©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

 (HINGLISH)

 (HINGLISH)}

HEAT AND THERMODYNAMICS

Others

1. Two holes of unequal diameters d_{1} and
$d_{2}\left(d_{1}>d_{2}\right)$ are cut in metal sheet is heated

d_{2}

A. both d_{1} and d_{2} will decrease
B. both d_{1} and d_{2} will increase
C. d_{1} will increase d_{2} will decrease
D. d_{1} will decrease d_{2} will increase
2. In the previous question, the distance between the hole will
A. increase
B. decrease
C. remain constant
D. may either or decrease depending on
the positions of the holes on the sheet
and on the ratio d_{1} / d_{2}

Answer:

- Watch Video Solution

3. A metal wire of length j and area of cross section A is fixed between rigid supports negligible tension . If this is cooled. The tension in the wire will be
A. proportional to I
B. inversely proportional to I
C. independent of I

D. independent of A

Answer:

D Watch Video Solution

4. Two metal rods of the same length and area
of cross-section are fixed end to end between rigid supports. The materials of the rods have

Young module Y_{1} and Y_{2}, and coefficient of
linear expansion α_{1} and α_{2}. The junction
between the rod does not shift and the rods are cooled
A. $y_{1} \propto_{1}$ and $y_{2} \propto_{2}$
B. $y_{1} \propto_{2}$ and $y_{2} \propto_{1}$
C. $y_{1} \propto_{1}^{2}$ and $y_{2} \propto_{2}^{2}$
D. $y_{1}^{2} \propto_{1} \quad$ and $y_{2}^{2} \propto_{2}$

Answer:

D Watch Video Solution

5. Three rods of equal of length are joined to
from an equilateral triangle $A B C . D$ is the midpoint of $A B$. The coefficient of linear expansion is α_{1} for AB and α_{2} for $A C$ and $B C$
. If the distance $D C$ remains constant for small changes in temperature,

D $\quad \alpha_{1}$

A. $\propto_{1}=\propto_{2}$
B. $\propto_{1}=2 \propto_{2}$
C. $\propto_{1}=4 \propto_{2}$
D. $\propto_{1}=\frac{1}{2} \propto_{2}$

Answer:

- Watch Video Solution

6. when the temperature of a body increses
from t to $t+\Delta t$,its moment of inertia
increases form I to $I+\Delta I$. The coefficient of
linear expanison of the body is \propto. The ratio
ΔI is equal to
A. $\frac{\Delta t}{t}$
B. $\frac{2 \Delta t}{t}$
C. $\propto \Delta t$
D. $2 \propto \Delta t$

Answer:
(Watch Video Solution
7. A horizontal tube, open at both ends, contains a column of liquid. The length of this
liquid column does not change with temperature. Let γ : coefficient of volume expansion of the liquid and α : coefficient of linear expansion of the material of the tube
A. $\gamma=\propto$
B. $\gamma=2 \propto$
C. $\gamma=3 \propto$
D. $\gamma=0$

Answer:

D Watch Video Solution

8. In a vertical U-tube containing a luquid, the two arms are maintained at different temperatures, t_{1} and t_{2}. The liquid coplumns in the two arms have heights l_{1} and l_{2} respectively. The coefficient of volume
expansion of the liquid is equal to

A. $\frac{l_{1}-l_{2}}{l_{2} t_{1}-l_{1} t_{2}}$
B. $\frac{l_{1}-l_{2}}{l_{1} t_{1}-l_{2} t_{2}}$
C. $\frac{l_{1}+l_{2}}{l_{2} t_{1}+l_{1} t_{2}}$
D. $\frac{l_{1}+l_{2}}{l_{1} t_{1}+l_{2} t_{2}}$

Answer:

D Watch Video Solution

9. A solid whose volume does not change with
temperature floats in a liquid. For two
different temperatures t_{1} and t_{2} of the liqiud,
fraction f_{1} and f_{2} of the volume of the solid remain submerged in the liquid. The
coefficient of volume expansion of the liquid is equal to
A. $\frac{f_{1}-f_{2}}{f_{2} t_{1}-f_{1} t_{2}}$
B. $\frac{f_{1}-f_{2}}{f_{1} t_{1}-f_{2} t_{2}}$
C. $\frac{f_{1}+f_{2}}{f_{2} t_{1}+f_{1} t_{2}}$
D. $\frac{f_{1}+f_{2}}{f_{1} t_{1}+f_{2} t_{2}}$

Answer:

D Watch Video Solution

10. A solid with coefficient of linear expansion
aplha just floats in a liquid whose coefficient
of volume expansion is γ. If the system is heated, the solid will
A. sink in all cases
B. continue to float in all cases
C. $\sin k$ if $\gamma>3 \propto$
D. $\gamma<3 \propto$

