©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

IIT QUESTIONS 2

Straight Objective Type

1. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where \in_{0}
is the permittivity of the free space, L is a
length, ΔV is a potential difference and Δt is
a time interval. The dimensinal formula for X
is the same as that of
A. resistance
B. charge
C. voltage
D. current

Answer: D

D Watch Video Solution
2. A string of negligible mass going over a
clamped pulley of mass m supports a block of mass M as shown in the figure. The force on
the pulley by the clamp is given by

A. $\sqrt{2} M g$
B. $\sqrt{2} m g$
C. $\sqrt{(M+m)^{2}+m^{2}} .8$
D. $\sqrt{(M+m)^{2}+M^{2}} .8$

Answer: D

D Watch Video Solution

3. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2}, respectively, at time $t=0$. They collide at time t_{0}. Their velocities become \vec{v}_{1} and \vec{v}_{2} at
time $2 t_{0}$ while still moving in air. The value of $\left|\left(m_{1}{\overrightarrow{v^{\prime}}}_{1}+m_{2}{\overrightarrow{v^{\prime}}}_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
A. zero
B. $\left(m_{1}+m_{2}\right) g t_{0}$
C. $2\left(m_{1}+m_{2}\right) g t_{0}$
D. $\frac{1}{2}\left(m_{1}+m_{2}\right) g t_{0}$

Answer: C

- Watch Video Solution

4. A small block is shot into each of the four tracks as shown below. Each of the tracks rises to the same height. The speed with which the block enters the track is the same in all cases.

At the highest point of the track, the normal reaction is maximum in

(d)
 D.

Answer: A

D Watch Video Solution

5. A hemispherical portion of radius R is removed from the bottom of a cylinder of radius R. The volume of the remaining cylinder is V and its mass M . It is suspended by a string in a liquid of density ρ where it stays vertical.

The upper surface of the cylinder is at a depth
h below the liquid surface. The force on the bottom of the cylinder by the liquid is

A. Mg
B. $M g-V \rho g$
C. $M g+\pi R^{2} h \rho g$
D. $\rho g\left(V+\pi R^{2} h\right)$

Answer: D

D Watch Video Solution

6. The ends of a stretched wire of length L are
fixed at $x=0$ and $x=L$. In one experiment,
the displacement of the wire is
$y_{1}=A \sin (\pi / L) \sin \omega t$ and energy is E_{1} and
in another experiment its displacement is
$y_{2}=A \sin (2 \pi x / L) \sin 2 \omega t$ and energy is E_{2}.

Then
A. $E_{2}=E_{1}$
B. $E_{2}=2 E_{1}$
C. $E_{2}=4 E_{1}$
D. $E_{2}=16 E_{1}$

Answer: C

D Watch Video Solution

7. Two pulse in a stretched string whose centers are initially 8 cm apart are moving towards each other as shown in the figure. The

A. zero
B. purely kinetic
C. purely potential
D. partly kinetic and partly potential

Answer: B

- Watch Video Solution

8. Three rods made of the same material and
having the same cross-section have been
joined as shown in the figure. Each rod is of
the same length. The left and right ends are kept at $0^{\circ} C$ and $90^{\circ} C$, respectively. The temperature of junction of the three rods will be
(a) $45^{\circ} C$ (b) $60^{\circ} C$
(c) $30^{\circ} C$ (d) $20^{\circ} C$.

