©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

 (HINGLISH)

 (HINGLISH)}

ELECTROMAGNETISM

Others

1. If C the velocity of light, which of the following is correct?
A. $\mu_{0} \varepsilon_{0}=c$
B. $\mu_{0} \varepsilon_{0}=c^{2}$
C. $\mu_{0} \varepsilon_{0}=\frac{1}{c}$
D. $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$

Answer: D

D Watch Video Solution

2. If E and B denote electric and magnetic
fields respectively, which of the following is dimensionless?
A. $\sqrt{\mu_{0} \varepsilon_{0}} \frac{E}{B}$
B. $\mu_{0} \varepsilon_{0} \frac{E}{B}$
C. $\mu_{0} \varepsilon_{0}\left(\frac{B}{E}\right)^{2}$
D. $E /\left(\varepsilon_{0}\right) \times \frac{\mu_{0}}{B}$

Answer: A

D Watch Video Solution

3. A vertical wire carriers a current upwards.

The magnetic field at a point due north of the wire is directed
A. upward
B. due south
C. due west
D. due east

Answer: C

D Watch Video Solution

4. Two parallel beams of protons and electrons, carrying equal currents are fixed at a separation d. The protons and electrons
move in opposite directions. There is a point P on the straight perpendicular line joining the two beams at a distance x from one beam. The magnetic field at this point is B. If B is plotted against x, it can be represented by the curve.
A.
(a)

(b)

B.
C.

D.

Answer: C

D Watch Video Solution

5.

$A b B$ is a section of a straight wire carrying a
current $I . P$ is a point at a distance d from
$A B$. The magnetic field at P due to $A B$ has magnitude

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I}{4 \pi d}\left(\cos \theta_{1}+\cos \theta_{2}\right) \\
& \text { B. } \frac{\mu_{0} I}{4 \pi d}\left(\cos \theta_{1}-\cos \theta_{2}\right) \\
& \text { C. } \frac{\mu_{0} I}{4 \pi d}\left(\sin \theta_{1}+\sin \theta_{2}\right) \\
& \text { D. } \frac{\mu_{0} I}{4 \pi d}\left(\sin \theta_{1}-\sin \theta_{2}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

6. $A B C D$ is a square loop made of a uniform conducting wire. A current enters the loop at
A and leaves at D. The magnetic field is

A. zero only at the centre of the loop
B. maximum at the centre of the loop
C. zero at all points outside the lop

D. zero at all points inside the loop

Answer: A

D Watch Video Solution

7. Two long thin wires $A B C$ and DEF are arranged as shown in Fig. They carry equal currents I as shown. The magnitude of the

magnetic field at O is

A. zero only at the centre of the loop
B. $\frac{\mu_{0} I}{4 \pi a}$
C. $\frac{\mu_{0} I}{2 \pi a}$
D. $\frac{\mu_{0} I}{2 \sqrt{2} \pi a}$
8. $A B$ and $C D$ are long staright conductors, distance d apart, carrying a current I. The magnetic field on $B C$ due to the currents in

$A B$ and $C D$

A. is zero at all points
B. is zero only at its midpoint
C. has different magnitudes at different points
D. is maximum at its midpoint

Answer: C

D Watch Video Solution

9. A wire carrying current I is shaped as shown. Section $A B$ is a quarter circle of radius
r. The magnetic field is directed

A. along the bisector of the angle $A C B$,
away from $A B$
B. along the bisector of the angle $A C B$,
towards $A B$
C. perpendicular to the plane of the paper, directed into the paper D. at an angle $\pi / 4$ to the plane of the paper

Answer: C

D Watch Video Solution

10. The wire loop $P Q R S P$ formed by joining two semicircular wires of radii R_{1} and R_{2} carries a current I as shown. The magnitude
of the magnetic induction at the center C is

A. $\frac{\mu_{0} I}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
B. $\frac{\mu_{0} I}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
C. $\frac{\mu_{0} I}{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
D. $\frac{\mu_{0} I}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$

Answer: D

D Watch Video Solution

11. An electron moving in a circular orbit of radius r makes n rotation per secound. The magnetic field produced at the centre has magnitude
A. zero
B. $\frac{\mu_{0} \mathrm{ne}}{2 \pi r}$
C. $\frac{\mu_{0} \mathrm{ne}}{2 r}$
D. $\frac{\mu_{0} n^{2} e}{2 r}$

Answer: C

D Watch Video Solution

12. A circular coil of n turns and radius r carries
a current I. The magnetic field at the centre is
A. $\pi r^{2} n i$
B. $2 \pi r n i$
C. $\mu_{0}\left(\frac{n i}{2 \pi r}\right)$

D. $\mu_{0} \pi r^{2} n i$

Answer: A

D Watch Video Solution

13. A point P lies on the axis of a flat coil
carrying a current. The magnetic moment of the coil is μ. The distance of P from the coil is d, which is large compared to the radius of the coil. The magnetic field at P has magnitude

$$
\text { A. } \frac{\mu_{0}}{2 \pi}\left(\frac{\mu}{d^{3}}\right)
$$

B. $\frac{\mu_{0}}{4 \pi}\left(\frac{\mu}{d^{3}}\right)$
C. $\frac{\mu_{0}}{2 \pi}\left(\frac{\mu}{d^{2}}\right)$
D. $\frac{\mu_{0}}{4 \pi}\left(\frac{\mu}{d^{2}}\right)$

Answer: A

D Watch Video Solution

14. Current flows through a straight cylindrical conductor of radius r. The current is distributed uniformly over its cross-section.