Answer:

11. A gas at 300 K has pressure
$4 \times 10^{-10} N / m^{2}$. IF $k=1.38 \times 10^{-23} J / K$,
the number of molecule $/ \mathrm{cm}^{3}$ is of the order
of
A. 100
B. 10^{5}
C. 10^{8}
D. 10^{11}

Answer:

D Watch Video Solution

12. The root mean square (r.m.s) speed of oxygen molecules $\left(O_{2}\right)$
at a certain temperature T (degree absolute) is
V. If the temperature is doubled and oxygen
gas dissociates into atomic oxygen, the r.m.s
speed remains unchanged.
A. ν
B. $\sqrt{2} \nu$
C. 2ν
D. $2 \sqrt{2} \nu$

Answer:

D Watch Video Solution

13. The average translational kinetic energy of
O_{2} (molar mass 32) molecules at a particular temperature is 0.048 eV . The translational
kinetic energy of N_{2} (molar mass 28)
molecules in (eV) at the same temperature is
(JEE 1997)
(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768
A. 0.0015
B. 0.003
C. 0.048
D. 0.768

Answer:

D Watch Video Solution
14. A gas has volume V and pressure p. The total translational kinetic energy of all the molecules of the gas is
A. $\frac{3}{2} p V$ only if the gas is monoatomic
B. $\frac{3}{2} p V$ only if the gas is diatomic
C. $>\frac{3}{2} p V$ if the gas is diatomic
D. $\frac{3}{2} p V$ in all cases

Answer:

- Watch Video Solution

15. A closed vessel is maintained at a constant temperture. It is first evacuated and then vapour is injected it continuously. The pressure of the vapour in the vessel
A. increase continuously
B. first increases and then reamians
contant
C. first increases and then decrease
D. none of the above'

Answer:

- Watch Video Solution

16. when an air bubble rises from the bottom
to the surface of a lake, its radius becomes double. Find the depth of the lake, given that the atmospheric pressure is equal to the pressure due to a column of water 10 m high.

Assume constant temperature and disreged surface tension .
A. 30 m
B. 40 m

C. 70 m

D. 80 m

Answer:

D Watch Video Solution

17. Two containers of equal volume contain the same gas at pressure P_{1} and P_{2} and absolute temperature T_{1} and T_{2}, respectively. On joining the vessels, the gas reaches a common
pressure P and common temperature T. The
ratio P / T is equal to
A. $\frac{P_{1}}{T_{1}}+\frac{P_{2}}{T_{2}}$
B. $\frac{1}{2}\left[\frac{p_{1}}{T_{1}}+\frac{P_{2}}{T_{2}}\right]$
C. $\frac{p_{1} T_{2}+p_{2} T_{2}}{T_{1}+T_{2}}$
D. $\frac{p_{1} T_{2}-p_{2} T_{2}}{T_{1}-T_{2}}$

Answer:

D Watch Video Solution

18. Two idential container joined by a small
pipe initially contain the same gas at pressure p_{0} and absolute temperature T_{0}. One container is now maintained at the same temperature while the other is heated to $2 T_{0}$.

The common pressure of the gas

> A. $\frac{3}{2} p_{0}$
> в. $\frac{4}{3} p_{0}$
> C. $\frac{5}{3} p_{0}$
D. $2 p_{0}$

Answer:

D Watch Video Solution

19. In the previous question let V_{0} be the
volume of each container. All other details
remain the same. The number of moles of gas
in the container at temperature $2 T_{0}$ will be
A. $\frac{p_{0} V_{0}}{2 R T_{0}}$
B. $\frac{p_{0} V_{0}}{R T_{0}}$
C. $\frac{2 p_{0} V_{0}}{3 R T_{0}}$
D. $\frac{p_{0} V_{0}}{3 R T_{0}}$

Answer:

D Watch Video Solution

20. A horizontal cylinder has two sections of
unequal cross - sections, in which two pistons
can move freely. The pistons are joined by a string, Some gas is trapped between the
pistons. If this gas is heated the pistons will

A. move to the left
B. move to the right
C. remain stationary
D. either(a) or (b) depding on the initial
pressure of the gas
21. A gas expands from 1 litre to 3 litres at atmospheric pressure. The work done by the gas is about
A. 2 J
B. 200 J
C. 300 J
D. $2 \times 10^{5} \mathrm{j}$
22. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio
C_{P} / C_{V} for the gas is
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{3}$
D. $\frac{4}{3}$

Answer:

D Watch Video Solution

23. In the previous question, the gas may be
A. monoatomic
B. diatomic
C. a mixture of monoatomic and diatomic
gases
D. a mixture of diatomic and triatomic gases

Answer:

D Watch Video Solution

24. Each molecule of a gas has F degrees of
freedom. The ratio $\frac{C_{p}}{C_{V}}=\gamma$ for the gas is
A. $1+\frac{f}{2}$
B. $1+\frac{1}{f}$
C. $\left(1+\frac{2}{f}\right)$
D. $1+\frac{(f-1)}{3}$

Answer:

D Watch Video Solution

25. A mixture of n_{1} moles of monoatomic gas
and n_{2} moles of diatomic gas has
$\frac{C_{p}}{C_{V}}=\gamma=1.5$

$$
\text { A. } n_{1}=n_{2}
$$

B. $2 n_{1}=n_{2}$
C. $n_{1}=2 n_{2}$
D. $2 n_{1}=3 n_{2}$

Answer:

- Watch Video Solution

26. The pressure p for a gas is plotted against its absolute temperature T for two different
volumes V_{1} and V_{2}. If p is plotted on $y-$ axis and T on x - axis, then
A. The curve for V_{1} has greater slope than
the curve for V_{2}.
B. The cureve for V_{2} has greater slope than
the curve for V_{1}
C. The curves must intersect at some point
other than $\mathrm{T}=0$
D. The curves hace the same slope and do
not intersect

Answer:

27.

A cyclic process $A B C D$ is shown in the $p-V$ diagram. Which of the following curves represent the same process?
(.7)

Answer:
(Watch Video Solution
28. The ratio $\frac{C_{p}}{C_{v}}=\gamma$ for a gas. Its molecular weight is M. Its specific heat capacity at constant pressure is

$$
\begin{aligned}
& \text { A. } \frac{R}{\gamma-1} \\
& \text { B. } \frac{\gamma R}{\gamma-1} \\
& \text { C. } \frac{\gamma R}{M(\gamma-1)} \\
& \text { D. } \frac{\gamma R M}{(\gamma-1)}
\end{aligned}
$$

Answer:

29. When an ideal gas undergoes an adiabatic
change causing a temperature change ΔT
(i) there is no heat ganied or lost by the gas
(ii) the work done by the gas is equal to change in internal eenrgy
(iii) the change in internal energy per mole of the gas is $C_{V} \Delta T$, where C_{V} is the molar heat capacity at constant volume.
A. only if the change of temperature occurs at constant volume
B. only if the change of temperature occurs at constant pressure
C. in any process which in not adiabatic
D. in any process

Answer:

D Watch Video Solution
30. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat
energy supplied, which increases the internal energy of the gas, is

> A. $\frac{2}{5}$
> B. $\frac{3}{5}$
> C. $\frac{3}{7}$
> D. $\frac{5}{7}$

Answer:
(Watch Video Solution
31. The average degrees of freedom per molecule for a gas are 6 . The gas performs $25 J$ of work when it expands at constant pressure.

The heat absorbed by gas is
A. 75 J
B. 100 J
C. 150 J
D. 125 J

Answer:

32. Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300 K . The piston of A is free to move, while that B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is 30 K , then the rise in temperature of the gas in B is
A. 30 K
B. 18 K

C. 50 K

D. 42 K

Answer:

D Watch Video Solution

33. A system is taken from state A to state B
along two different paths 1 and 2 . The heat
absorbed and work done by the system along
these two paths are Q_{1} and W_{1} and W_{2} respectively.
A. $Q_{1}=Q_{2}$
B. $W_{1}=W_{2}$
C. $Q_{1}-W_{1}=Q_{2}-W_{2}$
D. $Q_{1}+W_{1}=Q_{2}+W_{2}$

Answer:

D Watch Video Solution

34. Equal masses of three liquids A, B and C have temperature $10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{c}$ respectively. If A and B are mixed, the mixture
has a temperature of $15^{\circ} \mathrm{C}$. If B and C are mixed, the mixture has a temperature of $30^{\circ} \mathrm{C}$, if A and C are mixed will have a temperature of
A. 16°
B. 20°
C. 25°
D. 29°

Answer:

35. If water at $0^{\circ} C$ kept in a container with an open top, is placed a large evacuated chamber,
A. all the water will baporize
B. all the water will freeze
C. part of the water will vaporize and the
rest will freeze
D. ice, water and water vapour will be formed and reach equilibrium at the triple point

Answer:

