©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS (HINGLISH)

ELECTROSTATICS

Others

1. A charge q is placed at the centre of the line
joining two equal charges Q . The system of the
three charges will be in equilibrium if q is equal to:
A. $-Q / 2$
B. $-Q / 4$
C. $+Q / 4$
D. $+Q / 2$

Answer: B
(Watch Video Solution
2. Two particles, each of mass m and carrying charge Q, are separated by some distance. If they are in equilibrium under mutual gravitational and electrostatic force then
$Q / m(\in C / \mathrm{kg})$ is of the order of
A. 10^{-5}
B. 10^{-10}
C. 10^{-15}
D. 10^{-20}

Answer: B

- Watch Video Solution

3. Three point charges are placed at the corner of an equilateral triangle. Assuming only electrostatic forces are acting.
A. The system will be in equilibrium if the
charges have the same magnitude but not all have the same sign.
B. The system will be in equilibrium if the charges have different magnitudes and
not all have the same sign.
C. The system will be in equilibrium if the charges rotate about the centre of the triangle.
D. The system can never be in equilibrium.

Answer: D

- Watch Video Solution

4. Charge Q is divided into two parts which are then kept some distance apart . The force between them will be maximum if the two parts are
A. $Q / 2$ each
B. $Q / 4$ and $3 Q / 4$
C. $Q / 3$ and $2 Q / 3$
D. e and $(Q-e)$, where $e=$ electronic charge

Answer: A

D Watch Video Solution

5. Two identical positive charges are fixed on the y-axis, at equal distances from the origin 0 .

A particle with a negative charges starts on the x-axis at a large distance from 0 . moves along the x -axis passes through O , and moves
far away from O on the other side. Its acceleration a is taken as positive along its particle against its x-coordinate.
A.
(a)

(b)

C.
(c)

(d)

Answer: B
6. Two ideantical point charges are placed at a separation of $d . P$ is a point on the line joining the charges, at a distance x from any one charge. The field at P is E, E is plotted against x for value of x from close to zero to slightly less then d. Which of the following represents the resulting curve
A.
$\underbrace{(1 .)}_{0}$
B.
(b)

C.
E.
D.
(d)

Answer: D

D Watch Video Solution

7. Two identical simple pendulums, A and B are suspended from the same point. The bobs
are given positive charges, with A having more charge than B making angles θ_{1} and θ_{2}
with the vertical respectively. Which of the

following is correct?

A. $\theta_{1}>\theta_{2}$
B. $\theta_{1}<\theta_{2}$
C. $\theta_{1}=\theta_{2}$
D. The tension in A is greater than that in

B

Answer: C
(Watch Video Solution
8. A point charge Q is moved along a ciruclar path around another fixed point charge. The work done is zero
A. only if Q returns to its starting point
B. only if the twoi charges have the same magnitude
C. only if the two charges have the same magnitude and opposite signs
D. in all case

Answer: D

D Watch Video Solution

9. In a regular polygon of n sides, each corner
is at a distance r from the centre. Identical
charges of magnitude Q are placed at $(n-1)$
corners. The field at the centre is
A. $k \frac{Q}{r^{2}}$
B. $(n-1) k \frac{Q}{r^{2}}$
C. $\frac{n}{n-1} k \frac{Q}{r^{2}}$
D. $\frac{n-1}{n} k \frac{Q}{r^{2}}$

Answer: A

D Watch Video Solution

10. A half ring of radius r has a linear charge
density λ.The potential at the centre of the
half ring is
A. $k \frac{\lambda}{R}$
B. $k \frac{\lambda}{\pi R}$
C. $k \frac{\pi \lambda}{R}$
D. $k \pi \lambda$

Answer: D

D Watch Video Solution

11. Two identical metals balls with charges
$+2 Q$ and $-Q$ are separated by some distance and exert a force F on each other. They are joined by a conducting wire, which is then removed. The force between them will now be
A. F
B. $F / 2$
C. $F / 4$
D. $F / 8$

Answer: D

D Watch Video Solution
12. Charge Q is given a displacement
$r=a \hat{i}+b \hat{j}$ in electric field $E=E_{1} \hat{i}+E_{2} \hat{j}$.

The work done is
A. $Q\left(E_{1} a+E_{2} b\right)$
B. $Q \sqrt{\left(E_{1} a\right)^{2}+\left(E_{2} b\right)^{2}}$
C. $Q\left(E_{1}+E_{2} \sqrt{a^{2}+b^{2}}\right.$
D. $Q\left(\sqrt{E_{1}^{2}+E_{2}^{2}}\right) \sqrt{a^{2}+b^{2}}$

Answer: A

D Watch Video Solution

13. Let V_{0} be the potential at the origin in an electric field $\vec{E}=E_{x} \hat{i}+E_{y} \hat{j}$. The potential at the point (x, y) is
A. $V_{0}-x E_{x}-y E_{y}$
B. $V_{0}+x E_{x}+y E_{y}$
C. $x E_{x}+y E_{y}-V_{0}$
D. $\left(\sqrt{x^{2}+y^{2}}\right) \sqrt{E_{x}^{2}+E_{y}^{2}}-V_{0}$

Answer: A

D Watch Video Solution

14. A point charge q moves from point P to pont S along the path PQRS (fig.) in a uniform electric field Epointing parallel to the poistive
direction of the X-axis. The coordinates of the points P, Q, R and S are $(a, b, O),(2 a, O, O)(a,-b$,
\underline{O}) and ${ }^{(}(\mathrm{O}, \mathrm{O}, \mathrm{O})$ respectively. The work done by the field in the above process is given by the expresison.

