© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

MISCELLANEOUS QUESTION 1

1.

In the circuit shown above, when then switch S is closed,
A. no charge flows through S
B. charge flows from A to B
C. charge flows from B to A

D. charge flows initially from A to B and later

from B to A

Answer: A

D Watch Video Solution

2. The horizontal range of a projectile is R and the maximum height at tained by it is H . A strong windnow begins to blow in the direction of the motion of the projectile, giving it a constant horizontal acceleration $=\mathrm{g} / 2$. Under
the same conditions of projection, the horizontal range of the projectile will now be:

> A. $R+\frac{H}{2}$
> B. $R+H$
> C. $R+\frac{3 H}{2}$
> D. $R+2 H$

Answer: D
3. A small object O is placed in front of a convex mirror, formin a virtual image, I A narrow beam of light is now made incident on the mirror, aimed at I. After reflection at the mirror, the bea, will reach O
A. In all cases
B. only if the beam of light moves very close to the axis OI
C. only if the distance of O from the mirror
is small compared to the radius of

curvature of the mirror

D. only if both (b) and (c) are satisfied

Answer: A

D Watch Video Solution

4. A particle of mass m and charfe Q is placed in
an electric filed W which varies with time t as E
$=E_{0} \sin \omega t$. It will undergo simple harmonic motion of amplitude.
A. $\frac{Q E_{0}^{2}}{m \omega^{2}}$
B. $\frac{Q E_{0}}{m \omega^{2}}$
C. $\sqrt{\frac{Q E_{0}}{m \omega^{2}}}$
D. $\frac{Q E_{0}}{m \omega}$

Answer: B

D Watch Video Solution

5. In a Young's double-slit experiment using identical slits, when one slit is used, the total energy reaching the screen is E_{0} and the intensity of light at any point on the screen is
I_{0}. When both slits are usedm and fringes are formed on the screen, the total energy reaching the screen is E and the maximum intensity on the screen is I. Then,

$$
\text { A. } E=2 E_{0}, I=2 I_{0}
$$

B. $E=4 E_{0}, I=4 I_{0}$
C. $E=2 E_{0}, I=4 I_{0}$
D. $E=4 E_{0}, I=2 I_{0}$

Answer: C
6. In a Young's double-slit experiment using
slits of unequal widths, the intensities on the screen due to the slits are in the ratio $4: 9$
when the slits are used separately. When they are used together, the ratio of the intensity at
a dark fringe to the intensty at a bright fringe on the screen will be
A. $4: 9$
B. 1: 9
C. 9:16
D. $1: 25$

Answer: D

D Watch Video Solution

7. A sphere of mass m is given some angular velocity about a horizontal axis through the center, and gently placed on a plank of mass m.

The coefficient of friction between the two is μ.
The plank rests on a smooth horizontal surface.

The intial acceleration of the sphere relative to
the plank will be:

A. zero
B. μg
C. $\frac{7}{5} \mu g$
D. $2 \mu g$

Answer: D

- Watch Video Solution

8. when beats are formed between sound waves of slightly different frequencies, the intensity of the sound heard changes form maximum to minimum in $0.2 s$. The difference in frequencies of the two sound waves is
A. 5 Hz
B. $4 h z$
C. 2.5 Hz
D. 2 Hz

Answer: C

D Watch Video Solution

an infinitely long thin conductor, shaped as
shown, carries current. Each section is of the same length. The magnetic field at the point P
due to the secion from $-\infty$ to A is B. The field at P due to the entire conductor is
A. zero
B. B
C. $\sqrt{2} B$
D. $2 B$

Answer: D

Two infinitely long conductors carrying equal currents are shaped as shown. The short sectins are all of equal lengths. The point P is located symmetrically with respect to the two conductors. The magnetic filed at due to any one conductor is B. The total field at P is

A. zero

B. B
C. $\sqrt{2} B$
D. $2 B$

Answer: A

D Watch Video Solution

11. A satellite can be in a geostationary orbit around earth in an orbit of radius r. If the angular velocity of earth about its axis doubles,
a satellite can now be in a geostationary orbit aroun earth radius
A. $\frac{r}{2}$
B. $\frac{r}{2 \sqrt{2}}$
C. $\frac{r}{4^{1 / 3}}$
D. $\frac{r}{2 r^{1 / 3}}$

Answer: C

D Watch Video Solution
12. A bullet moving with a velcity u passes
through a plank which is free to move. The two are of equal mass. After pssing through the plank, the velocity of the bullet becomes $f u$. Its velocity relative to the plank now is
A. $f u$
B. $(1-f) u$
C. $(2 f-1) u$
D. $(2-f) u$

- Watch Video Solution

An object O is placed in front of a small plane mirror M_{1} and a large convex mirror M_{2} of
focal length f. The distance between O and M_{1}
is x , and the distance between M_{1} and M_{2} is y .
The images of O forned by M_{1} and M_{2}
coincide. The magnitude of f is
A. $\frac{x^{2}-y^{2}}{2 y}$
B. $\frac{x^{2}+y^{2}}{2 y}$
C. $x-y$
D. $\frac{x^{2}+y^{2}}{x-y}$

Answer: A

- Watch Video Solution

14.

