applied across the network, thermal powers
dissipated by A, B and C are in the ratio

A. $2: 3: 4$
B. $2: 4: 3$
C. $4: 2: 3$
D. 3:2:4

Answer: C::D

D Watch Video Solution
30. An electric bulb is designed to draw P_{0} power at V_{0} voltage. If the voltage is V, it drawas power. Then

$$
\begin{aligned}
& \text { A. } P=\frac{V_{0}}{V} P_{0} \\
& \text { B. } P=\frac{V}{V_{0}} P_{0} \\
& \text { C. } P=\left(\frac{V}{V_{0}}\right)^{2} P_{0} \\
& \text { D. } P=\left(\frac{V_{0}}{V}\right)^{2} P_{0}
\end{aligned}
$$

Answer: C::D

31. An electric bulb rated for 500 watts at 100
volts is used in a circuit having a 200 volts
supply. The resistance R that must be put in series with the bulb, so that the bulb delivers 500 watt isohm.
A. 10Ω
B. 20Ω
C. 50Ω
D. $100 \Omega s$

Answer: B

- Watch Video Solution

32. Two electric bulbs A and B are designed
for the same voltage. Their power ratings are
P_{A} and P_{B} respectively with $P_{A}>P_{B}$. If they are joined in series across V voltage supply
A. A will draw more power than B
B. B will draw more power than A
C. the ratio of powers drawn by them will depend on V

D. A and B will draw the same power

Answer: B

D Watch Video Solution

33. n identical light bulbs, each designed to draw P power from a certain voltage supply, are joined in series across that supply. The total power which they will draw is
A. $n P$
B. P
C. P / n
D. P / n^{2}

Answer: C::D

D Watch Video Solution

34. When a $500-W$ electric and a $500-W$
heater operate at their rates voltages, the
filament of the bulb reaches a much higher
temperature than the filament of the heater.

The most important reason for this that
A. their resistances are not equal
B. they are made of different materials
C. their dimensions are very different
D. they radiate different powers at
different temperatures

Answer: C::D

D Watch Video Solution

35. A $100 W$ bulb and a 25 W bulb are desigened for the same voltage. They have filaments of the same length and material. The ratio of the diameter of 100 W bulb to that of the $25 W$ bulb is
A. $4: 1$
B. $2: 1$
C. $\sqrt{2}: 1$
D. 1:2
36. If the length of the filament of a heater is reduced by 10%, the power of the heater will
A. increase by about 9%
B. increase by about 11%
C. increase by about 19 \%
D. decrease by about 10%

Answer: B

D Watch Video Solution

37. An ideal cell is connected to a capacitor through a voltmeter. The reading V of the voltmeter is plotted agains time. Which of the following best represents the resulting curve?
A.
(a) $\stackrel{4}{\square}$
B.
(b) $\underbrace{-}_{i \rightarrow}$
C.
(c)

Answer: B

- Watch Video Solution

38. In the circuit shown in fig. when the switch
is closed, the capacitor charges with a time
constant

A. $R C$
B. $2 R C$
C. $\frac{1}{2} R C$
D. $R C I n 2$

Answer: A

D Watch Video Solution
39. A capacitor is charged and then made to discharged through a resistance. The time constant is τ. In what time will the potential difference across the capacitor decreases by $10 \% ?$
A. $\tau \operatorname{In}(0.1)$
B. $\tau \operatorname{In}(0.9)$
C. $\tau \operatorname{In}(10 / 9)$
D. $\tau \operatorname{In}(11 / 10)$

Answer: C

- Watch Video Solution

40. A capacitor charges from a cell through a resistance. The time constant is τ. In what time will the capacitor collect 10% of the final charge?
A. $\tau \operatorname{In}(0.1)$
B. $\tau \operatorname{In}(0.9)$
C. $\tau \operatorname{In}(10 / 9)$