A. $q a E$
B. $-q a E$

> C. $q\left(\sqrt{a^{2}+b^{2}}\right) E$
> D. $3 q E \sqrt{a^{2}+b^{2}}$

Answer: B

D Watch Video Solution

15. The electric potential V at any point x, y, z
(all in meters) in space is given by $V=4 x^{2}$
volts. The electric field at the point (1m, $0,2 m$)
is................ V / m.
A. $-8 \hat{i}$
B. $8 \hat{i}$
C. -16
D. $8 \sqrt{5}$

Answer: A

D Watch Video Solution

16. A non-conducting ring of radius $0.5 m$
carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$
distributed non-uniformly on its circumference
producing an electric field E everywhere is
space. The value of the integral
$\int_{l=\infty}^{l=0}-E . d I(l=0$ being centre of the ring $)$ in volt is
A. +2
B. -1
C. -2
D. 0

Answer: A

D Watch Video Solution
17. A charge $+q$ is fixed at each of the points
$x=x_{0}, \quad x=3 x_{0}, \quad x=5 x_{0}, \ldots \ldots x=\infty \quad$ on
the x axis, and a charge $-q$ is fixed at each of
the points $x=2 x_{0}, x=4 x_{0}, x=6 x_{0}$,
$x=\infty$. Here x_{0} is a positive constant. Take
the electric potential at a point due to a
charge Q at a distance r from it to be
$Q /\left(4 \pi \varepsilon_{0} r\right)$.Then, the potential at the origin due to the above system of
A. 0

$$
\text { B. } \frac{q}{8 \pi \varepsilon_{0} x_{0} \operatorname{In} 2}
$$

C. ∞
D. $\frac{q I n 2}{4 \pi \varepsilon_{0} x_{0}}$

Answer: D

- Watch Video Solution

18. A solid sphere of radius R is charged
uniformly. The electrostatic potential V is plotted as a function of distance r from the
centre of th sphere. Which of the following best represents the resulting curve?
(a)
B.
(b)

C.
(c)
(d)
D.

Answer: C
19. A solid sphere of radius R has charge q uniformly distributed over its volume. The distance from it surfce at which the electrostatic potential is equal to half of the potential at the centre is
A. R
B. $R / 2$
C. $R / 3$
D. $2 R$

Answer: C

D Watch Video Solution

20. A large solid sphere with uniformly distributed positive charge has a smooth narrow tunnel along its direction. A small particle with negative charge, initially at rest far from the sphere, approaches it along the line of the tunnel, reaches its surface with a speed v, and passes through the tunnel. Its speed at the centre of the sphere will be
A. 0
B. v
C. $\sqrt{2 v}$
D. $\sqrt{1.5 v}$

Answer: D

D Watch Video Solution

21. Which of the following is not true for a region with a uniform electric field?
A. It can have free charges.
B. It may have uniformly distributed charge
C. It may contain dipoles
D. none of the above

Answer: D

D View Text Solution

22. All charge on a conductor must reside on its outer surface.' This statement is true
A. in all cases
B. for spherical conductors only (both solid any hollow)
C. for hollow spherical conductors only
D. for conductors whicih do not have any
sharp points or corners

Answer:

D Watch Video Solution
23. A point charge Q is placed outside a hollow spherical conductor of radius R, at a distance $r(r>R)$ from its centre C. The field at C due to the inducted charges on the conductor is
A. zero
B. $k \frac{Q}{(r-R)^{2}}$
C. $k \frac{Q}{r^{2}}$, directed towards Q
D. $k \frac{Q}{r^{2}}$, directed away from Q

- Watch Video Solution

24. A positive point charge, which is free to
move, is placed inside a hollow conducting sphere with negative charge, away from its centre. It will
A. move towards the centre
B. move towards the nearer wall of the
conductor
C. remain stationary
D. oscillate between the centre and the nearer wiall

Answer: C

D Watch Video Solution

25. In a region of space the electric field in the x-direction and proportional to x i.e., $\vec{E}=E_{0} x \hat{i}$. Consider an imaginary cubical volume of edge a with its parallel to the axes
A. zero
B. $\varepsilon_{0} E_{0} a^{3}$
C. $\frac{1}{\varepsilon_{0}} E_{0} a^{3}$
D. $\frac{1}{6} \varepsilon_{0} E_{0} a^{2}$

Answer: B
(Watch Video Solution
26. A charge Q is placed at the mouth of a
conical flask. The flux of the electric field through the flask is
A. zero
B. Q / ε_{0}
C. $\frac{Q}{2 \varepsilon_{0}}$
D. $<\frac{Q}{2 \varepsilon_{0}}$

Answer: C

- Watch Video Solution

27. A long string with a charge of λ per unit length passes through an imaginary cube of edge a. The maximum flux of the electric field through the cube will be
A. $\lambda a / \varepsilon_{0}$
B. $\sqrt{2} \lambda a / \varepsilon_{0}$
C. $6 \lambda a^{2} / \varepsilon_{0}$
D. $\sqrt{3} \lambda a / \varepsilon_{0}$

Answer: D

28. A spherical conductor A of radius r is
placed concentrically inside a conducting shell
B of radius $R(R>r)$. A charge Q is given to
A, and then A is joined to B by a metal wire.

The charge flowing from A to B will be
A. $Q\left(\frac{R}{R+r}\right)$
B. $Q\left(\frac{r}{R+r}\right)$
C. Q
D. zero

Answer: C

- Watch Video Solution

29. A spherical equipotential surface is not possible
A. for a point chargge
B. for a dipole
C. inside a uniformly charged sphere
D. inside a spherical capacitor

Answer: B

D View Text Solution

30. In a certain charge distribution, all points
having zero potetnial can be joined by a circles
S. Points inside S have positive potential and points outside S have negative potential. A positive charg, which is free to move, is placed inside S
A. It will remainin equilibrium
B. It can move inside S, but it cannot cross S
C. It must cross S at some time.
D. It may move, but will ultimately return to
its starting point.