An object O is placed in front of a small plane mirror M_{1} and a large convex mirror M_{2} of focal length f. The distance between O and M_{1} is x , and the distance between M_{1} and M_{2} is y .

The images of O forned by M_{1} and M_{2} coincide. The magnitude of f is
A. $\frac{y^{2}-x^{2}}{2 y}$
B. $\frac{y^{2}+x^{2}}{2 y}$
C. $y-x$
D. $\frac{y^{2}+x^{2}}{y-x}$

Answer: A

- Watch Video Solution

15. In a uniform magnetic field of $10^{-5} \mathrm{~T}$ in free
space, the energy density is u. The electric field which will produce the same energy density in free space is
A. $10^{5} \mathrm{~V} / \mathrm{m}$
B. $3 \times 10^{3} \mathrm{~V} / \mathrm{m}$
C. $10 \mathrm{~V} / \mathrm{m}$
D. $9 \times 10^{-3} \mathrm{~V} / \mathrm{m}$

Answer: B

D Watch Video Solution

16. A block of mass m is placed on a horizontal
surface. The coefficient of frication between
them is μ. The block has to be moved by
applying a single external force on it. The force may be applied in my direciton. The minimum value of this force must be
A. $m g$, applied vertically upward, if $\mu>1$
B. $\mu m g$, applied horizontally, if $\mu<1$
C. $\frac{\mu m g}{\sqrt{\mu^{2}+1}}$ for all values of μ
D. $\frac{\mu^{2} m g}{\mu^{2}+1}$ for all values of μ

Answer: C
(Watch Video Solution
17.

An ideal liqquid flows through the horizontal pipe $A B$, which is of uniform cross-section. The vertical pipes 1,2 and 3 equispaced. The liqudi levels in these pipes are at heightes $h_{1}, h_{2} h_{3}$ respectively above $A B$. Liquid flows from A to B in $A B$.

$$
\begin{aligned}
& \text { A. } h_{1}=h_{2}=h_{3} \\
& \text { B. } h_{2}=\frac{1}{2}\left(h_{1}+h_{3}\right) \\
& \text { С. } h_{2}>\frac{1}{2}\left(h_{1}+h_{3}\right)
\end{aligned}
$$

$$
\text { D. } h_{2}<\frac{1}{2}\left(h_{1}+h_{3}\right)
$$

Answer: A

- Watch Video Solution

18. A number of spherical conductors of different radii are given charge such a that the charge density of each condutor is inversely proportional to its radius. The conductors will have
A. the same potential

B. the same potential energy

C. the same charge
D. potentials inversely proportional to their

radii

Answer: A

D Watch Video Solution

19. A block of mass m slides down an inclined plane which makes an angle θ with the horizontal. The coefficient of friction between
the block and the plane is μ. The force exerted by the block on the plane is
A. $m g \cos \theta$
B. $\sqrt{\mu^{2}+1} m g \cos \theta$
C. $\frac{\mu m g \cos \theta}{\sqrt{\mu^{2}+1}}$
D. $\mu m g \theta$

Answer: B

D Watch Video Solution
20. Plates A and B constitute $a n$ isolated, charge parallel plate capacitor. The inner surface (I and IV) of A and B have charge +Q and $-Q$ respectively. A third plate C with charge
$+Q$ is now introduced midways between A and
B. Which of the following statement is not

correct?

A. The surface I and II will have equal and opposite charges.
B. The surfaces III and IV will have equal and
oppsite charges.
C. The charge of surface III will be greater
than Q .
D. The potential difference beween A and C
will be equal to the potential difference
between C and B.

Answer: B

D Watch Video Solution

21.

A square, conducting loop falls from rest in the
xy-plane. There is a uniform magnetic field in
the z-direction below the x-axis. The velocity v
of the loop is plotted against time t. Which of
the following best represents the resulting

curve

C.

D.