D. $\tau \operatorname{In}(11 / 10)$

Answer: C

D Watch Video Solution

41. A capacitor of capacitance C has charge Q.
it is connected to an identical capacitor through a resistance. The heat produced in the resistance is
A. $\frac{Q^{2}}{2 C}$
B. $\frac{Q^{2}}{4 C}$
C. $\frac{Q^{2}}{8 C}$
D. dependent on the value of the resistance

Answer: B

- Watch Video Solution

42. The charge on a capacitor decrease η time in time t, when it discharging through a circuit with a time constant τ
A. $t=\eta \tau$
B. $t=\tau I n \eta$
C. $t=\tau(\operatorname{In} \eta-1)$
D. $t=\tau \operatorname{In}\left(1-\frac{1}{\eta}\right)$

Answer: B

- Watch Video Solution

43.

A straight conductor $A B$ lies along the axis of
a hollow metal cylinder L, which is connected to earth through a conductor C.A quantity of charge will flow through C
A. if a current begins to flow through $A B$
B. if the current through $A B$ is reversed
C. if $A B$ is removed, and a beam of electrons flows in its place
D. if $A B$ is removed, and a beam of protons
flows in its place

Answer: C::D

D Watch Video Solution

44.

A beam of electorn emitted from the electron gun G is accelerated by an electic field E. The area of cross-section of the beam remains constant. A the beam moves away from G
A. the speed of the electrons increases
B. the current constituted by the beam
C. the number of electrons per unit volume in the beam increases
D. the number of electrons per unit volume in the beam decreases

Answer: A::D

D Watch Video Solution

45. The charge flowing in a conductor varies
with times as $Q=a t-b t^{2}$. Then, the current
A. decreases linearly with time
B. reaces a maximum and then decreases
C. falls to zero after a time period $t=\frac{a}{2 b}$
D. change at a rate $-2 b$

Answer: A::C::D

D Watch Video Solution

46. The charge flowing in a conductor varies
time as,
$q=a t-\frac{1}{2} b t^{2}+\frac{1}{6} c t^{3}$

Where a,b,c are positive constants. Then, find
(i) the initial current (ii) the time after which
the value of current reaches a maximum value
(iii) the maximum or minimum value of current.
A. has an initial value $i=a$
B. reaches a minimum value after a time period $t=b / c$
C. reaches a maximum value after a time period $t=b / c$
D. has either a maximum or a minimum

$$
\text { value } i=a-\frac{b^{2}}{2 c}
$$

Answer: A::B::D

- Watch Video Solution

47. When some potential differece is maintained between A and B, current I enters
the network at A and leaves at B

A. The equivalent resistance between A
and B is 8Ω
B. C and D are at the same potential.
C. No current flows between C and D
D. Current $3 I / 5$ flows from D to C

- Watch Video Solution

48.

In the circuit shown above, each of the four conductors is of resistance R. The potentail difference between A and B is V. The current flowing between A and B is

$$
\text { A. } \frac{V}{R}
$$

B. $\frac{2 V}{R}$
C. $\frac{3 V}{R}$
D. $\frac{4 V}{R}$

Answer: D

- Watch Video Solution

49.

ammeters of resistance 5Ω each. When an ideal cell of emf 10 V is applied between A and B
A. the current drawn from the cell is $1 A$
B. the reading of A_{1} is $1 A$
C. the reading of A_{2} is $1 A$
D. if C_{1} is joined to C_{2} and D_{1} is joined to
D_{2}, the ammeter readings will become equal

- Watch Video Solution

50.

Six identical wires of resistance R each are
joined to form a pyramid, as shown in the figure above
A. The equivalent resistance between any
two corners will depend on the choice of
corners
B. The equivalent resistance between A
and B is $R / 2$
C. The equivalent resistance between D
and C is zero
D. If an electric current enters at A and
flows out at B, no current will pass
through $D C$.

Answer: B::D

- Watch Video Solution

51.