Answer: C

- Watch Video Solution

31. If the earth's surface is treated as a conducting surface with some charge , then the order of magnitude of the charge per unit area $\sigma \operatorname{in} C / m^{2}$, so that a proton remains suspended in space near the earh's surface will be
A. 10^{-18}
B. 10^{-12}
C. 10^{-6}
D. 1

Answer:

D Watch Video Solution

32. A simple pendulum of time period T is suspended above a large horizontal metal sheet with uniformly distributed positive charge. If the bob is given some negative charge, its time period of oscillation will be
A. $>T$
B. $<T$
C. T

D. proportinal to its amplitude

Answer: B

D Watch Video Solution

33. A spring - block system undergoes vertical
oscillation above a large horizontal metal
sheet with uniform positive charge. The time period of the oscillation will be is given a charge Q, its time period of oscillation will be
A. T
B. $>T$
C. $<T$
D. $>T$ if Q is positive and $<T$ if Q is

negative

Answer: A

- Watch Video Solution

34. A large flat metal surface has a uniform
charge density $+\sigma$. An electron of mass m and
charge u and returns to it at point B.
Disregard gravity . The maximum value of $A B$
is

$$
\begin{aligned}
& \text { A. } \frac{u^{2} m \varepsilon_{0}}{\sigma e} \\
& \text { B. } \frac{u^{2} e \varepsilon_{0}}{m \sigma} \\
& \text { C. } \frac{u^{2} e}{\varepsilon_{0} \sigma m} \\
& \text { D. } \frac{u^{2} \sigma e}{\varepsilon_{0} m}
\end{aligned}
$$

35. A and B are two points on the axis and the perpendicular bisector, respectively, of and electric dipole. A and B are far away from the dipole and at equal distance from it. The fields at A and B are \vec{E}_{A} and \vec{E}_{B}. Then

$$
\begin{aligned}
& \text { A. } \vec{E}_{A}=\vec{E}_{B} \\
& \text { B. } \vec{E}_{A}=2 \vec{E}_{B} \\
& \text { C. } \vec{E}_{A}=-2 \vec{E}_{B}
\end{aligned}
$$

> D. $\left|E_{B}\right|=\frac{1}{2}\left|E_{A}\right|$, perpendicular to \vec{E}_{A}

Answer: C

D Watch Video Solution

36. An electric dipole is placed at the origin O
and is directed along the x-axis. At a point P,
far away from the dipole, the electric field is parallel to y-axis. $O P$ makes an angle θ with the x-axis then
A. $\tan \theta=\sqrt{3}$
B. $\tan \theta=\sqrt{2}$
C. $\theta=45^{\circ}$
D. $\tan \theta=\frac{1}{\sqrt{2}}$

Answer: B

- Watch Video Solution

37. An electric dipole of moment \vec{p} is placed in a uniform electric field \vec{E}, with \vec{p} parallel
work done is
A. $p E \sin \theta$
B. $p E \cos \theta$
C. $p E(1-\cos \theta)$
D. $p E(1-\sin \theta)$

Answer: C

- Watch Video Solution

38. The radius of the earth is 6400 km , what is its capacitance?
A. $1 \mu F$
B. $1 m F$
C. $1 F$
D. $10^{3} F$

Answer: B
(Watch Video Solution
39. When two uncharged metal balls of radius
0.09 mm each collide, one electron is
transferred between them. The potential
difference between them would be
A. $16 \mu V$
B. $16 p V$
C. $32 \mu V$
D. $32 p \mathrm{~V}$

Answer: C
40. A conducting sphere of radius R and carrying a charge Q is joined to an uncharged conducting sphere of radius $2 R$. The charge flowing between them will be
A. $Q / 4$
B. $Q / 3$
C. $Q / 2$
D. $2 Q / 3$

Answer: D

- Watch Video Solution

41. In an isolated parallel plate capacitor of capacitance C, the four surfaces have charges
Q_{1}, Q_{2}, Q_{3} and Q_{4} as shown. The potential difference between the plates is

A. $\frac{Q_{1}+Q_{2}+Q_{3}+Q_{4}}{2 C}$
B. $\frac{Q_{2}+Q_{3}}{2 C}$
C. $\frac{Q_{2}-Q_{3}}{2 C}$
D. $\frac{Q_{1}+Q_{4}}{2 C}$

Answer: C

D Watch Video Solution

42. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge $+Q$ is now
given to its positive plate. The potential difference across the capacitor is now.
A. V
B. $V+\frac{Q}{C}$
C. $V+\frac{Q}{2 C}$
D. $V-\frac{Q}{C}$, if $V<C V$

Answer: C

D Watch Video Solution

43. A capacitor is conneted to a cell emf E
having some internal resistance r. The potential difference across the
A. cell is ε
B. cell is $<\varepsilon$
C. capacitor is $<\varepsilon$
D. capacitor is $>\varepsilon$

Answer: A

D Watch Video Solution
44. In a parallel plate capacitor of capacitance
C, a metal sheet is inserted between the plates, parallel to them. If the thickness of the sheet is half of the separation between the plates. The capacitance will be
A. $4 C$
B. $2 C$
C. $C / 2$
D. $C / 4$

Answer: B

- Watch Video Solution

45. Two capacitors of capacitances $3 \mu F$ and $6 \mu F$ are charged to a potential of 12 V each.

They are now connected to each other, with the positive plate of each joined to the negative plate of the other. The potential difference across each will be
A. zero
B. 3 V
C. 4 V
D. 6 V

Answer: C

D Watch Video Solution

46. In the circuit shown, a potential difference
of 60 V is applied acrodd. $A B$. The potential
difference between the point M and N is-

A. 10 V
B. 15 V
C. 20 V
D. 30 V

Answer: D

- Watch Video Solution

Electrostatics

47.

In the circuit shown, the equivalent
capacitance between the points A and B is
A. $C / 5$
B. $C / 3$
C. $C / 2$
D. C

Answer: D

- Watch Video Solution

In the circuit shown, the equivalent capacitance between the points A and B is
A. $\frac{10}{3} \mu F$
B. $\frac{15}{4} \mu F$
C. $\frac{12}{5} \mu F$
D. $\frac{25}{6} \mu F$

Answer: A

- Watch Video Solution

49. Let u_{a} and u_{d} represent the energy density
(energy per unit volume) in air and in a dielectric respectively, for the same field in both. Let $K=$ dielectric constant. Then
A. $u_{a}=u_{d}$
B. $u_{a}=K u_{d}$
C. $u_{d}=K u_{a}$

$$
\text { D. } u_{a}=(K-1) u_{d}
$$

Answer: C

D View Text Solution

50. In a parallel-plate capacitor, the region between the plates is filled by a dielectric slab.

The capacitor is connected to a cell and the slab is taken out. Then
A. Some charge is drawn form the cell
B. Some charge is returned to the cell.
C. The potential differences across the
capacitor is reduced.
D. No work is done by an external agent in
taking the slab out.