D Watch Video Solution

36. In the previous question, if the specific latent heat of vaporization of water at $0^{\circ} \mathrm{C}$ is
η times the specific latent heat of freezing of
water at $0^{\circ} C$, the fraction of water that will
ultimately freeze is
A. $\frac{1}{\eta}$
B. $\frac{\eta}{\eta+1}$
C. $\frac{\eta-1}{\eta}$
D. $\frac{\eta-1}{\eta+1}$

Answer:

D Watch Video Solution

37. A substance of mass $M \mathrm{~kg}$ requires a power input of P wants to remain in the molten state at its melting point. When the power source is turned off, the sample completely solidifies in
time t seconds. The latent heat of fusion of the substance is
A. Pt
B. $\frac{P t}{M}$
C. $P t M$
D. $\frac{P M}{t}$

Answer:
(Watch Video Solution
38. Two rods of same length and cross section
are joined along the length. Thermal
conductivities of first and second rod are K_{1}
and K_{2}. The temperature of the free ends of
the first and seconds rods are maintained at
θ_{1} and θ_{2} respectively. The temperature of the common junction is
A. $\left(\frac{\theta_{1_{+} \theta_{2}}}{2}\right)$
B. $\frac{k_{1} \theta_{1}+k_{2} \theta_{2}}{k_{1}+k_{2}}$
C. $\frac{k_{1} \theta_{2}+k_{2} \theta_{1}}{k_{1}+k_{2}}$
D. $\frac{\left|k_{1} \theta_{1}+k_{2} \theta_{2}\right|}{\left|k_{1}-k_{2}\right|}$

Answer:

- Watch Video Solution

39. A cylinder of radius R made of a material of thermal conductivity K_{1} is surrounded by cylindrical shell of inner radius R and outer radius $2 R$ made of a material of thermal conductivity K_{2} The two ends of the combined system are maintained at two differnet tem-
peratures There is no loss of heat across the
cylindrical surface and system is in steady
state What is the effective thermal
conductivity of the system

A. $k_{1}+k_{2}$
B. $\frac{k_{1} k_{2}}{k_{1}+k_{2}}$
C. $\frac{k_{1}+3 k_{2}}{4}$
D. $\frac{3 k_{1}+k_{2}}{4}$

Answer:

D Watch Video Solution

40. A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be
A. 225
B. 450
C. 900

D. 1800

Answer:

D Watch Video Solution

41. Two spherical black bodies of radii R_{1} and
R_{2} and with surface temperature T_{1} and T_{2}
respectively radiate the same power. R_{1} / R_{2} must be equal to

$$
\text { A. }\left(T_{1} / T_{2}\right)^{2}
$$

B. $\left(T_{2} / T_{1}\right)^{2}$
C. $\left(T_{1} / T_{2}\right)^{4}$
D. $\left(T_{2} / T_{1}\right)^{4}$

Answer:

D Watch Video Solution

42. A body cools from $50^{\circ} C$ to $40^{\circ} C$ in 5 min.

The surroundings temperature is $20^{\circ} \mathrm{C}$. In what further times (in minutes) will it cool to $30^{\circ} C ?$
A. 5
B. $\frac{15}{2}$
C. $\frac{25}{3}$
D. 10

Answer:

D Watch Video Solution

43. In the previous question will be its temperature 5 min after reaching $40^{\circ} \mathrm{C}$?
A. $35^{\circ} \mathrm{C}$
B. $\frac{100}{3} \circ C$
C. $32^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution

44. A metal rod is shaped into a ring with a small gap. If this is heated,
(i) the length of the rod will increase
(ii) the gap will decrease
(iii) the gap will increase
(iv) the diameter gof the ring will increase in the same ratio as the length of the rod
A. the length of the rad will increase
B. the gap will decrease
C. the gap will increase
D. the diameter of the ring will increase in
the same ratio as the length of the rod

Watch Video Solution

45. The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $6.21 \times 10^{-21} \mathrm{~J}$ and $484 \mathrm{~m} / \mathrm{s}$, respectively. The corresponding values at $600 K$ are nearly (assuming ideal gas behaviour)
A. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
B. $8.78 \times 10^{-21} \mathrm{~J}, 644 \mathrm{~m} / \mathrm{s}$
C. $6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$

D. $12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}$

Answer:

D Watch Video Solution

46. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T . The mass of a molecule is m .

Then
A. No molecules can have speed greater than $v_{r m s}$
B. No molecules can have speed less than
$\frac{v_{p}}{\sqrt{2}}$.
C. $v_{p}<\vec{v}<v_{r m s}$
D. The average kinetic energy of a molecles
is $\frac{3}{4} m v_{p}^{2}$.