When the switch K is open, the equivalent resistance between A and B is 20Ω. Then, which is thte correct statemetn?

$$
\text { A. } R=80 \Omega
$$

B. No current flows through K when its closed.
C. The powers dissipated in R and in the
$5-\Omega$ resistor are always equal.
D. The power dissipated in the two $20-\Omega$
resistors are unequal

Answer: A::B::C::D

- Watch Video Solution

52. In the circuit shown in fig. the cell has emf 10 V and internal resistance 1Ω

A. The current through the $3-\Omega s$ resistor is $1 A$.
B. The current though the $3-Q$ resistor is
$0.5 A$
C. The current through the $4-\Omega$ resistor is $0.5 A$
D. The current through the $4-\Omega$ resistor is 0.25 A

Answer: A::D

D Watch Video Solution
53. In the circuit shown in fig. some potential difference is applied between A and B. The
equivalent resistance between A and B is R.

A. No current flows through the $5-\Omega$ resistor
B. $R=15 \Omega$
C. $R=12.5 \Omega$
D. $R=\frac{18}{5} \Omega$

Answer: A::D
54. A uniform wire of resistance R is shaped into a regular $n-$ sided polygon (n is even), The equivalent resistance between any two corners can have.
(i) the maximum value $\frac{R}{4}$
(ii) the minimum value $\frac{R}{n}$
(iii) the minimum value $R\left(\frac{n-1}{n^{2}}\right)$
(iv) the minimum value $\frac{R}{n}$.
A. the maximum value $\frac{R}{4}$
B. the maximum value $\frac{R}{n}$
C. the minimum value $R\left(\frac{n-1}{n^{2}}\right)$
D. the minimum value $\frac{R}{n}$

Answer: A:C

- Watch Video Solution

55. In the circuit shown in fig. the cell is ideal
with emf 15 V . Each resistance is of 3Ω. The potential difference across the capacitor in
steady state is

A. zero
B. 9 V
C. 12 V
D. 15 V

Answer: C

- Watch Video Solution

56. In the circuit shown, the cell is ideal with emf $=2 V$. The resistance of the coil of the galvanometer G is 1Ω.

(i) No current flows in G
(ii) $0.2 A$ current flows in G
(iii) potential difference across $C_{1} i s 1 V$
(iv) Potential difference across C_{2} is 1.2 V
A. No current flows in G
B. $0.2-A$ current flows in G
C. Potential difference across C_{1} is $1 V$
D. Potential difference across C_{2} is $1.2 V$.

Answer: B::C::D

57.

Two cells of unequal emfs, ε_{1} and ε_{2} and internal resistances r_{1} and r_{2} are joined as shown. V_{A} and V_{B} are the potentials at A and B respectively.
A. Once cell wil continuously suply energy to the other.
B. The potential difference across botht eh
cells will be equal.
C. The potential difference across one cell
will be greater than its emf.
D. $V_{A}-V_{B}=\frac{\left(\varepsilon_{1} r_{2}+\varepsilon_{2} r_{1}\right)}{\left(r_{1}+r_{2}\right)}$

Answer: A::B::C::D

D Watch Video Solution

58. An accumulator battery (storage cell) B of
emf ε and internal resistance r is being charged from $D C$ supply whose terminals are T_{1} and T_{2}

A. Potential difference bertween T_{1} and T_{2}
must be $>\varepsilon$
B. T_{1} must be positive with respect to T_{2}
C. in the battery, current flows from the positive to the negative terminal.
D. All the above options are incorrect.

Answer: A::B::C

D Watch Video Solution

59. A voltmeter and an ammeter are connected
in series to an ideal cell of emfE. The voltmeter reading is V, and the ammeter
readings is I. Then
(i) $V<E$ (ii) the voltmeter resistance is V / I
(iii) the potential difference across the ammeter is $E-V$
(iv) Voltmeter resistance + ammeter resistance
= E//I

Correct statements are
A. $V<\varepsilon$
B. The voltmeter resistance is V / I
C. The potential difference acros the
ammeter is $(\varepsilon-V)$
D. Voltmeter resistance plus ammeter resistanc $=\varepsilon / I$

Answer: A::B::C::D

- Watch Video Solution

60. A voltmeter of resistance 600Ω when
connected in turn across resistances R_{1} and
R_{2} gives readings of V_{1} and V_{2}, respectively. If
the battery is ideal, then