The magnetic field at a distanace x from the axis of the conductor has magnitude B :
A. $B \propto x$, for $0<x<r$
B. $B \propto 1 / x$, for $0<x<r$
C. $B=0$, for $0 \leq x<r$
D. $B=0$, only for $x=0$

Answer: C

D Watch Video Solution

15. A coaxial cable consists of a thin inner conductor fixed along the axis of a hollow outer conductor. The two conductor carry equal currents in opposite directions. Let
B_{1} and B_{2} be the magnetic fields in the region between the conductors and outside the conductor, respectively. Then,
A. $B_{1} \neq 0, B_{2} \neq 0$
B. $B_{1}=B_{2}=0$
C. $B_{1} \neq 0, B_{2}=0$

$$
\text { D. } B_{1}=0, B_{2} \neq 0
$$

Answer: C

D Watch Video Solution

16. A long straight conductor carrying a current lies along the axis of a ring. The conductor will exert a force on the ring if the ring
A. carries a current
B. has uniformly distributed charge
C. has non uniformly distributed charge
D. non of the above

Answer: D

D Watch Video Solution

17. A wire $A B C D E F$ (with each side of length
$L)$ bent as shown in figure and carrying a
current I is placed in a uniform magnetic induction B parallel to the positive
y-direction. The force experienced by the wire is In the direction .

A. BIL in the positive y-direction
B. BIL in the positive z-direction
C. 3BIL
D. zero

Answer: A

D Watch Video Solution

18. A closed loop lying in the $x y$ plane carries a
current. If a uniform magnetic field B is
present in the region, the force acting on the
will be zero if B is in
A. the x-direction
B. the y-direction
C. the z-direction

D. any of the above directions.

Answer: D

- Watch Video Solution

19. An irregular closed loop carrying a current
has a shape such that the entire loop cannot
lie in a single plane. If it is a placed in a uniform magnetic field, the force acting on the
loop
A. must be zero
B. can never be zero
C. may be zero
D. will be zero only for one particular direction of the magnetic field

Answer: A

D Watch Video Solution

20. A horizontal straight conductor of mass m
and length I is placed in a uniform vertical magnetic firled of magnitude B. An amount of
charge Q passes through the rod in a very short time such that the conductor begins to move only after all the charge has passed throught is. Its initial velocity will be
A. BQlm
B. $\frac{B Q}{l m}$
C. $\frac{B Q l}{m}$
D. $\frac{B l}{m Q}$

Answer: C

21.

A conductor $A B$ of length l carrying a current
i is placed perpendicular to a long straight
conductor $X Y$ carrying a current I, as shown.
The force on $A B$ will act
A. upward
B. downward

C. to the right

D. to the left

Answer: A
(D) Watch Video Solution
22.

A square loop $A B C D$ carrying a current i is
placed near and coplanar with a long straight conductor $X Y$ carrying a current I.
A. There is no net force on the loop
B. The loop will be attracted by the conductor only if the current in the loop
flows clockwise.
C. The loop will be attracted by the
conductor only if the current in the loop
flows anticlockwise.
D. The loop will always be attracted by the
conductor.

Answer: B

D View Text Solution
23. A flat coil of n turns, area A and carrying a
current I is placed in a uniform magnetic field of magnitude B. The plane of the coil makes an angle θ with the direction of the field. The torque acting on the coil is
A. $B \in A \sin \theta$
B. $\frac{n A i}{B} \sin \theta$
C. $B \in A \cos \theta$
D. $B \in^{2} A \cos \theta$

Answer: C

D Watch Video Solution

24. A flat coil carrying a current has a magnetic moment μ. It is initially in equilibrium, with its plane perpendicular to a magnetic field of magnetic B, If it now rotated through an angle θ, the work done is
A. $\mu B \theta$
B. $\mu B \cos \theta$

C. $\mu B(1-\cos \theta)$

D. $\mu B \sin \theta$

Answer: C

D Watch Video Solution

25. The square loop $A B C D$, carrying a current
i, is placed in uniform magnetic field B, as
shown. The loop can rotate about the axis
$X X^{\prime}$. The plane of the loop makes and angle $\theta\left(\theta<90^{\circ}\right)$ with the direction of B. Through
what angle will the loop rotate by itself before
the torque on it becomes zero

A. θ
B. $90^{\circ}-\theta$
C. $90^{\circ}+\theta$

D. $180^{\circ}-\theta$

Answer: C

D Watch Video Solution

26. A wire is bent to form the double loop
shown in figure. There is a uniform magnetic
field directed into the plane of the loop. If the magnitude of this field is decreasing current
will flow from:

A. A to B and C to D
B. B to A and D to C
C. A to B and D to C
D. B to A and C to D

Answer: C
27. A conduting ring R is placed on the axis of
a bar magnet M. The plane of R is perpendicular to this axis. M can move along this axis

A. M will repel R when it is moving towards R
B. M will attract R when it is moving towards R
C. M will repel R when moving towards as
well as away from R
D. M will attract R when moving towards
as well as away from R

Answer: A

D Watch Video Solution

28. A conductor $P Q$, with $P Q=r$, moves
with a velocity v in a uniform magnetic field of induced B. The emf induced in the rod is
A. $(\vec{v} \times \vec{B}) \cdot \vec{r}$
B. $\vec{v} \cdot(\vec{r} \times \vec{B})$
c. $\vec{B} \cdot(\vec{r} \times \vec{v})$
D. $|\vec{r} \times(\vec{v} \times \vec{B})|$

Answer: A

- Watch Video Solution

29. A thin semicircular conducting ring of radius R is falling with its plane verticle in a horizontal magnetic inducting B. At the position $M N Q$, the speed of the ring is V and the potential difference developed across the ring is

A. zero
B. $\frac{1}{2} B v \pi R^{2}$, and M is at a higher potential
C. $\pi R B v$, and Q is at a higher potential
D. $2 R B v$, and Q is at a higher potential

Answer: D

D Watch Video Solution

30. The magnitude opf the earth's magnetic field at a place is B_{0} and the angle of dip is δ.

A horizontal conductor of length l, lying
north-south, moves eastward with a velocity v.

The emf induced across the rod is
A. zero
B. $B_{0} l v$
C. $B_{0} l v \sin \delta$
D. $B_{0} l v \cos \delta$

Answer: C

- Watch Video Solution

31. The two ends of a horizontal conducting rod of length l are joined to a voltmeter. The whole arrangement moves with a horizontal velocity v, the direction of motion being perpendicular to the rod. The vertical component of the earth's magnetic field is B. The voltmeter reading is
A. Blv only if the rod moves eastward
B. Blv only if the rod moves westward
C. Blv if the rod moves in , any direction

D. zero

Answer: D

D Watch Video Solution

32. A vertical ring of radius r and resistance on
R falls vertically. It is in contact with two
vertical rails which are joined at the top. The
rails are without friction and resistance. There
is a horizontal uniform, magnetic field of magnitude B perpendicular to the plane of
the ring and the rails. When the speed of the
ring is v, the current in the section $P Q$ is

A. zero
B. $\frac{2 B r v}{R}$
C. $\frac{4 B r v}{R}$
D. $\frac{8 B r v}{R}$

Answer: D

- Watch Video Solution

33. A horizontal ring of radius r spins about its
axis with an angular velocity ω in a uniform
vertical magnetic field of magnitude B. The emf induced in the ring is
A. zero
B. $\pi r^{2} \omega B$
C. $\frac{1}{2} B r^{2} \omega$
D. $B r^{2} \omega$

Answer: A
34. A metal rod of resistance R is fixed along a diameter of a conducting ring of radius r.

There is a magnetic field of magnitude B perpendicular to the plane of the loop. The ring spins with an angular velocity ω about its axis. The centre of the ring is joined to its rim by an external wire W. The ring and W have no resistance. The current in W is
A. zero
B. $\frac{B r^{2} \omega}{2 R}$
C. $\frac{B r^{2} \omega}{R}$
D. $\frac{2 B r^{2} \omega}{R}$

Answer: D

D Watch Video Solution

35. Three indential rings move with same speed on a horizontal magnetic field normal to plane of rings. The first (a) slips without rolling, the second(b) rolls without slipping and the third rolls with slipping:
A. The same emf is induced in all three rings
B. No emf is induced in any of the rings
C. In each ring all points are at the same potential.
D. B develops the maximum induced emf
and A the least

Answer: A

- Watch Video Solution

36. A long solenoid of N turns has a selfinduced L and area of cross-section A. When a current i flows through the solenoid, magnetic field inside it has magnitude B. The current i is equal to

$$
\text { A. } \frac{B A N}{L}
$$

B. $B A N L$
C. $\frac{B N}{A L}$
D. $\frac{B}{A N L}$
37. The network shown in the figure is part of a complete circuit. If at a certain instant, the current I is $5 A$ and is decreasing at a rate $10^{3} \mathrm{~A} / \mathrm{s}$ then $V_{B}-V_{A}$ is

A. 20 V
B. 15 V
C. 10 V
D. 5 V

Answer: B

D Watch Video Solution

38. In the circuit shown, the cell is deal. The coil has an inductance of $4 H$ and zero resistance. F is a fuse of zero resistance and will blow when the current through it reaches
$5 A$. The switch is closed at $t=0$. The fuse will blow:

A. almost at once
B. after $2 s$
C. $5 s$
D. after $10 s$

- Watch Video Solution

39. In the current shown Fig., X is joined to Y for a long time and then X is joined to Z. The total heat produced in R_{2} is

> A. $\frac{L \varepsilon^{2}}{2 R_{1}^{2}}$
> B. $\frac{L \varepsilon^{2}}{2 R_{2}^{2}}$
C. $\frac{L \varepsilon^{2}}{2 R_{1} R_{2}}$
D. $\frac{L \varepsilon^{2} R_{2}}{2 R_{1}^{3}}$