Answer:

47. Two identical containers A and B have
frictionaless pistons. They contain the same volume of an ideal gas at the same temperature. The mass of the gs in A is m_{A} and that B is m_{B}. The gas in each cylinder is now allowed to expand isothermally to double the intial volume. The chages in the pressure in A and B are fopund to be Δ and $1.5 \Delta p$ respectively.
A. $4 m_{A}=9 m_{B}$
B. $2 M_{a}=3 M_{b}$
C. $3 m_{A}=2 m_{B}$
D. p^{n}

Answer:

D Watch Video Solution

48. A gas undergoes a process in which its pressure P and volume V are related as $V P^{n}=$ constant. The bulk modulus of the gas in the process is:
A. np
B. $p \frac{1}{n}$
C. $\frac{p}{n}$
D. p^{n}

Answer:

D Watch Video Solution
49. A gas with $\frac{c_{p}}{c_{V}}=\gamma$ goes from an intial state $\left(p_{1}, V_{1}, T_{1}\right)$ to a final state $\left(p_{2}, V_{2}, T_{2}\right)$
through an adiabatic process. The work done by the gas is

$$
\begin{aligned}
& \text { A. } \frac{n R\left(T_{1}-T_{2}\right)}{\gamma-1} \\
& \text { B. } \frac{p_{1} V_{1}-p_{2} V_{2}}{\gamma-1} \\
& \text { C. } \frac{p_{1} V_{1}+p_{2} V_{2}}{\gamma+1} \\
& \text { D. } n \gamma R\left(T_{1}-T_{2}\right)
\end{aligned}
$$

Answer:
50. A gas may expand either adiabatically or isothermally. A number of $p-V$ curves are drawn for the two processes over different ranges of pressure and volume, it will be found that
(i) Two adiabatic curves do not intersect
(ii) two isothermal curves do not intersect
(iii) an adiabatic curve and an isothermal curve may intersect.
(iv) the magnitude of the slope of an adiabatic curve is greater than the magnitude of the slope of an isothermal curve
A. two adiabatic curves do not intersect
B. two isothermal curves do not intersect
C. an adiabatic curve and an isothermal
curve may intersect
D. the magnitude of the slope of an
isothermal curve for the same values of
pressure and volume

Answer:

51. A gas expands such that its initial and final temperatures are equal. Also the process followed by the gas traces a straight line on the $P-V$ diagram
(i) The temperature of the gas remains constant throughout
(ii) The temperature of the gas first increases and then decreases
(iii) The temperature of the gas first decreases and then increases
(iv) The straight line has negative slope
A. The temperature of the gas remains constant throughout
B. The temperature of the gas first increases and then decreases.
C. The temperature of the gas first decreases and then increases.
D. The straight line has a negative slope

Answer:

(i)

(ii)

(iv) $v \underbrace{\text { A }}_{P}$
(iv) $v \underbrace{\text { A }}_{P}$
52.
D.

Answer:

- Watch Video Solution

53. Two gases have the same initial pressure, volume and temperature. They expand to the same final volume, one adiabatically and the other isothermally
A. The fina temperature is greater for the
isothermal process.
B. The final pressure is greater for the isothermal process.
C. The work done by the gas is greater for the isothermal process.
D. All the above options are incorrect.

Answer:

54. In the previous question, if the two gases are compressed to the same final volume,
A. the final temperature is greater for the adiabatic process
B. the final pressure is greater for the adiabatic process
C. the work doen on the gas is greater for
the adiabatic process
D. All the above options are incorrect.

Answer:

- Watch Video Solution

55.

In the cyclic process shown in the $V-P$
diagram the magnitude of the work is done is

$$
\begin{aligned}
& \text { A. } \pi\left(\frac{p_{2}-p_{1}}{2}\right)^{2} \\
& \text { B. } \pi\left(\frac{V_{2}-V_{1}}{2}\right)^{2} \\
& \text { C. } \frac{\pi}{4}\left(p_{2}-p_{1}\right)\left(V_{2}-V_{1}\right) \\
& \text { D. } \pi\left(p_{2} V_{2}-p_{1} V_{1}\right)
\end{aligned}
$$

Answer:

- Watch Video Solution

56. In the previous question,
A. work is done by the gas
B. work is done on the gas
C. heat is absorbed by the gas
D. heat is given out by the gas

Answer:

- Watch Video Solution

$\mathrm{O} \quad \mathrm{T} \longrightarrow$

57.

A cyclic process is shown in the $\mathrm{p}-\mathrm{T}$ diagram.

Which of the curves show the same process on
a V-T diagram?
A.
(a)
(b)

B.

Answer:

- Watch Video Solution

58.