Answer: D

D Watch Video Solution

22. A wheel of radius R rolls without slipping on the horizontal surface with speed v_{0}. When the contact point is P on the road, a small patch of mud separates from the wheel at its
highest point strikes the road at point Q. Find distance $P Q$.

$$
\begin{aligned}
& \text { A. } 2 v \sqrt{\frac{r}{g}} \\
& \text { В. } 2 \sqrt{2} v \sqrt{\frac{r}{g}} \\
& \text { C. } 4 \sqrt{\frac{r}{g}} \\
& \text { D. } v \sqrt{\frac{r}{g}}
\end{aligned}
$$

Answer: C

D Watch Video Solution
23. An isolated parallel-plate capacitor of capacitor C has paltes X and Y. If plate X is given charge Q , the potential difference between X and Y Is
A. zero
B. $\frac{2 Q}{C}$
C. $\frac{Q}{C}$
D. $\frac{Q}{2 C}$

Answer: D
24. In the previous question, if Y is earthed, what amount of charge wll flow Y into the earth?
A. zero
B. Q
c. $\frac{Q}{2}$
D. $-\frac{Q}{2}$

Answer: B
25. Three stars A, B, C have surface temperatures T_{A}, T_{B} and T_{C}. A appaears bluish, B appears reddish and C appears yellowish. We can conclude that
A. $T_{A}>T_{C}>T_{B}$
B. $T_{A}>T_{B}>T_{C}$
C. $T_{B}>T_{C} T_{A}$
D. $T_{C}>T_{B}>T_{A}$

- Watch Video Solution

26. A horizontal rod rotates about a vertical axis through one end. A ring, which can slide along the rod witgour friction, is initially close to the axis and then slides to the other end of the rod. In this process, which of the following quantities will be conserved?
$\left\{\mathrm{L}=\right.$ angular momentum, $E_{T}=$ total kinetic energy, $E_{R}=$ rotational kientic energy.]
A. L only
B. L and E_{T} only
C. L and E_{R} only
D. E_{T} only

Answer: B

D Watch Video Solution

27. Two electric lamps A and B radiate the same power. Their filaments have the same diemensions, and have emissivities. e_{A} and e_{B}.

Their surface tempratures are T_{A} an T_{B}. The ratio T_{A} / T_{B} will be equal to
A. $\left(\frac{e_{B}}{e_{A}}\right)^{1 / 4}$
B. $\left(\frac{e_{B}}{e_{A}}\right)^{1 / 2}$
C. $\left(\frac{e_{A}}{e_{B}}\right)^{1 / 2}$
D. $\left(\frac{e_{A}}{e_{B}}\right)^{1 / 4}$

Answer: A

28. Then end A of a rod slides down a smooth

 wall and its end B slides on a smooth floor.When AB makes angle α with the horizontal, A
has speed v. The speed of B must be

A. $\frac{v}{\tan \alpha}$
B. $v \tan \alpha$
C. $\frac{v}{\cos \alpha}$
D. $v \sin \alpha$

Answer: D

D Watch Video Solution

29. An electric dipole has moment $\vec{p}=p \vec{i}$.

Two point which are at equal distances from
the dipole, and far away from it, have electric
intensities $E_{1} \vec{i}$ and $-E_{2} \vec{i}$. The ratio E_{1} / E_{2}
must be
A. 1
B. $\sqrt{2}$
C. 2
D. $\frac{1}{2}$

Answer: A
30. When a reciever of sound (e.g., microphone diaphragm or human eardrum) is receiving sound, the nature of its vibration is most likely to be
A. free
B. forced
C. resonance
D. similar to that of stationary waves

Answer: B
31. A lens of power $16 D$ is used as a simple microscope. In order to obtain maximum magnification, at what distance from the lens
A. 5 cm
B. 10 cm
C. 16 cm
D. 25 cm

Answer: A
32. In the previous question, what is the range of the magnification that can be obtained

A. 4 to inifinity

B. 5 to infinity

C. 4 to 5

D. 5 to 6.25

Answer: C
33. A flat, rectangular coil is placed in a uniform magnetic field and rotated about an axis passing through its centre, parallel to its shorter edges and perpendicular to the filed.

The maximum emf induced is E. If the axis is shifted to coincide with one of the shorter edges, the maximum induced emf will be
A. zero
B. $E / 2$
C. E
D. $2 E$

Answer: C

D Watch Video Solution

34.

Two identical dielectric slabs, A and B, are placed symmetrically between the plates X and
Y of charged parallel-plate capacitor. The
electric intensity has magnitudes E_{1} / E_{2} and E_{3} at the points 1,2 and 3

$$
\begin{aligned}
& \text { A. } E_{1}>E_{2}>E_{3} \\
& \text { B. } E_{1}=E_{3}<E_{2} \\
& \text { C. } E_{1}=E_{3}>E_{2} \\
& \text { D. } E_{1}=E_{2}=E_{3}
\end{aligned}
$$

Answer: D
35. A coil with resistance R is placed in a magnetic field. The flux linked with the coil is ϕ.