Answer: B

D Watch Video Solution

51. Three charged particle sare in equilibrium

 under their electrostatic forces only. ThenA. The particles must be collinear.
B. All the charges cannot have the same magnitude
C. All the charges cannot have the same
sign.
D. The equilibrium is unstable.

Answer: B
52. Four identical charges are placed at the points $(1,0,0),(0,1,0),(-1,0,0)$, and ($0,-1,0$). Then,
A. The potential at the origin is zero.
B. The field at the origin is zero
C. The potential at all ponts on the z-axis,
othehr than the origin, is zero.
D. The field at all points on the z - axis, other than the origin, acts along the z axis.

Answer: A::B::C::D

D Watch Video Solution

53. Four charges, all of the same magnitude, are placed at the four corners of a square . At the centre of the square, the potential is V and the field is E. By suitable choice of the
signs of the four charges ,which of the following can be obtained?
(i) $V=0, E=0$
(ii) $V=0, E \neq 0$
(iii) $V \neq 0, E=0$
(iv) $V \neq 0, E \neq 0$
A. $V=0, E=0$
B. $V=0, E \neq 0$
C. $V \neq 0, E=0$
D. $V \neq 0, E \neq 0$

- Watch Video Solution

54. A deuteron and an α-particle are placed in
an electric field.The forces acting on them are
F_{1} and F_{2} and their accelerations are a_{1} and a_{2} respectively.
(i) $F_{1}=F_{2}$
(ii) $F_{1} \neq F_{2}$
(iii) $a_{1}=a_{2}$
(iv) $a_{1} \neq a_{2}$

$$
\text { A. } F_{1}=F_{2}
$$

B. $F_{1} \neq F_{2}$
C. $a_{1}=a_{2}$
D. $a_{1} \neq a_{2}$

Answer: A::B::C::D

D Watch Video Solution

55. Two identical charges $+Q$ are kept fixed some distance apart.A small particles P with charge q is placed midway between them. If P is given a small displacement Δ,it will
undergo simple harmonic motion if
(i) q is positive and Δ is along the line joining the charges
(ii) q is positive and Δ is perpendicular to the line joining the charges
(iii) q is negative and Δ is perpendicular to the line joining the charges
(iv) q is positive and Δ is along the line joining the charges
A. q is positive and Δ is along the line joining the charges.
B. q is negative and Δ is perpendicular to
the line joining the charges.
C. q is negative and Δ is perpendicular to
the line joining the charges.
D. q is positive and Δ is along the line joining the charges.

Answer: B::C

D Watch Video Solution

56. A ring with a uniform charge Q and radius
R, is placed in the $y z$ plane with its centre at the origin
A. the field at the origin is zero
B. The potential at the origin is $k \frac{Q}{R}$.
C. The field at the point $(x, 0,0)$ is $k \frac{Q}{x^{2}}$
D. The field at the point $(x, 0,0)$ is

$$
k \frac{Q}{R^{2}+x^{2}}
$$

Answer: A:C
57. A positively charged thin metal ring of radius R is fixed in the wy plane with its centre at the origin O. A negatively charged particle P is released from rest at the point $\left(0,0, z_{0}\right)$ where $z_{0}>0$. Then the motion of P is
A. periodic, for all value of z_{0} satisfying

$$
0<z_{0}<\infty
$$

B. simple harmonic, for all value of z_{0} satisfying $0<z_{0} \leq R$
C. approximately simple harmonic, provided $z_{0} \ll R$

D. such that P crosses O and continues to

move along the negative z-axis towards
$z=-\infty$

Answer: A::B

- Watch Video Solution

58. A particle A of mass m and charge Q
moves directly towards a fixed particle B,
which has charge Q. The speed of A is a v
when it is far away from B. The minimum
separtion between the particles is not proportional to
A. Q^{2}
B. $\frac{1}{v^{2}}$
C. $\frac{1}{v}$
D. $\frac{1}{m}$

D Watch Video Solution

59. The electric field and the electric potential at a point are E and V respectively.
A. If $V=0, E$ must be zero
B. If $V \neq 0, E$ cannot be zero
C. If $E \neq 0, V$ cannot be zero.
D. None of the these

Answer: A::B::D

- Watch Video Solution

60. In a uniform electric field,
A. all points are at the same potential
B. no two points can have the same potential
C. pairs of points separated by the same
distance must have the same difference
in potential

D. none of the above

Answer: D

D Watch Video Solution

61. Charges Q_{1} and Q_{2} lie inside and outside, respectively, of a closed surface S. Let E be the
field at any point on S and ϕ be the flux of E over S.
A. If Q_{1} changes, both E and ϕ will change.
B. If Q_{2} changes E will change but ϕ will not change
C. If $Q_{1}=0$ and $Q_{2} \neq 0$ then $E \neq 0$ but $\phi=0$
D. If $Q_{1} \neq 0$ and $Q_{2}=0$ then $E=0$ but
$\phi \neq 0$

Answer: D

62. Charges Q_{1} and Q_{2} lie inside and outside respectively of an uncharged conducting shell.

Their separation is r.
(i) The force on Q_{1} is zero
(ii) The force on Q_{1} is $k\left(\frac{Q_{1} Q_{2}}{r^{2}}\right)$
(iii) The force on Q_{2} is $k\left(\frac{Q_{1} Q_{2}}{r^{2}}\right)$
(iv) The force on Q_{2} is zero
A. The force on Q_{1} is zero
B. The force on Q_{1} is $k \frac{Q_{1} Q_{2}}{r^{2}}$
C. The force on Q_{2} is $k \frac{Q_{1} Q_{2}}{r^{2}}$
D. The force on Q_{2} is zero.