A cyclic process is shown on the $\mathrm{p}-\mathrm{T}$ diagram .

Which of the curves show the same process on
a V-T diagram?

B.
 (b)

(c)

c.
(d)

Answer:

D Watch Video Solution

59. A cyclic process is shown in the $P-T$ siagram. Whech of the curves show the same
process on a $P-V$ diagram?

A.
(a)

B.
(b)

(c)

C.

Answer:

D Watch Video Solution

60. The first law of thermodynamics incorporates are concept of
(i) conservation of energy
(ii) convervation of heat
(iii) conservation of work
(iv) equivalence of heat and work
A. conservation of energy
B. conservation of heat
C. conservation of work
D. equivalence of heat and work

Answer:

D Watch Video Solution
61. Statement-I: it is possible for both the pressure and volume of a monoatomic ideal gas of a given amount to change
simultaneously without causing the internal energy of the gas to change.

Statement-2: The internal energy of an ideal gas of a given amount remains constant it temperature does not change. it is possible to have a process in which pressure and volume are changed such that temperature remains constant.
A. a cyclic process
B. an isothermal process
C. an adiabatic process

D. any process in which the heat given out

the system is equal to the work done on the system

Answer:

D Watch Video Solution

62. For a ideal gas,
A. the change in internal energy in a
temperature T_{1} to T_{2} is equal to
$n V_{v}\left(T_{2}-T_{1}\right)$, where C_{v} is the molar
heat capacity at constant volume and n
is the number of moles of the gas

B. the change in internal energy of the gas

and the work done by the gas are equal
in magnitude in an adiabatic process
C. the internal energy does not change in
an isothermal process
D. no heat is added or removed in an

adiabatic process

Answer:

D Watch Video Solution

63. The molar heat capacity for an ideal gas

cannot

A. cannot be negative
B. must be equal to either C_{V} or C_{p}
C. must be lie in the range $C_{V} \leq C \leq C_{p}$

D. may have any value between

$-\infty$ and $+\infty$

Answer:

D Watch Video Solution

64. The molar heat capacity for an ideal gas
A. is zero for an adiabatice process
B. is infinite for an isothermal process
C. depends only on the nature of the gas
for a process in which either volume or
pressure is constant
D. is equal to the product of the molecular
weight and specific heat capacity for any

process

Answer:

D Watch Video Solution
65. C_{p} is always greater than C_{v} for a gas, which of the following statements provide, partly or wholly, the reason for this?
(i) No work is done by a gas at constant volume
(ii) When a gas absorbs heat at constant pressure, its volume must change
(iii) For the same change in temperature, the internal energy of a gas changes by a smaller amount at constant volume that at constant pressure
(iv) The internal energy of an ideal gas is a function only of its temperature
A. No work is done by a gas at constant volume.
B. When a gas absorbs heat at constant pressure, its volume must change
C. For the same change in temperature, the internal energy of a gas changes by a smaller amount at constant volume than at constant pressure.
D. The internal energy of an ideal gas is a
function only of its temperature.

Answer:

D Watch Video Solution

66. A system undergoes a cyclic process in
which it absorbs Q_{1} heat and gives out Q_{2}
heat. The efficiency of the process is η and work done is W. Select correct statement:
A. $W=Q_{1}-Q_{2}$
B. $\eta=\frac{W}{Q_{1}}$
C. $\eta=\frac{Q_{2}}{Q_{1}}$
D. $\eta=1-\frac{Q_{2}}{Q_{1}}$

Answer:

- Watch Video Solution

Heat is supplied to a certain homogeneous sample of matter, at a uniform rate. Its
temperature is plotted against time, as shown

Which of the following conclusions can be drawn?
(i) Its specific heat capacity is greater in the solid state than the liquid state.
(ii) Its specific heat capacity is greater in the
liquid state than in the solid state.
(iii) Its latent heat of vaporization is greater than its latent heat of fusion.
(iv) Its latent heat of vaporization is smaller than its latent heat of fusion
A. Its specific heat capacity is greater in the solid state than in liquid state.
B. Its specific heat capacity is greater in the
liquid state than in liquid state.
C. The latent heat of vaporization is greater than its latent heat of fusion.