A. $V_{1}=80 \mathrm{~V}$
B. $V_{1}=60 \mathrm{~V}$
C. $V_{2}=30 \mathrm{~V}$
D. $V_{2}=40 \mathrm{~V}$

Answer: B::C

- Watch Video Solution

61. A voltmeter and an ammeter are joined, in
series to an ideal cell, giving reading V and A respectively. If a resistance equal to the resistance of the ammeter is now joined in parallel to the ammeter then :
A. V will not change
B. V will increase slightly
C. A will become exactly half to its initial value

D. A will become slightly more than half of

its initial value

Answer: B::D

D Watch Video Solution

62. Three voltmeters all having different resistance, are joined as shown. When some potential difference is applied acros A and B,
their readings are V_{1}, V_{2} and V_{3}. Then

A. $V_{1}=V_{2}$
B. $V_{1} \neq V_{2}$
c. $V_{1}+V_{2}=V_{3}$
D. $V_{1}+V_{2}=V_{3}$

Answer: B::C
63. Three ammeters A, B, and C of resistances R_{A}, R_{b} and R_{C} respectively are joined as shown. When some potential difference is applied across the terminals T_{1} and T_{2} their readings are I_{A}, I_{B} and I_{C} respectively Then,

$$
\text { A. } I_{A}=I_{B}
$$

B. $I_{A} R_{A}+I_{B} R_{B}=I_{C} R_{C}$
C. $\frac{I_{A}}{I_{C}}=\frac{R_{C}}{R_{A}}$
D. $\frac{I_{B}}{I_{C}}=\frac{R_{C}}{R_{A}+R_{B}}$

Answer: A::B::D

D Watch Video Solution

64. A microameter has a resistance of 100ω
and a full scale range of $50 \mu \mathrm{~A}$. It can be used as a voltmeter or as a higher range ammeter
provides a resistance is added to it . Pick the correct range and resistance combination(s)
A. Range 50 V , with a $10-k Q$ resistance in
series
B. Range $10 V$, with a $\left(2 \times 10^{5}-100\right)-\Omega$
resistance in series
C. Range $5 m A$, with $1.01-\Omega$ resistance in
parallel
D. Range $10 m A$, with a $1-\Omega$ resistance in
parallel

Answer: B::C

- Watch Video Solution

65. A milliammeter of range 10 mA and resistance 9Ω is joined in a circuit as shown.

The metre gives full-scale deflection for curretn I when A and B are used as its terminals, i.e., current enters at A and leaves
at B (C is left isolated). The value if I is

A. $100 m A$
B. 900 mA
C. $1 A$
D. $1.1 A$

Answer: C

- Watch Video Solution

66.

The figure shows a potentiometer arrangement. D is the driving cell. C is the cell whose emf is to be determined. $A B$ is the
potentiometer wire and G is a galvanometer.
J is a sliding contact which can touch any point on $A B$. Which of the following are essential conditions for obtaining balance?
A. The emf of D must be greater than the emf of C
B. Either the positive terminals of both D
and C or the negative terminals of both
D and C must be joined to A.
C. The positive terminals of D and C must
be joined to A
D. The resitance of G must be less than te resistance of $A B$

Answer: A::B

D View Text Solution

67. In the petentiometer arrangemeter shown,
the driving cell A has emf ε and internal resistance r. The emf of the cell B is $\frac{\varepsilon}{2}$ and internal resistance $2 r$. The petentiometer wire
$C D$ is 100 cm long. If balance is obtained with
length $C J=l$, then

A. $l=50 \mathrm{~cm}$
B. $l>50 \mathrm{~cm}$
C. Balance will be obtaine donly if resistance of $A B$ is $>r$
D. Balance cannot be obtained.