Answer: A

D Watch Video Solution

40. Two coils X and Y are linked such that emf E is induced in Y when the current in X is changing at the rate $I^{\prime}(=d I / d t)$. If a current I_{0} is now made to flow through Y, the flux linked with X will be
A. $(\varepsilon / I) i$
B. $\varepsilon i l$
C. $(\varepsilon I) i$
D. $i I / \varepsilon$

Answer: A

D Watch Video Solution

41. Two coils of inductances L_{1}, and L_{2} are
linked such that their mutual inductance is M
A. $M=L_{1}+L_{2}$
B. $M=\frac{1}{2}\left(L_{1}+L_{2}\right)$
C. The maximum value of M is $\left(L_{1}+L_{2}\right)$
D. The maximum value of M is $\sqrt{L_{1} L_{2}}$

Answer: D

D Watch Video Solution

42. A small coil of radius r is placed at the centre of a large coil of radius R, where
$R \gg r$. The two coils are coplanar. The
mutual inductance between the coils is

proportional to

A. r / R
B. r^{2} / R
C. r^{2} / R^{2}
D. r / R^{2}

Answer: B
(Watch Video Solution
43. A uniformly wound long solenoid of inductance L and resistance R is cut into two parts in the ratio $\eta: 1$, which are then connected in parallel. The combination is then connected to a cell of emf E. The time constant of the circuit is
A. L / R
B. $L / 2 R$
C. $2 \frac{L}{R}$
D. $L / 4 R$

Answer: A

- Watch Video Solution

44. In the circuit shows in Fig, the coil has
inductance and resistance. When X is joined to Y, the time constant is τ during the growth of current. When the steady state is reached, heat is produced in the coil at a rate $P . X$ is
now joined to Z. After joining X and Z :

A. The total heal produced in the coil is $P \tau$
B. The total heat producd in the coil is
$\frac{1}{2} P \tau$
C. The total heat produced in the coil is
$2 P \tau$

D. The data given is not sufficeint to reach

a conclusion

Answer: B

D Watch Video Solution

45. When a coil is joined to a cell, the current through the cell grows with a tiem constant τ.

The current will reach 10% of its steady-state value of time
A. 0.1τ
B. $\tau \operatorname{In}(0.1)$
C. $\tau \operatorname{In}(0.9)$
D. $\tau \operatorname{In}(10-9)$

Answer: D

D View Text Solution

46. At $t=0$, an inductor of zero resistance is joined to a cell of emf ε through a resistance.

The current increases with a time constant τ.

The emf across the coil after time t is
A. $\varepsilon t / \tau$
B. $\varepsilon\left(1-e^{-\frac{t}{\tau}}\right)$
C. $\varepsilon e^{-t / \tau}$
D. $\varepsilon e^{-2 / \tau}$

Answer: C
(Watch Video Solution
47. A coil carrying a steady current is shortcircuited. The current in it decreases α times in time t_{0}. The time constant of the circuit is
A. $t_{0} I n \eta$
B. $\frac{t_{0}}{I n \eta}$
c. $\frac{t_{0}}{\eta}$
D. $\frac{t_{0}}{\eta-1}$

Answer: B

- Watch Video Solution

48. When a coil is joined to a cell, current in it grows with a time constant τ. The coil is disconnected from the cell before the current has reached its steady-state value, and, it is then short-circuited. The current will now decrease with a time constant A. τ
B. $>\tau$
C. $<\tau$

D. either (b) or (c) depending on the

 instant at which it was disconnected from the cellAnswer: A

- View Text Solution

49.

The capacitor of capacity C is given charge Q
and then connected to the coil of inductance
L by closing the switch S. The maximum current flowing in the circuit at any later time will be

$$
\begin{aligned}
& \text { A. } \frac{Q}{2 \sqrt{L C}} \\
& \text { B. } \frac{Q}{\sqrt{L C}} \\
& \text { C. } \frac{2 Q}{\sqrt{L C}} \\
& \text { D. } \frac{2}{\pi} \frac{Q}{\sqrt{L C}}
\end{aligned}
$$

Answer: B

50.

In the circuit shown, the symbols have their usual meanings. The cell has emf $\varepsilon . X$ is initially joined to Y for a long time. Then X is
joined to Z. The maximum charge on C at any later time will be

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon}{R \sqrt{L C}} \\
& \text { B. } \frac{\varepsilon R}{2 \sqrt{L C}}
\end{aligned}
$$

C. $\frac{\varepsilon \sqrt{L C}}{2 R}$
D. $\frac{\varepsilon \sqrt{L C}}{R}$

Answer: D

D Watch Video Solution

51. A coil of self-inductance L is placed in an external magnetic field (no current flows in the coil). The total magnetic flux linked with the coil is φ. The magnetic field energy stored in the coil is
A. zero
B. $\frac{\varphi^{2}}{2 L}$
C. $\frac{\varphi^{2}}{L}$
D. $\frac{2 \varphi^{2}}{L}$