A. $45^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C}$
D. $20^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

9. When a block of iron in mercury at $0^{\circ} C$,
fraction K_{1} of its volume is submerged, while at the temperature $60^{\circ} \mathrm{C}$, a fraction K_{2} is seen to be submerged. If the coefficient of volume expansion of iron is $\gamma_{F e}$ and that of mercury is $\gamma_{H g}$, then the ratio $\left(K_{1}\right) /\left(K_{2}\right)$ can be expressed as

$$
\begin{aligned}
& \text { A. } \frac{1+\left(60^{\circ} C\right) \gamma_{\mathrm{Fe}}}{1+\left(60^{\circ} C\right) \gamma_{\mathrm{HG}}} \\
& \text { B. } \frac{1-\left(60^{\circ} C\right) \gamma_{\mathrm{Fe}}}{1+\left(60^{\circ} C\right) \gamma_{\mathrm{HG}}}
\end{aligned}
$$

> C. $\frac{1+\left(60^{\circ} C\right) \gamma_{\mathrm{Fe}}}{1-\left(60^{\circ} C\right) \gamma_{\mathrm{HG}}}$
> D. $\frac{1+\left(60^{\circ} C\right) \gamma_{\mathrm{HG}}}{1+\left(60^{\circ} C\right) \gamma_{\mathrm{Fe}}}$

Answer: A

D Watch Video Solution

10. Three poistive charges of equal value q are
placed at the vertices of an equilateral
triangle. The resulting lines of force should be sketched as in

(b)
B.

Answer: C
(Watch Video Solution
11. Consider the situation shown in the figure.

The capacitor A has a charge q on it whereas
B is uncharged. The charge appearing on the capacitor B a long 7 time after the switch is closed is :

A. zero
B. $q / 2$
C. q
D. $2 q$

Answer: A

D Watch Video Solution

12. A coil having N turns is wound tightly in
the form of a spiral with inner and outer radii
a and b respectively. A current I passes
through the coil. The magnetic moment of the
spriral is

> A. $\frac{\mu_{0} N I}{b}$
> B. $\frac{2 \mu_{0} N I}{a}$
> C. $\frac{\mu_{0} N I}{2(b-a)} \operatorname{In} \frac{b}{a}$
> D. $\frac{2 \mu_{0} I^{N}}{2(b-a)} \operatorname{In} \frac{b}{a}$

Answer: C

- Watch Video Solution

13. The intensity of X-rays form a Coolidge tube is plotted against wavelength λ as shown
in the figure. The minimum wavelength found
is λ_{c} and the wavelength of the K_{α} line is λ_{k}.
As the accelerating voltage is increased

(a) $\lambda_{k}-\lambda_{c}$ increases (b) $\lambda_{k}-\lambda_{c}$ decreases
(c) λ_{k} increases (d) λ_{k} decreases
A. $\lambda_{K}-\lambda_{C}$ increases
B. $\lambda_{K}-\lambda_{C}$ decreases
C. λ_{K} increases
D. λ_{K} decreases

Answer: A

D Watch Video Solution

14. In the given circuit, with steady current, the potential drop across the capacitor must be

A. V
B. $\frac{V}{2}$
C. $\frac{V}{3}$
D. $\frac{2 V}{3}$

Answer: C

D Watch Video Solution

15. In the given circuit, it is observed that the current I is independent of the value of the resistance R_{6}. Then the resistance values must
satisfy

A. $R_{1} R_{2} R_{5}=R_{3} R_{4} R_{6}$
B. $\frac{1}{R_{5}}+\frac{1}{R_{6}}=\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}$
C. $R_{1} R_{4}=R_{2} R_{3}$
D. $R_{1} R_{3}=R_{2} R_{4}=R_{5} R_{6}$

Answer: C

- Watch Video Solution

16. A non - popular loop of conducting wire carrying a current I is placed as shown in the figure . Each of the straighrt sections of the loop is of the length $2 a$. The magnetic field due to this loop at the point $P(a, 0, a)$ points in the direction

A. $\frac{1}{\sqrt{2}}(-\vec{j}+\vec{k})$
B. $\frac{1}{\sqrt{3}}(-\vec{j}+\vec{k}+\vec{i})$
C. $\frac{1}{\sqrt{3}}(-\vec{i}+\vec{k}+\vec{k})$
D. $\frac{1}{\sqrt{2}}(\vec{i}+\vec{k})$

Answer: D

D Watch Video Solution

Assertion Reason Type

1. Statement-1

If the accelerating potential in an X-ray tube is
increased, the wavelength of the characterstic

X-rays do not change.
because

Statement-2

When an electron beam strikes the target in an X-ray tube, part of the kinetic energy is converted into X-ray energy.
A. Statement-1 is true, statement-2 is true
for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1
C. Statement- 1 is true, statement- 2 is false
D. Statement-1 is false, statement-2 is true.