Answer: B::C

- Watch Video Solution

68. A cell drives a current through a circuit.

The emf of the cell of equal to the work done in moving unit charge (Choose the incorrect option)
A. from the positive to the negative plate of the cell
B. from the positive plate, back to the positive plate
C. from the negative plate, back to the negative plate

D. from any point in the circuit back to the

same point

Answer: B::C::D

D Watch Video Solution

69. A cell of emf ε and internal resistance r drives a current i through an extermal resistance R
(i) The cell suppllied εi power
(ii) Heat is produced in R at the rate εi
(iii) Heat is produced in R at the rate
$\varepsilon I\left(\frac{R}{R+r}\right)$
(iv) Heat is produced in the cell at the rate $\varepsilon i\left(\left(r \frac{?}{R+r}\right)\right.$
A. The cell suplies εi power
B. Hear is produced in R at the rate ε
C. Heat is produced in R at the rate

$$
\varepsilon i\left(\frac{R}{R+r}\right)
$$

D. Heat is produced in the cell at the rate

$$
\varepsilon i\left(\frac{r}{R+r}\right)
$$

Answer: A::C::D

D Watch Video Solution

70. Current i is being driven through a cell of emf ε and internal resistance $3 r$, as shown

(i) the cell absorbs energy at rate of εi
(ii) The cell stores chemical energy at the rate of $\left(\varepsilon i-i^{2} r\right)$
(iii) The potential differnece across the cell is
$\varepsilon+i r$
(iv) some heat is produced in the cell
A. The cell absorbs energy at the rate of εi
B. The cell stores chemical energy at the
rate of $\left(\varepsilon i-i^{2} r\right)$
C. The potential difference across the cell is

$$
\varepsilon+i r
$$

D. Some heat is produced in the cell.

Answer: A::B::C::D

- Watch Video Solution

71. Two electric bulbs rated
$25 W, 220 \mathrm{~V}$ and $100 \mathrm{~W}, 220 \mathrm{~V}$ are connected
in series across a 220 V voltage source. The
$25 W$ and $100 W$ bulbs now draw P_{1} and P_{2} powers, respectively.

A. $P_{1}=16 W$
B. $P_{1}=4 W$
C. $P_{2}=16 W$
D. $P_{2}=4 W$

Answer: A::D
(Watch Video Solution
72. Two heaters designed for the same voltage
V have different power ratings. When connected individually across as source of voltage V, they produce H amount of heat each in time t_{1} and t_{2} respectively. When used together acros the same source, they produce H amount of heat in time t
A. If they are in series $t=t_{1}+t_{2}$
B. If they are in series $t=2\left(t_{1}+t_{2}\right)$
C. If they are in paralle $t=\frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)}$
D. If they are in parallel $t=\frac{t_{1} t_{2}}{2\left(t_{1}+t_{2}\right)}$

Answer: A::C

D Watch Video Solution

73. In a household electrlic circuit,
A. all electric appliances drawing power are joined in parallel
B. a switch may be either in series or in
parallel with the appliance which it
controls
C. if a switch is in parallel with an appliane
it will draw power when the switch is in
the 'off' position (open)
D. if a switch is in parallel with an
appliance, the fuse wil blwo (burn out)
when the switch is put 'on' (closed)

Answer: A::C::D

D View Text Solution

74. Two identical fuses are rated at 10 A . If they are joined
A. in parallel, the combination acts as a fuse of rating 20 A
B. in parallel the combination acts as a fuse of rating $5 A$
C. in series, the combination acts as a fuse of rating 10 A
D. in series, the combination acts as a fuse of rating 20 A

D Watch Video Solution

75. The charge flowing through a resistance R
varies with time $\operatorname{tas} Q=a t-b t^{2}$. The total
heat produced in R is
A. $\frac{a^{3} R}{6 b}$
B. $\frac{a^{3} R}{3 b}$
C. $\frac{a^{3} R}{2 b}$
D. $\frac{a^{3} R}{b}$

Answer: A

D Watch Video Solution

76. In the network shown in fig., points A, B, and C are at potentials of $70 \mathrm{~V}, 0$, and 10 V , respectively.

A. Point D is at a potential of 40 V .
B. The currents in the sections
$A D, D B, D C$ are int eh ratio $3: 2: 1$
C. The currents in the section
$A D, D B, D C$ are in the ratio $1: 2: 3$
D. The network draws a total power of
$200 W$

Answer: A::B::D

D Watch Video Solution

77. Two identical capcitors A and B are charged to the same potential and then made to discharge through resistance R_{A} and R_{B} respectively with $R_{A}>R_{B}$
A. A will require greater time then B to
discharge completely
B. More heat will be produced in A than in

B

C. More heat will be produced in B than in

A
D. All the above options are incorrect.