Answer: B

D Watch Video Solution

52. When a charged capacitor is made to discharge through an inductance, the charge
Q on the capacitor and the current i in the
inducrtor vary sinusoidally. The phase different between Q and i is
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. zero

Answer: B
(Watch Video Solution
53. A charged capacitor discharges through a resistance R with time constant τ. The two are now placed in series across an $A C$ source of angular frequency $\omega=\frac{1}{\tau}$. The impedance of the circuit will be

$$
\text { A. } \frac{R}{\sqrt{2}}
$$

B. R
C. $\sqrt{2 R}$
D. $2 R$

- Watch Video Solution

54. An electric lamp designed for operation on $10 V A C$ is connected to a $220 V A C$ supply, through a choke coil of inductance $2 H$ for proper operation. The angular frequency of the $A C$ is $100 \sqrt{10} \mathrm{rad} / \mathrm{s}$. If a capacitor is to be used in place of the choke coil its cpacitance must be
A. $1 \mu F$
B. $2 \mu F$
C. $5 \mu F$

D. $10 \mu F$

Answer: C

D Watch Video Solution

55. A resistance R draws power P when connected to an $A C$ source. If an inductance
is now placed in series with the resistance,
such that the impedence of the circuit becomes Z, the power drawn will be
A. $P\left(\frac{R}{Z}\right)^{2}$
B. $P\left(\frac{R}{Z}\right)$
C. $P \sqrt{\frac{R}{Z}}$
D. P

Answer: A

D Watch Video Solution

56. An inductor and a capacitor are joined in series to an $A C$ source. The frequency of the
$A C$ is gradually increased. The phase
difference φ between the emf and the current
is plotted against nthe angular frequency ω.

Which of the following best represents the resulting curve?
A.

B.

C.

D.

Answer: A

- Watch Video Solution

57. A resistance R and a capacitor C are joined to a source of $A C$ of consant emf and variable frequency. The potential difference across C is V. If the frequency of $A C$ is gradually increased

A. increase
B. decrease
C. remain constant
D. first increase and then decrease

Answer: B

- Watch Video Solution

58. An inductance L, a cpacitance C and a resistance R may be connected to an $A C$ souorce of angular frequency ω in three
different combinations of $R C, R L$ and $L C$ in series. Assume that $\omega L=\frac{1}{\omega C}$. The power drawn by the three combinatios are P_{1}, P_{2}, P_{3} respectively. THen
A. $P_{1}>P_{2}>P_{3}$
B. $P_{1}=P_{2}<P_{1}$
C. $P_{1}=P_{2}>P_{1}$

$$
\text { D. } P_{1}=P_{2}=P_{3}
$$

Answer: B
59. An electrical heater and a capacitor are joined in series across a $220 \mathrm{~V}, 50 \mathrm{~Hz}, A C$ supply. The potential difference across the heater is 90 V . The potential difference across the capacitor will be about:
A. 200 V
B. 130 V
C. 110 V
D. 90 V

D Watch Video Solution

60. In an $A C$ circuit, the reactannce is equal to
the resistance. The power factor of the circuit will be
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. zero

Answer: C

D Watch Video Solution

61.

An observer A and a charge Q are fixed in a
stationary frame F_{1}. An observer B is fixed in a frame F_{2} which is moving with respect to F_{1}
A. Both A and B will observe electric fields.
B. Both A and B will observe magnetic fields.
C. Neigher A nor B wil observe magnetic
fields.
D. B will observe a magnetic field, but A
will not.

Answer: A::D

62. A long straight wire carries the current along +ve x-direction. Consider four points in
space
$A(0,1,0), B(0,1,1), C(1,0,1)$, and $D(1,1,1)$
. Which of the pairs will have the same magnitude of magnetic field?
A. A and B
B. A and C
C. B and C
D. B and D

Answer: B::D

D Watch Video Solution

63. Two long parallel wires, $A B$ and CD, carry equal currents in opposite directions. They lie in the x-y plane, parallel to the x-axis, and pass
through the points ($0,-\mathrm{a}, 0$) and ($0, \mathrm{a}, 0$)
respectively, Figure. The resultant magnetic
field is:

A. zero on the x-axis
B. maximum on the $x-$ axis
C. directed along the x - axis at the origin
but not at other points on thez-axis

D. directed along the z - axis at al points on

 the z-axis
Answer: B::D

D Watch Video Solution

64. A straight conductor carries a current.

Assume that all free electrons in the conductor move with the same drift velocity v.
A and B are two observers on a striaght line
$X Y$ parallel to the conductor. A is stationary
B moves along $X Y$ with a velocity v in the direction of the free electrons.
A. A and B observe the same magnetic field.
B. A observes a magnetic field B does not.
C. A and B observe magnetic fiels of the same magnitude but opposite directions
D. A and B do not observe any electric field.