Answer: B

- Watch Video Solution

2. In each of the questions, assertion(A) is
given by corresponding statement of reason
(R) of the statemens. Mark the correct answer.
Q. Statement I: The formula connecting u, v
and f for a spherical mirror is valid only for mirrors whose sizes are very small compared to their radii of curvature.

Statement II: Laws of reflection are strictly
valid for plane surfaces, but not for large spherical surfaces.
A. Statement- 1 is true, statement- 2 is true
and statement-2 is correct explanation
for statement-1.
B. Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1
C. Statement- 1 is true, statement- 2 is false
D. Statement-1 is false, statement-2 is true.

Answer: A

Linked Comprehension Type

1. A small spherical monoatomic ideal gas
bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid.

The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect surface tension).

As the bubble moves upwards, besides the buoyancy force the following forces are acting on it
A. Only the force of gravity
B. The force of gravity and the force due to
the presure of the liquid
C. The force of gravity , the force due to the presure of the liquid, and the force but
to the viscosity of the liquid
D. The force of gravity and the force due to
the viscosity of the liquid

Answer: D

D Watch Video Solution

2. A small spherical monoatomic ideal gas
bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid.

The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect surface tension).

When the gas bubble is at a height y from the bottom, its temperature is-
A. $T_{0}\left(\frac{P_{0}+\rho g H}{P_{0}+\rho g y}\right)^{2 / 5}$
B. $T_{0}\left(\frac{P_{0}+\rho g(H-y)}{P_{0}+\rho g H}\right)^{2 / 5}$
c. $T_{0}\left(\frac{P_{0}+\rho g H}{P_{0}+\rho g y}\right)^{3 / 5}$
D. $T_{0}\left(\frac{P_{0}+\rho g(H-y)}{P_{0}+\rho g H}\right)^{3 / 5}$

Answer: B

D Watch Video Solution

3. A small spherical monoatomic ideal gas
bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid.

The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect
surface tension).

The buoyancy force acting on the gas bubble is (Assume R is the universal gas constant)
A. $\rho_{1} n R g T_{0} \frac{\left(P_{0}+\rho_{1} g H\right)^{2 / 5}}{\left(P_{0}+\rho_{1} g y\right)^{7 / 5}}$
B.

$$
\rho_{1} R g T_{0}
$$

$$
\left(P_{0}+\rho_{1} g H\right)^{2 / 5}\left\{P_{0}+\rho g(H-y)\right\}^{3 / 5}
$$

C. $\rho_{1} n R g T_{0} \frac{\left(P_{0}+\rho_{1} g H\right)^{3 / 5}}{\left(P_{0}+\rho_{1} g y\right)^{8 / 5}}$

$$
\rho_{1} R g T_{0}
$$

$$
\overline{\left(P_{0}+\rho_{1} g H\right)^{3 / 5}\left\{P_{0}+\rho g(H-y)\right\}^{2 / 5}}
$$

Answer: B

- Watch Video Solution

Matrix Matching Type

1. Column A gives a list of possible set of parameters measured in some experiments.

The variations of the parameters in the form of graphs are shown in column B.
(i) The potential energy of a simple pendulum (y-axis) as a function of its displacement (x-axis)
(a)

(ii) Displacement (y-axis) as a function of time (x-axis) for a one-dimensional motion at zero or constant acceleration when the body is moving along the positive x-direction
(b)

(c) y

(d) ${ }^{y}$

D View Text Solution