Answer: A::B::C::D

D Watch Video Solution

63. A spherical conductor A lies inside a
hollow spherical conductor B. Charges Q_{1} and
Q_{2} are given to A and B respectively (Choose the incorrect option)
A. Charge Q_{1} will appear on the outer surface of A
B. Charge $-Q_{1}$ will appear on the inner surface of B
C. Charge Q_{2} will appear on the outer surface of B
D. Charge $Q_{1}+Q_{2}$ will appear on the outer surface of B

Answer: A: :C
64. A, B and C are three concentric metallic shells. Shell A is the innermost and shell C is
the outermost. A is given some charge
(i) The inner surfaces of B and C will have the same charge
(ii) The inner surfaces of B and C will have the same charge density
(iii) The outer surfaces of A, B and C will have the same charge
(iv) The outer surfaces of A, B and C will have the same charge density
A. The inner surfaces of B and C will have
the same charge.
B. The iner surface of B and C will be the
same charge density.
C. The outer surfaces of A, B and C will
have the same charge.
D. The outer surfaces of A, B and C will have the same charge density.

Answer: A::B::D

65. Consider two large ,identical parallel conducting plates having surface X and Y
.facing each other.The charge per unit area on
X is σ_{1} and charge per unit surface area of Y
is σ_{2}.Then,
A. $\sigma_{1}=-\sigma_{2}$ in all cases
B. $\sigma_{1}=-\sigma_{2}$ only if a charge is given to
one plate only.

C. $\sigma_{1}=\sigma_{2}=0$ if equal charges are given

 to both the plates.D. $\sigma_{1}>\sigma_{2}$ if X is given more charge than

$$
Y
$$

Answer: A::C

D Watch Video Solution
66. P i sa point on an equipotential surface S.

The field at P is E.
A. E must be perpendicular to S in all cases.
B. E will be perpendicular to S only if S is a plane surface.
C. E canot have a component along a tangent to S.
D. E may have a nonzero component along a tangent to S if S is a curved surface.

Answer: A::C
67. S_{1} and S_{2} are two equipotential surfaces
on which the potentials are not equal
A. S_{1} and S_{2} cannot intersect.
B. S_{1} and S_{2} cannot both be plane
surfaces.
C. In the region between S_{1} and S_{2} the
field is maximum where they are closest
to each other.

D. A line of force from S_{1} and S_{2} must be

 perpendicular to both.
Answer: A::C

D Watch Video Solution

68. In a uniform electric field, equipotential
surface must
(i) be plane surfaces
(ii) be normal to the direction to the filed
(iii) be spaced such that surfaces having equal
difference in potential are separated by equal distances
(iv) have decreasing potentials in the direction of field
A. be plane surfaces
B. be normal to the direction of the field
C. be sapced such that surfaces having
equal differences in potential are
separated by equal distances
D. have decreasing potentials in the
direction of the field

Answer: A::C::D

- Watch Video Solution

69. A metallic solid sphere is placed in a uniform electric fied. The lines of force follow the path(s) shown in Figure as

A.
(a)
(b)
(c) B.
C.
D.

Answer: A::C::D

D Watch Video Solution

70. The electric field at a distance r from a long wire having charge per unit length λ is
A. $k \frac{\lambda}{r^{2}}$
B. $k \frac{\lambda}{r}$
C. $k \frac{\lambda}{2 r}$
D. $k \frac{2 \lambda}{r}$

Answer: D

D Watch Video Solution

71. Two points are at distance a and $b(a<b)$ from a long string of charge per unit length λ.

The potential difference between th epoints is proportional to
A. b / a
B. b^{2} / a^{2}
C. $\sqrt{b / a}$
D. $\operatorname{In}(b / a)$

Answer: D
(Watch Video Solution
72. A charge moves with a speed v in a circular path of radius r around a long uniformly charged conductor.
A. $v \propto r$
B. $v \propto \frac{1}{r}$
C. $v \propto \frac{1}{\sqrt{r}}$
D. v is independent of r

Answer: D

D Watch Video Solution

73. A simple pendulum of length l has a bob of

 mass m, with a charge q on it. A vertical sheet of charge, with the vertical . Its time period of oscillation is T in this position(i) $\tan \theta=\frac{\sigma q}{2 \varepsilon_{0} m g}$
(ii) $\tan \theta=\frac{\sigma q}{\varepsilon_{0} m g}$
(iii) $T<2 \pi \sqrt{\frac{l}{g}}$
(iv) $T>2 \pi\left(\frac{l}{g}\right)$
A. $\tan \theta=\frac{\sigma q}{2 \varepsilon_{0} m g}$
B. $\tan \theta=\frac{\sigma q}{\varepsilon_{0} m g}$
C. $T<w p \sqrt{l / g}$
D. $T>2 \pi \sqrt{l / g}$

Answer: A::C

D Watch Video Solution

74. A dipole of moment \vec{p} is placed in a uniform electric field \vec{E}. The force on the dipole is \vec{F} and the torque is $\vec{\tau}$
A. $\vec{F}=0$
B. $\vec{F}=|\vec{p}| \vec{E}$
C. $|\vec{\tau}|=\vec{p} \cdot \vec{E}$
D. $\vec{\tau}=\vec{p} \times \vec{E}$

Answer: A::D

D Watch Video Solution
75. An electric dipole in a uniform electric field experiences (When it is placed at an angle θ with the field)
A. no net force and no torque
B. a net force but a torque
C. a net force and a torque
D. no net force but a torque

Answer: B::C::D

D Watch Video Solution

76. Two large parallel conducting plates are placed close to each other ,the inner surface of the two plates have surface charge
densities $+\sigma$ and $-\sigma$.The outer surfaces are without charge.The electric field has a magnitude of
A. $2 \sigma / \varepsilon_{0}$ in the region between the plates
B. σ / ε_{0} in the region between the plates
C. σ / ε_{0} in the region outside the plates
D. zero in the region outside the plates