- Watch Video Solution

65. A straight conductor carriers a current alon the z-axis Consider the points
$A(a, 0,0), B(0,-a, 0), C(-a, 0,0) \quad$ and
$D(0, a, 0)$
(i) All four points have magnetic fields of the same magnitude.
(ii) All four points have magnetic fields of the different direction.
(iii) The magnetic fields at A and C are in opposite directions
(iv) The magnetic fields at A and B are mutually perpendicular
A. All four points have magnetic fields of
the same magnitude.
B. All four ponts have magnetic fields in
different directions.
C. The magnetic field at A and C are in opposite directions.
D. The magnetic fields at A and B are mutually perpendicular.

Answer: A::B::C::D

- Watch Video Solution

66. L is a circular ring made of a uniform wire,
currents enters and leaves the ring through
straight conductors which, if produces, would have passed through the centre C of ring. The magnetic field at C

(i) due to the straight conductors is zero
(ii) due to the loop is zero
(iii) due to the loop is proportional to θ
(iv) due to loop is proportional to $(\pi-\theta)$
A. due to the straight conductors is zero
B. due to the loop is zero
C. due to the loop is proportiona to θ
D. due to the loop is proportional to

$$
(\pi-\theta)
$$

Answer: A::B

D Watch Video Solution

67. L is a circular loop (in $y-z$ plane) carrying an anticlockwise current. P is a point on its axis

OX dl is an element of length on the loop at a
point A on it. The magnetic field at P

A. due to L directed along $O X$
B. due to $d l$ is directed along $O X$
C. due to $d l$ is perpendicular to $O X$
D. due to $d l$ is perpendiuclar to $A P$

Answer: A::D

D Watch Video Solution

68. In the loops shown in fig. all curved section are either semicircles or quarter circles. All the loops carry same current. The magnetic fields at the centre have magnitudes
B_{1}, B_{2}, B_{3} and B_{4}. Then,

A. B_{4} is maximum
B. B_{3} is minimum
C. $B_{4}>B_{1}>B_{2}>B_{3}$
D. $B_{1}>B_{4}>B_{3}>B_{2}$

- Watch Video Solution

69. A long straight conductor carrying a
current i is bent to form an almost complete
circular loop of radius r on it. The magnetic
field at the centre of the loop

A. is directed into the paper
B. is directed out of the paper
C. has magnitude $\frac{\mu_{0} i}{2 r}\left(1-\frac{1}{\pi}\right)$
D. has magnitude $\frac{\mu(0) i}{2 r}\left(1+\frac{1}{\pi}\right)$

Answer: B::C

D Watch Video Solution
70. A flat circular coil, carrying a current, has a magnetic moment μ
A. μ has only magnitude it does not have direction.
B. The direction of μ is along the normal to
the plane of the coil.
C. The direction of μ depends on the
direction of the current flow.
D. The direction of μ does not if the
current in the coil is reversed.

Answer: B::C

71. Current flows through a straight cylindrical conductor of radius r. The current is distributed uniformly over its cross-section.

The magnetic field at a distanace x from the axis of the conductor has magnitude B:
A. $B=0$ at the axis
B. $B \propto x$ for $0 \leq x \leq r$
C. $B \propto \frac{1}{x}$ for $x>r$
D. B is maximum for $x=r$

Answer: A::B::C::D

D Watch Video Solution

72. A long, straight, hollow conductor (tube)
carrying a current has two sections A and C of
unequal cross sections joined by a conical section B. 1,2 and 3 are points on a line parallel to the axis of the conductor. The magnetic fields at 1,2 and 3 have magnitudes
B_{1}, B_{2} and B_{3}. Then,

A. $B_{1}=B_{2}=B_{3}$
B. $B_{1}=B_{2} \neq B_{3}$
C. $B_{1}<B_{2}<B_{3}$
D. B_{2} cannot be found unless the dimensions of the section B are known.

Answer: A

D Watch Video Solution

73. A conductor $A B$ carries a current i in a magnetic field B. If $A B=r$ and the force on the conductor is F,
(i) \vec{F} does not depend on shape of $A B$
(ii) $\vec{F}=i(\vec{r} \times \vec{B})$
(iii) $\vec{F}=i(\vec{B} \times \vec{r})$
(iv) $|\vec{F}|=\operatorname{ir} B$
A. \vec{F} does not dependend on the shape of
$A B$
B. $\vec{F}=i(\vec{r} \times \vec{B})$
C. $\vec{F}=i(\vec{B} \times \vec{r})$
D. $|\vec{F}|=i(\vec{r} \cdot \vec{B})$

Answer: A::B
74. A semicircular wire of radius r, carrying a
current I, is placed in a magnetic field of magnitude B. The force acting on it
A. can never ber zero
B. can have the maximum magnitude $2 B i r$
C. can have the maximum magnitude $B i \pi r$
D. can have the maximum nmagnitude Bir

Answer: B
75. A conductor ABCDE, shaped as shown, carries current I . It is placed in the $\mathrm{x}-\mathrm{y}$ plane with the end A and E on the x -axis. A uniform magnetic field of magnitude B exists in the region. The force acting on it will be

A. zero if B is in the x-direction

B. $\lambda B i$ in the z-direction, if B is in the y^{-}

direction
C. $\lambda B i$ in the negative y-direction if B is in
the z-direction
D. $2 a B i$, if B is in the x-direction