D. The latent heat of vaporization is smaller

 than its latent heat of fusion.
Answer:

D Watch Video Solution

68. Three rods of the same dimension have
thermal conductivities $3 \mathrm{~K}, 2 \mathrm{~K}$ and K . They are arranged as shown in fig. with their ends at $100^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The temperature of
their junction is

- $75^{\circ} \mathrm{C}$
- $\left(\frac{200}{3}\right)^{\circ} C$
- $40^{\circ} \mathrm{C}$
- $\left(\frac{100}{3}\right)^{\circ} C$

Answer:

- Watch Video Solution

69. Five rods of same dimensions are arranged as shown in the figure. They have thermal
conductivities $K_{1}, K_{2}, K_{3}, K_{4}$ and K_{5}. When points A and B are maintained at different temperatures, no heat flows through the central rod if

A. $k_{1}=k_{4} \quad$ and $\quad k_{2}=k_{3}$
B. $k_{1} / k_{4}=k_{2} / k_{3}$
C. $k_{1} k_{4}=k_{2} k_{3}$
D. $k_{1} k_{2}=k_{3} k_{4}$

Answer:

D Watch Video Solution

70. Three rods A, B and C have the same dimensions Their conductivities are $K_{A} \mathrm{~K}$ and K_{C} respectively A and B are placed end to end with their free ends kept at certain temperature difference C is placed separately
with its ends kept at same temperature difference The two arrangements conduct heat at the same rate K_{c} must be equal to .
A. $k_{A}+k_{B}$
B. $\frac{k_{A} k_{B}}{k_{A}+k_{B}}$
C. $\frac{1}{2}\left(k_{A}+k_{B}\right)$
D. 2. $\left(\frac{k_{A} k_{B}}{k_{A}+k_{B}}\right)$

Answer:

- Watch Video Solution

71. Three rods A, B and C have the same dimensions Their conductivities are $K_{A} \mathrm{~K}$ and
K_{C} respectively A and B are placed end to end with their free ends kept at certain temperature difference C is placed separately with its ends kept at same temperature difference The two arrangements conduct heat at the same rate K_{c} must be equal to .

$$
\begin{aligned}
& \text { A. } k_{A}+k_{B} \\
& \text { B. } \frac{k_{A} k_{B}}{k_{A}+k_{B}} \\
& \text { C. } \frac{1}{2}\left(k_{A}+k_{B}\right)
\end{aligned}
$$

D. 2. $\left(\frac{k_{A} k_{B}}{k_{A}+k_{B}}\right)$

Answer:

- Watch Video Solution

72. One end of a uniform rod of length 10 m is
placed in boiling water while its other end is
placed in melting ice. A point P on the rod is maintained at a constant temperature of
$450^{\circ} C$. The mass of steam produced per second is equal to the mass of ice melted per
second. If specific latent heat of steam is 7
times the specific latent heat of ice, the distance of P from the steam chamber must be \qquad

$$
\begin{aligned}
& \text { A. } \frac{1}{7} \mathrm{~m} \\
& \text { B. } \frac{1}{8} \mathrm{~m} \\
& \text { C. } \frac{1}{9} \mathrm{~m} \\
& \text { D. } \frac{1}{10} \mathrm{~m}
\end{aligned}
$$

Answer:

73. A and B are two points on uniform metal ring whose centre is O The angle $A O B=\theta \mathrm{A}$ and B are maintaind at two different constant temperatures When $\theta=180^{\circ}$ the rate of total heat flow from A to B is $1.2 W$ When $\theta=90^{\circ}$ this rate will be .
A. 0.6 W
B. 0.9 W
C. 1.6W
D. 1.8 W

Answer:

D Watch Video Solution

74. In a 10 m deep lake, the bottom is at a constant temperature of $4^{\circ} C$. The air temperature is constant at
$-4^{\circ} C . K_{i c e}=3 K_{\omega}$. Neglecting the expansion
of water on freezing, the maximum thickness
of ice will be
A. 7.5 m
B. 6 m
C. 5 m
D. 2.5 m

Answer:

D Watch Video Solution

75. A point source of heat of power P is placed at the centre of a spherical shell of mean radius R. The material of the shell has thermal conductivity K. If the temperature difference
between the outer and inner surface of the
shell in not to exceed T, the thickness of the shell should not be less than

$$
\begin{aligned}
& \text { A. } \frac{4 \pi k R_{2} T}{P} \\
& \text { B. } \frac{4 \pi k R_{2}}{T P} \\
& \text { C. } \frac{4 \pi R_{2} T}{k P} \\
& \text { D. } \frac{4 \pi R_{2} P}{k T}
\end{aligned}
$$

Answer:

D Watch Video Solution

76. A spherical black body of radius r radiates
power P, and its rate of cooling is R
(i) $P \propto r$
(ii) $P \propto r^{2}$
(iii) $R \propto r^{2}$
(iv) $R \propto \frac{1}{r}$
A. $P \propto r$
B. $P \propto r^{2}$
C. $R \propto r^{2}$
D. $R \propto \frac{1}{r}$