Answer: B::D

D Watch Video Solution
77. Two large, parallel conducting plates X and Y, kept close to each other, are given Q_{1} and $Q_{2}\left(Q_{1}>Q_{2}\right)$. The four surfaces of the plates are A, B, C and D, as shown

A. The charge on A is $\frac{1}{2}\left(Q_{1}+Q_{2}\right)$
B. The charge on B is $\frac{1}{2}\left(Q_{1}-Q_{2}\right)$
C. The charge on C is $\frac{1}{2}\left(Q_{2}-Q_{1}\right)$
D. The charge on D is $\frac{1}{2}\left(Q_{1}+Q_{2}\right)$

Answer: A::B::C::D

D Watch Video Solution

78. X and Y are large, parallel conducting plates close to each other. Each face has an area $A . X$ is given a charge $Q . Y$ is without
any charge. Points A, B and C are as shown in the figure.

A. The field at B is
$\overline{2 \varepsilon_{0} A}$
B. The field at B is $\frac{Q}{\varepsilon_{0} A}$
C. The fields at A, B and C are of the same magnitude

D. The field at A and C are of the same magnitude, but in opposite directions

Answer: A::C::D

- Watch Video Solution

B

79.
A, B and C are three large, parallel conducting plates, placed horizontally. A and
C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be
A. in equilibrium midway between A and C B. in equilibrium if it is close to A than to

C
C. in equilibrium if it is closer to C than to

A
D. B can never be the stable equilibrium.

Answer: B::D

D View Text Solution
80. Three identical, parallel conducting plates,
A, B and C are placed as shwon. Switches S_{1}
and S_{2} are open, and can connect A and C to
earth when closed $+Q$ charge is given to B.

A. If S_{1} is closed with S_{2} open a charge of amount Q will pass though S_{1}
B. If S_{2} is closed with S_{1} open, a charge of amount Q will pass through S_{2}
C. If S_{1} and S_{2} are closed together, a charge of amount $Q / 3$ will pass
through S_{1} and a charge of amount $2 Q / 3$ will pass through S_{2}.

D. all the above statements are incorrect.

Answer: A::B::C

81. A parallel plate capacitor is charged from a cell and then isolated from it. The separation between the plates is now increased
A. The force of attraction between the plates will decrease.
B. The field in the region between the plates will not change.
C. The energy stored in the capacitor will increase.
D. The potential difference between the plates will decrease.

Answer: B::C

D Watch Video Solution

82. When a charge of amount Q is given to an
isolated metal plate X of surface area A, its
surface charge density becomes σ_{1}. When an isolated identical plate Y is brought close to X the surface charge density on X becomes σ_{2}.

When Y is earthed the surface charge density on X becomes σ_{3}. Choose the incorrect option.

$$
\begin{aligned}
& \text { A. } \sigma_{1}=\frac{Q}{A} \\
& \text { B. } \sigma_{1}=\frac{Q}{2 A} \\
& \text { C. } \sigma_{1}=\sigma_{2} \\
& \text { D. } \sigma_{3}=\frac{Q}{A}
\end{aligned}
$$

Answer: B::C::D

D Watch Video Solution

83. In an isolated parallel plate capacitor of capacitance C, the four surfaces have charges
Q_{1}, Q_{2}, Q_{3} and Q_{4} as shown. The potential difference between the plates is

A. $\frac{Q_{1}+Q_{2}}{C}$
B. $\left|\frac{Q_{2}}{C}\right|$
C. $\left|\frac{Q_{3}}{C}\right|$

$$
\text { D. } \frac{1}{C}\left[\left(Q_{1}+Q_{2}\right)-\left(Q_{3}-Q_{4}\right)\right]
$$

Answer: B::C

D Watch Video Solution

84.

A conductor A is given a charge of amount
$+Q$ and then placed inside a deep metal can
B, without touching it
A. The potential of A does not change when it is placed inside B.
B. If B is earthed $+Q$, amount of charge
flows from it inot the earth.
C. If B is earthed, the potential of A is reduced.
D. Eigther (b) or (c) are true, or both are true only if the outer surface of B is
connected to the earth andnot its inner surface.

Answer: A::B::C

D Watch Video Solution

85. A conducting sphere of radius R and carrying a charge Q is joined to an uncharged conducting sphere of radius $2 R$. The charge flowing between them will be
A. $Q / 3$ amount of charge will flow from
the sphere to the shell
B. $2 Q / 3$ amount of charge will flow from
the sphere to the shell
C. Q amount of charge will flow from the sphere to the shell
D. $k \frac{Q^{2}}{4 R}$ amount of heat will be produced.

Answer: C::D

D Watch Video Solution

86. In the circuit shown, some potential difference is applied between A and B If C is joined to D

A. no charge will flow between C and D
B. some charge will flow between C and D
C. the equivalent capacitance between C
and D will not change

D. the equilvalent capacitance between C

and D will change

Answer: A::C

D Watch Video Solution

87. In the circuit shown, the potential difference across the $3 \mu F$ capacitor is V and the equivalent capacitance between A and B
is C Then:

A. $C(A B)=4 \mu F$
B. $C_{A B}=\frac{18}{11} \mu F$
C. $V=20 V$
D. $V=40 \mathrm{~V}$

Answer: A::D

- Watch Video Solution

88. The two plates X and Y of a parallel-plate
capacitor of capacitacne C are given a charge of amount Q each. X is now joined to the positive terminal and Y to the negative terminal of a cell of emf $\varepsilon=Q / C$.
A. Charge of amount Q will flow fromte positive terminal to the negative
terminal of the cell through the
capacitor.
B. The total charge on the plate X will be
$2 Q$
C. The total charge on the plate Y will be
zero.
D. The cell will supply $C \varepsilon^{2}$ amont of energy.

Answer: A::B::C::D

- View Text Solution

89. The seperation between the plates of a parallel -plate capacitor is made double while it remains connected to a cell.
A. The cell absorbs some energy.
B. The electric field in the region between
the plates becomes half.
C. The charge on the capacitor becomes
half.
D. Some work has to be done by an
external agent on the plates.