Answer: A::B::C

- Watch Video Solution

76. $A B$ and $C D$ are smooth, parallel, horizontal rails on which a conductor T can
slide. A cell, E, drives current I through the rails and T

(i) The current in the rails will set up a magnetic field over T
(ii) T will experienced a force to the right
(iii) T will experienced a force to the left
(iv) T will not experienced any force
A. The current in the rails will set up a magnetic field over T
B. T will experience a force to the right.
C. T will experience a force to the left
D. T will not experience any force

Answer: A::B

77. Two long, thin parallel conductors, separated by a distance d, carrying currents i_{1} and i_{2}. The force acting on unit length of any one conductor is F
A. F is attractive if i_{1} and i_{2} flow in the same direction.
B. F is attractive if i_{1} and i_{2} flow in opposite directions.
C. F is the same for both conductors
D. F is different for the two conductors

Answer: A::C

D Watch Video Solution

78. A conducting gas is in the form of a long
cylinder. Currents flows through the gas along
the length of the cylinder. The current is distributed uniformly across the cross-section of the gas. Disregard thermal and electrostatic
forces among the gas molecules. Due to the magnetic fields set up inside the gas and the
forces which they exert on the moving ions, the gas will tend to
A. expand
B. contract
C. expand and contract alternately

D. none of the above

Answer: B

D View Text Solution
79. A current-carrying ring is placed in a magnetic field. The direction of the field is perpendicular to the plane of the ring
(i) There is no net force on the ring
(ii) The ring will tend to expand
(iii) The ring will tend to contract
(iv) Either (ii) or (iii) depending on the directions of the current in the ring and the magnetic field
A. There is no net forces on the rig
B. The ring will tend to expand.
C. The ring will tend to contract
D. Either (b) or (c) depending on direction of the current in the ring and the magnetic field

Answer: A::D

D Watch Video Solution

80. $A B$ and $C D$ are smooth, parallel rails, separated by a distance L and inclined to the horizontal at an angle θ. A uniform magnetic
field of magnitude B, directed vertically upwards, exists in the region. $E F$ is a conductor of mass m, carrying a current i. For $E F$ to be in equilibrium

(i) i must flow from E to F
(ii) $B i L=m g \tan \theta$
(iii) $B i L=m g \sin \theta$
(iv) $B i L=m g$
A. i must flow from E and F
B. $B i l=m g \tan \theta$
C. $B i l=m g \sin \theta$
D. $B i l=m g$

Answer: A::B

- Watch Video Solution

81. A flat coil carrying a current has a magnetic moment $\vec{\mu}$. It is placed in a magnetic field \vec{B}.

The torque on the coil is $\vec{\tau}$
A. $\vec{\tau}=\vec{\mu} \times \vec{B}$
B. $\vec{\tau} \times \vec{B} \times \vec{\mu}$
C. $|\vec{\tau}|=\vec{\mu} \cdot \vec{B}$
D. $\vec{\tau}$ is perpendicular to both $\vec{\mu}$ and \vec{B}

Answer: A::D

D Watch Video Solution

82. A flat coil carrying a current has a magnetic
moment μ. It is placed in a magnetic field B
such that μ is anti-parallel to B. The coil is
A. not is equilibrium
B. in stable equilibrium
C. in unstable equilibrium
D. in neutral equilibrium

Answer: C

D Watch Video Solution

83. The magnetic flux (ϕ) linked with the coil depends on time t as $\phi=a t^{n}$, where a and n are constants. The emf induced in the coil is e
A. If $0<n<1, e=0$
B. If $0<n<1, e \neq 0$ and $|e|$ decreases
with time
C. If $n=1, e$ is constant
D. If $n>1,|e|$ increases with time

Answer: B::C::D

- Watch Video Solution

84. An aluminium ring B faces an electromagnet A. The current I through A
can be altered

A. If i increases A will repel B
B. If i increaes A will attracted B
C. If i decreases A will attract B
D. If i decreases A will repel B

Answer: A::C

D Watch Video Solution

85. A small magnet M is allowed to fall
through a fixed horizontal conducting ring R.

Let g be the acceleration due to gravity. The acceleration of M will be
A. $<g$ when it is above R and moving towards R
B. $>g$ when it is above R and moving towards R
C. $<g$ when it is below R and moving away from R
D. $>g$ when it is below R and moving
away from R

Answer: A::C

D Watch Video Solution

86. The magnetic flux linked with a coil is ϕ and
the emf induced in it is e.
A. If $\phi=0, e$ must be 0
B. If $\phi \neq 0, e$ cannot be 0
C. If e is not $0, \phi$ may or may not be 0
D. None of the above is correct

Answer: C

D Watch Video Solution
87. The counductor $A D$ moves to the right in
a uniform magnetic field directed into the plane of the paper.