Answer: D

D Watch Video Solution

78. a capacitor of capacitance C is connected to two voltmeter A and $B . A$ is ideal, having infinite resistance, while B has resistance R.

The capcitor is charged and then switch S is
closed. The reading of A and B will be equal

A. at all times
B. after time $R C$
C. after time RCIn 2
D. only after a very long time

Answer: A
79. The capacitor C is initially without charge. X is now joined to Y for a long time, during which H_{1} heat is produced in the resistance R .
X is now joined to Z for a long time, during which H_{2} heat is produced in R

A. $H_{1}=H_{2}$
B. $H_{1}=\frac{1}{2} H_{2}$
C. $H_{1}=2 H_{2}$
D. The maximum energy stored in C at any
time is H_{1}

Answer: A::D

- Watch Video Solution

80.

Three identical capacitors A, B and C are charged to the same potential and then made to discharge thorugh three resistances
R_{A}, R_{B} and $\quad R_{C}$, where $R_{A}>R_{B}>R_{C}$.

Their potential differences (V) are plotted agains time t giving the curves 1,2 , and 3 . Find the correlations between A, B, C and 1,2,3
A. $1 \rightarrow A$
B. $2 \rightarrow B$
C. $1 \rightarrow C$
D. $3 \rightarrow A$

Answer: B::C::D

D View Text Solution

81. A capacitor A with charge Q_{0} is connected
through a resistance to another identical capacitor B, which has no charge. The charges
on A and B after time t are Q_{A} and Q_{B} respectively, and they are plotted against time t. Find the correct curves
A.
(a)

B.
(b)

(c)

C.

Answer: A

- View Text Solution

82. A parallel- plate capacitor, fileld with a dielectric of dielectric consatnt k, is charged to a potential V_{0}. It is now disconnected from
the cell and the slab is removed. If it now discharges, with time constant τ, through a resistance then find time after which the potential difference across it will be V_{0} ?
A. $k \tau$
B. $\tau I n k$
C. $\tau \operatorname{In}\left(1-\frac{1}{k}\right)$
D. $\tau \operatorname{In}(k-1)$

Answer: B

D Watch Video Solution

83. When a capacitor discharges through a resistance R, the time constant is τ and the
A. The initial charge on the capacitor was $i_{0} \tau$
B. The initial charge on the capacitor was
$\frac{1}{2} i_{0} \tau$
C. The initial energy stored in the capacitor
was $i_{0}^{2} \tau$
D. The initial energy stored in the capacitor

$$
\text { was } \frac{1}{2} i_{0}^{2} R \tau
$$

Answer: A::D

84. In the circuit shown, A and B are equal resistances. When S is closed, the capcitor

Ccharges from the cell of emf epsilon and reaches a steady state.

A. During charging more heat is produced in A and B
B. In the steady state, heat is produced at
te same rate in A and B
C. In the steady state, energy stored in C is

$$
\frac{1}{4} C \varepsilon^{2}
$$

D. In the steady state, energy stored in C is

$$
\frac{1}{8} C \varepsilon^{2}
$$

Answer: A::B::D

85. Capacitors $C_{1}=1 \mu F$ and $C_{2}=2 \mu F$ are separately charged from the same battery. They are allowed to discharge separately through equal resistors
A. The currents in the two discharging
circuits at $t=0$ is zero
B. The currents in te two discharging
circuits at $t=0$ are equal but not zero.
C. The currents in the two discharging circuits at $t=0$ are unequal.
D. C_{1} loses 50% of its initial charge
sooner than C_{2} loses 50% of its initial
charge.

Answer: C::D

(D) Watch Video Solution