Answer: A::B::C::D

D Watch Video Solution

90. A parallel-plate capacitor is charged from a
cell and then disconnected from the cell. The
separation between the plates is now double.
A. The potential difference between the
plates will become double
B. The field between the plates will not change.
C. The energy of the capacitor doubles.
D. Some work will have to be done by an external agent on the plates.

Answer: A::B::C::D

D Watch Video Solution

91. In the circuit shown each capacitor has a capcitance C. The emf of the celll is E. If the
switch S is closed then

A. some change will flow out of the positive
terminal of the cell
B. some charge will enter the positive
terminal of the cell
C. the amount of charge flowing through the cell will be $C \varepsilon$.
D. the amount of charge flowing through
the cell will be $\frac{4}{3} C \varepsilon$.

Answer: A::D

D Watch Video Solution

92. In a parallel-plate capacitor of plate area A,
plate separation d and charge Q the force of attraction between the plates is F.
A. $F \propto Q^{2}$
B. $F \propto \frac{1}{A}$
C. $F \propto d$
D. $F \propto \frac{1}{d}$

Answer: A::B

D Watch Video Solution

93. The capacitance of a parallel -plate
capacitor is C_{0} when the region between the
plates has air. This region is now filled with a
dielectric slab of dielectric constant K. The capacitor is connected to a cell of emf ε and the slab is takenout
A. Charge $\varepsilon\left(C_{0}(K-1)\right.$ flows through the cell.
B. Energy $\varepsilon^{2} C_{0}(K-1)$ is absorbed by the cell.
C. The energy stored in the capacitor is
reduced by $\varepsilon^{2} C_{0}(K-1)$
D. The external agent has to do
$\frac{1}{2} \varepsilon^{2} C_{0}(K-1)$ amount of work to take the slab out.

Answer: A::B::D

D Watch Video Solution

94. A parallel plate air capacitor of capacitance
C is connected to a cell of $e m F V$ and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air
gap of the capacitor, is now inserted in it. Which of the following is incorrect ?
A. The potential difference between the plates decreases K times
B. The enerty stored in the capacitor decreased K times
C. The change in energy is $\frac{1}{2} C_{0} \varepsilon^{2}(K-1)$

$$
\begin{aligned}
& \text { D. The change in energy is } \\
& \frac{1}{2} C_{0} \varepsilon^{2}\left(1-\frac{1}{K}\right)
\end{aligned}
$$

- Watch Video Solution

95. A conducting sphere A of radius a, with
charge Q, is placed concentrically inside a conducting shell B of radius $b . B$ is earthed.
C is the common centre of the A and B
A. The field at a distance r from C, where

$$
a \leq r \leq b, \text { is } k \frac{Q}{r^{2}}
$$

B. The potential at a distance r from C
where $a \leq r \leq b$ is $k \frac{Q}{r}$.
C. The potential difference between A and

$$
B \text { is } k Q\left(\frac{1}{a}-\frac{1}{b}\right) .
$$

D. The potential at a distance r from C,

$$
\text { where } g \leq r \leq b \text {, is } k Q\left(\frac{q}{r}-\frac{1}{b}\right)
$$

Answer: A::C::D

D Watch Video Solution

96. A non conduction ring of radius R Has uniformly distributed positive charge $Q . A$ small part of the ring of length d , is removed (
$d \ll R)$. The electric field at the center of the ring now be .
A. directed towards the gap, inversely proportional to R^{3}
B. directed towards the gap, inverely proportional to R^{2}
C. directed away from the gap, inversely
proportional to R^{3}
D. directed away from the gap, inversely
proportional to R^{2}

Answer: A

D Watch Video Solution

97. Two positively charged particles X and Y
are initially far away from each other and at
rest, X begins to move towards Y with some initial velocity. The total momentum and energy of the system are p and E.
A. If Y is fixed both p and E are conserved.
B. If Y is fixed E is conserved but not p
C. If both are free to move p is conserved but not E

D. If both are free, E conserved, but not p.

Answer: B

D Watch Video Solution

98. Two particles X and Y of equal mass and with unequal positive charges, are free to move and are initially far away from each other. With Y at rest, X begins to move
towards it with initial velocity u. After a long time, finally
A. X will stop Y will move with velocity u
B. X and Y will both move with velocities
$u / 2$ each
C. X will stop Y will move with velocity
$<u$
D. both will move with velocities $<u / 2$

Answer: A

99. In a uniform electric field, the potential is

10 V at the origin of coordinates, and 8 V at each of the points $(1,0,0),(0,1,0)$ and $(0,0,1)$.

The potential at the point ($1,1,1$) will be .
A. 0
B. $4 V$
C. 8 V
D. 10 V
100. Two conducting concentric, hollow spheres A and B have radii a and b respectively, with A inside B. Their common potentials is V . A is now given some charge such that its potential becomes zero. The potential of B will now be
A. 0
B. $V(1-a / b)$
C. $V a / b$

$$
\text { D. } V(b-a) /(b+a)
$$

Answer: B

D Watch Video Solution

101. A positive charge is fixed at the origin of
coordinates. An electri dipole which is free to
move and rotate is placed on the positive x axis. Its moment is directed away from the
origin. The dipole will
A. move towards the origin
B. move away from the origin
C. rotate by $\pi / 2$
D. rotate by π

Answer: A

D Watch Video Solution

102. An electric dipole is fixed at the origin of coordinates. Its moment is directed in the positive x - direction. A positive charge is moved from the point $(r, 0)$ to the point
$(-r, 0)$ by an external agent. In this process, the work done by the agent is
A. positive and inversely proportional to r
B. positive and inversely proportional to r^{2}
C. negative and inversely proportional to r
D. negatie and inversely proportional to r^{2}