A. The free electrons in $A D$ will moves towards A
B. D will acquire a positive potential with respect to A
C. If D and A are joined by a conductor externally, a current will from A to D in
$A D$

D. The current in $A D$ flows from lower to

higher potential

Answer: A::B::C::D

D Watch Video Solution

88. A square loop $A B C D$ of edge a moves to
the right with a velocity v parallel to $A B$.
There is a uniform magnetic field of magnitude B, direction into the paper, in the region between $P Q$ and $R S$ only. I, II and III are three ppositions of the loop.
(i) The emf induced in the loop has magnitude
B a v in all three position
(iii) Induced emf is anticlockwise in position II
(iv) The induced emf is clockwise in position III

A. The emf induced in the loop has
magnitude $B a v$ in all three positions.
B. The induced emf is zero in position II
C. The induced emf is anticlockwise in

D. The induced emf is clockwise in position

III

Answer: B::C::D

D Watch Video Solution

89. The loop shown moves with a velocity v in
a uniform magnetic field of magnitude B, directed into the paper. The potential
differene between point P and Q is e. Then

A. $e=\frac{1}{2} B l v$
B. $e=B l v$
C. P is positive with respect to Q
D. Q is positive with respect to P

Answer: A::C

A conductor $A B C D E$ has the shape shown. It
lies ithe $y z$ plane, with A and E on the y-axis .
When it moves with a velocity v in a magnetic field B, an emf e is induced between A and E
A. $e=0$ if v is in the y-direction and B is in
the x-direction.
B. $e=2 B a v$, if v is in the y-direcrtion and
B is in the x-direction
C. $e=B \lambda v$, if v is in the z - direction and b
is in the x-direction.
D. $e=B \lambda v$, if v is in the x-direction and B
is in the z-direction

Answer: A::C::D

91. The magnitude of the earth's magnetic field at the north pole is B_{0}. A horizontal conductor of length l moves with a velocity v.

The direction of v is perpendicular to the conductor. The induced emf is
(i) zero, if v is vertical
(ii) $B_{0} l v$, if v is vertical
(iii) zero, if v is horizontal
(iv) $B_{0} l v$, if v is horizontal
A. zero, if v is vertical
B. $B_{0} l v$ if v is vertical
C. Zero ,if v is horizontal
D. $B_{0} l v$ if v is horizontal

Answer: A::D

D Watch Video Solution

92. A vertical conducting ring of radius R falls
vertically in a horizontal magnetic field of
magnitude B. The direction of B is perpendicular to the plane of the ring. When
the speed of the ring is ${ }^{`} v$,

A. no current flows in the ring
B. A and D are the same potential
C. C and E are the same potential
D. the potential differece between A and D
is $2 B R v$ with D at a higher potential

Answer: C::D

D Watch Video Solution

93. Two conducting rings of radii r and $2 r$ move in apposite directions with velocities $2 v$ and v respectively on a conducting surface S.

There is a uniform magnetic field of magnitude B perpendicular to the plane of the rings. The potential difference between
the highest points of the two rings is

A. zero
B. $2 r v B$
C. $4 r v B$
D. $8 r v B$

Answer: D
94. The magnetic field perpendicular to the plane of a conducting ring of radius r change ate the rate $\frac{d B}{d t}$
A. The emf induced in the ring is $\pi r^{2} \frac{d B}{d t}$
B. The emf induced in the rintg is $2 \pi r \frac{d B}{d t}$
C. The potential difference between
diametrically opposite points on the ring
is half of the induced emf.
D. All points on the ring are at the same potential.

Answer: A::D

D View Text Solution

95. A nonconducting of radius r has charge Q.

A magnetic field perpendicular to the plane of ring changes at the rate $\frac{d B}{d t}$. The torque experienced by the ring is
A. zero
B. $Q r^{2} \frac{d B}{d t}$
C. $\frac{1}{2} Q r^{2} \frac{d B}{d t}$
D. $\pi r^{2} Q \frac{d B}{d t}$

Answer: C

D View Text Solution

96. A conducting disc of radius r spins about
its axis an angular velocity ω. There is a
uniform magnetic field of magnitude B perpendicular to the plane of the disc C is the centre of the disc.
(i) No emf is induced in the disc
(ii) The potential difference between C and the rim is $1 / 2 B r^{2} \omega$
C is at a higher potential than the rim
(iv) Current flows between C and the rim

A. No emf induced in the disc.
B. The potential difference between C and
the rim is $\frac{1}{2} B r^{2} \omega$
C. C is at a higher potential than the rim
D. Current flows between C and the rim

Answer: B::C

D Watch Video Solution

97. A flat coil, C, of n turns, area A and resistance R, is placed in a uniform magnetic field of magnitude B. The plane of the coil is
initially perpendicular to B. The coil,is rotated
by an angle θ about a diameter and charge of amount Q flows through it. Choose the correct alternatives.

$$
\begin{aligned}
& \text { A. If } \theta=90^{\circ}, Q=\frac{B A n}{R} \\
& \text { B. If } \theta=180^{\circ}, Q=\frac{B A n}{R} \\
& \text { C. If } \theta=180^{\circ}, Q=0 \\
& \text { D. If } \theta=360^{\circ}, Q=0
\end{aligned}
$$

Answer: A::B::D

98. The $S I$ unit of inductance, the henry can be written as
A. weber/ampere
B. volt second/ampere
C. joule / ampere ${ }^{2}$
D. ohm second

Answer: A::B::C::D

- Watch Video Solution
\square