Answer:

D Watch Video Solution

77. The temperature of an spherical isolated
black body falls from T_{1} and T_{2} in time t them time t is

$$
\begin{aligned}
& \text { A. } t=c\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right] \\
& \text { B. } t=c\left[\frac{1}{T_{2}^{2}}-\frac{1}{T_{1}^{2}}\right] \\
& \text { C. } t=c\left[\frac{1}{T_{2}^{3}}-\frac{1}{T_{1}^{3}}\right]
\end{aligned}
$$

$$
\text { D. } t=c\left[\frac{1}{T_{2}^{4}}-\frac{1}{T_{1}^{4}}\right]
$$

Answer:

D Watch Video Solution

78. A planet is at an average distance d from
the sun and its average surface temeperature
is T . Assume that the planet receives energy
only from the sun and loses energy only
through radiation from the surface. Neglect
atmospheric effects. If $T \propto d^{-n}$, the value of n is
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer:
(Watch Video Solution
79. The solar constant for a planet is S . The surface temperature of the sun is TK. The sun
subtends an angle θ at the planet:
A. $\sum \propto T^{4}$
B. $\sum \propto T^{2}$
C. $\sum \propto \theta^{2}$
D. $\sum \propto \theta$

Answer:

- Watch Video Solution

80. The power radiated by a black body is P , and it radiates maximum energy around the wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy around a wavelength $3 \lambda_{0} / 4$, the power radiated by it will increase by a factor of
A. $4 / 3$
B. $16 / 9$
C. $64 / 27$

D. $256 / 81$

Answer:

D Watch Video Solution

81. Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are same. The two bodies emit total radiant power at the same rate. The wavelength λ_{B} corresponding to maximum spectral radiancy
from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A by $1.0 \mu \mathrm{~m}$. If the temperature of A is 5802 K , calculate (a) the temperature of $\mathrm{B},(\mathrm{b})$ wavelength λ_{B}.
A. the temperature of B is 1934 K
B. $\lambda_{B}=0.5 \mu m$
C. the temperature of B is 11604 K
D. the temperature of B is 29.1 K

Answer:
82. A black body is at a temperature of 2880 K .

The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm
is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wein's constant $b=2.88 \times 10^{6} \mathrm{~nm}$ K. Then
A. $U_{1}=0$
B. $U_{3}=0$
C. $U_{1}>U_{2}$

$$
\text { D. } U_{2}>U_{1}
$$

Answer:

D Watch Video Solution

83. A body with an initial temperature θ_{1} is allowed to cool in a surrounding which is at a constant temperature of $\theta_{0}\left(\theta<\theta_{1}\right)$ Assume that Newton's law of cooling is obeyed Let $k=$ constant The temperature of the body after time t is best experssed by .
A. $\left(\theta_{i}-\theta_{0}\right) e^{-k t}$
B. $\left(\theta_{i}-\theta_{0}\right) \operatorname{In}(\mathrm{kt})$
C. $\theta_{0}+\left(\theta_{i}-\theta_{0}\right) e^{-k t}$
D. $\left(\theta_{i} e^{-k t}-\theta_{0}\right)$

Answer:

D Watch Video Solution

84. A system S receives heat continuously from an electric heater of power 10 W . The temperature of S becomes constant at $50^{\circ} C$
when the surrounding temperature is $20^{\circ} \mathrm{C}$.

After the heater is switched off, S cools from $35.1^{\circ} C$ to $34.9^{\circ} C$ in 1 min ute. the heat capacity of S is
A. $100 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
B. $300 J /{ }^{\circ} C$
C. $750 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
D. $1500 J /{ }^{\circ} C$

Answer:

85. A body cools in a surrounding which is at constant temperature of θ_{0}. Assume that it obeys Newton's law of colling. Its temperature
θ is plotted against time t. Tangents are drawn
to the curve at the points $P\left(\theta=\theta_{t}\right)$ and
$Q\left(\theta=\theta_{2}\right)$. These tangents meet the time axis
at angles of ϕ_{2} and ϕ_{1}, as shown

A. $\frac{\tan \phi}{\tan \phi}=\frac{\theta_{1}-\theta_{0}}{\theta_{2}-\theta_{0}}$
B. $\frac{\tan \phi}{\tan \phi}=\frac{\theta_{2}-\theta_{0}}{\theta_{1}-\theta_{0}}$
C. $\frac{\tan \phi}{\tan \phi}=\frac{\theta_{1}}{\theta_{2}}$
D. $\frac{\tan \phi}{\tan \phi}=\frac{\theta_{2}}{\theta_{1}}$

Answer:

- Watch Video Solution