Answer: D

- Watch Video Solution

103. In a regular polygon of n sides, each corner is at a distance r from the centre. Identical charges are placed at $(n-1)$ corners. At the centre, the intensity is E and the potential is V. The ratio V / E has magnitude
A. $r n$
B. $r(n-1)$
C. $(n-1) / r$
D. $r(n-1) / n$

Answer: B

D Watch Video Solution

104. A point charge Q is placed at the centre of an uncharged conducting shell. Let r be the distance of a point from Q. The point may lie either inside or outside the shell. The electric intensity at the point will be $Q / 4 \pi \varepsilon_{0} r^{2}$ if the pont lies
A. inside the shell but not outside it

B. outside the shell but not inside it

C. either inside or outside the shell

D. close to either of the surfaces of the shell only

Answer: C::D

D View Text Solution

105.
A, B, C and D are identical, parallel , conducting plates arranged as shown, with equal separations between consecuting plates. A and D are connected to a cel. If B is now connected to C, which of the following will occur?
A. Only that some charge will flow through the cell.
B. Only that some charge will flow from B
to C
C. Only that there will be no electric field between B and C

D. More than one of the above

Answer: D

106. A is a nonconducting ring and B is a conducting ring. They have the same radius and equal amounts of charge. This is distributed nonuniformly on A and uniformly
on $B . X$ and Y are points on the axes o A and
B respectively, at equal distances from their centres X and Y will have
A. the same potential and intensity
B. the same potential but different intensities
C. different potentials but the same intensity

D. different potentials and different

 intensities
Answer: B

D Watch Video Solution

107. A drop of mercury has some charge. If it breaks up into a number of indentifal droplets,
the electrostatic energy of the system will
A. increase
B. decrease
C. remain constant
D. any of the above depending on the number of droplets

Answer: B

- Watch Video Solution

A, B, C are identical, parallel conducting plates arranged at equal separation B lies between A and $C . A$ and C are joined together and connected to one terminal of a cell. B is joined to the other terminal of the cell. A and C now have charge Q each. B has charge q

$$
\text { A. } Q=-2 q
$$

$$
\begin{aligned}
& \text { B. } q=-2 Q \\
& \text { C. } q=-Q \\
& \text { D. } q=-3 Q / 2
\end{aligned}
$$

Answer: B

D Watch Video Solution

109. A and B are two hollow, concentric, conducting spheres, with A inside $B . A$ and B are given Q_{1} and Q_{2} respectively. If they are
now joined by a thin wire, whtat charge will flow from A to B ?
A. $Q_{1}-Q_{2}$
B. $\left(Q_{1}-Q_{2}\right) / 2$
C. $\left(Q_{1}+Q_{2}\right) / 2$
D. None of these

Answer: D
(Watch Video Solution
110. The strength of a dielectric is defined as
the maximum electric intensity which it can withstand. A paralel-plate capacitor of plate area A on one side is filled with a dielectric of strength E and permittivity ε. The maximum charge which can be given to the capacitor is
A. $\varepsilon E A$
B. $E A / \varepsilon$
C. $E / \varepsilon A$
D. $\varepsilon E / A$

Answer: A

D View Text Solution

111. A parallel -plate air capacitor has capacity
C. A dielectric slab of dielectric constant K,
whose thickness is half of the air gap between
the plates, is now inserted between the plates.

The capacity of the capacitor will now be
A. $K C / 2$
B. $2 K C /(K+1)$
C. $2 K C /(K-1)$

$$
\text { D. } C(K+1) /(K-1)
$$

Answer: B

D View Text Solution

112. When two uncharged, conducting spheres of radius 0.1 mm each collide 7 electrons get transferred from one to the ther. The potential difference between the spheres will be about
A. $4 \times 10^{-6} V$
B. $2 \times 10^{-6} V$
C. $2 \times 10^{-4} V$
D. $10^{-4} V$

Answer: C::D

D View Text Solution

113. In a parallel -plate capacitor, the plates are kept vertical. The upper half of the space between the plates is filled with a dielectric
with dielectric constant K and the lower half
with a dielectric with dielectri constant K and
the lower half with a dielectric with dielectric constant $2 K$. The ratio of the charge density on the upper half of the plates to the charge density on the lower half of the plates will be equal to
A. 1
B. 2
C. $1 / 2$
D. $3 / 2$

Answer: C::D

D View Text Solution

114. A parallel -plate capacitor, whose plates are kept horizotnal is charged from a cell and then isolated from it. A dielectric slab which can just fit in the gap between the plates is now inserted to fill exactly half of the gap and then left alone. Neglect gravity and friction. The slab will
A. remain stationary
B. move further into the gap
C. move out of the gap
D. either (b) and (c) depending on whether
its dielectric constant is greater or less
than 2

Answer: B

D View Text Solution
115. 1000 identical drops of mercury are charged to potential of $1 V$ each. They join to
form a single drop. The potential of this drop
will be
A. 0.01 V
B. 0.1 V
C. 10 V
D. 100 V

Answer: D
116. Three charge $+Q,+Q$ and $-Q$ are placed at the corners of an equilateral triangle. The ratio of the force on a positive charge to the force on the negative charge will be equal to
A. 1
B. 2
C. $\sqrt{3}$
D. $1 / \sqrt{3}$

Answer: D

D View Text Solution

117. A simple pendulum has time period T.

Charges are now fixed at the point of
suspension of the pendulum and on the bob.

If the pendulum continues to oscillate, its time period will now be
A. greater than T
B. equal to T

C. less than T

D. either (a) or (c) depending on whether

 the charges attract or repel each other
Answer: B

D View Text Solution

118. A parallel -plate capacitor is connected to
a cell. A sheet of dielectric and a metal sheet are now introduced between the plates of the capacitor, parallel to these plates. The electric
intensity between the positive plate of the capcitor and the metal sheet is E_{2}, and between the metal sheet and the negatilve plate is E_{3}. Then
A. $E_{1}=E_{2}=E_{3}$
B. $E_{1}=E_{2} \neq E_{3}$
C. $E_{1} \neq E_{2}=E_{3}$
D. $E_{1} \neq E_{2} \neq E_{3}$

Answer: A