If the magnetic filed suddently reverses in direction, how much charge will circulate in the coil?

$$
\begin{aligned}
& \text { A. } \frac{\phi}{2 R} \\
& \text { B. } \frac{\phi}{R} \\
& \text { C. } \frac{2 \phi}{R} \\
& \text { D. zero }
\end{aligned}
$$

36. One mole gas is first colled from 300 K to

150 K at constant volume and then heated
from $150 K$ to $300 K$ at constant pressure. The net heat absorbeed by the gas is
A. zero
B. $150 R$
C. $300 R$
D. $450 R$

Answer: B

D Watch Video Solution

37. In the X-rays produced by a Coolidge tube let λ_{C} be the cutoff wavelength , λ_{α} be the wavelength of the K_{α} line and λ_{β} be the wavelength of the K_{β} the.
A. $\lambda_{\beta}>\lambda_{\alpha}>\lambda_{C}$
B. $\lambda_{\alpha}>\lambda_{\beta}>\lambda_{C}$
C. $\lambda_{\alpha}>\lambda_{C}>\lambda_{\beta}$

$$
\text { D. } \lambda_{\beta}>\lambda_{C}>\lambda_{\alpha}
$$

Answer: B

D Watch Video Solution

38. A capacitor of capacitance C is given charge
Q and then connected in parallel to a coil of inductance L. There is no resitance in the circuit. When the charge on the capacitor becomes zero, the current in the coil will be

$$
\text { A. } Q \sqrt{\frac{L}{C}}
$$

$$
\begin{aligned}
& \text { B. } \frac{Q}{\sqrt{L C}} \\
& \text { с. } Q \sqrt{\frac{C}{L}}
\end{aligned}
$$

D. zero

Answer: B

- Watch Video Solution

oscillates on a smooth horizontal surface with
time period T. It is now given some charge Q and an electric filed E is swiched on, as shown.

The block will not oscilalte with time period ' T ', where

> А. $T^{\prime}>T$
> В. $T^{\prime}=T$
> С. $T^{\prime}<T$
D. T^{\prime} may be $>$ or $<T$ depending on the magnitude of m, Q and E

- Watch Video Solution

40. An organ pipe filled with oxygen gas at
$47^{\circ} \mathrm{C}$ resoantes in its fundamental mode at a frequencey 300 Hz . If its is now filled with nitrogen gas, at what temperature will it resonate at the same frequency, in the fundamental mode?
A. $7^{\circ} \mathrm{C}$
B. $27^{\circ} \mathrm{C}$
C. $87^{\circ} \mathrm{C}$

D. $107^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

41. Two conducting spheres of unequal radii are given cahrge such that they have the same charge density. If they are now brought in contact,
A. no charge will be exchanged between
B. charge will flow the larger to the smaller sphere
C. charge will flow from the smaller to the
larger sphere
D. some heat will be produced

Answer: B::D

- Watch Video Solution

42. Two particles are projected simultaneously
from the same point, with the same speed, in
the same vertical plane, and at different angles
with the horizontal in a uniform gravitational
field acting vertically downwards. A frame of reference is fixed to one particle. The position vector of the other particle, as observed from this frame, is \vec{r}. Which of the following statement is correct?
A. \vec{r} is a cosntant vector.
B. \vec{r} changes in magnitudes and direction with time.
C. The magnitude of \vec{r} increases linearly with time, its direciton does not change. D. The direaction of \vec{r} changes with time, its magnitudes may or may not change, depending on the angles of projection.

Answer: C

D Watch Video Solution

43. One mole of an ideal gas is taken through
the cyclic through the cyclic process shown in
the V - T diagram, where $\mathrm{V}=$ volume and T absolutute temperature of the gas. Which of the following statements are correct

A. Heat of given out by the gas.
B. Heat is absorbed by the gas.
C. The magnitude of the work done by the gas is $R T_{0} \ln 2$.
D. The magnitude of the work done by the gas is $V_{0} T_{0}$.

Answer: A::C

D Watch Video Solution

44. A parallel-plate capacitor is connected to a cell. Its positive plate A and its negative plate
B have charges $+Q$ and $-Q$ respectively. A
third plate C, identical to A and B, with charge
$+Q$, is now introduced midway between A and
B, parallel to them. Which of the following are correct?
A. The charge on the inner face of B is now

$$
-\frac{3 Q}{2}
$$

B. There is no charge in the pontential
difference between A and B.
C. The potential difference between A and C is one-third of
D. The charge on the inner face of A is not Q/2.

Answer: A::B::C::D

D Watch Video Solution

45. A ring of radius R has uniformly distributed
charge. It spins about its axis with an angular velocity $\omega . \mathrm{P}$ is a point on its axis at a distance x
from its centre. The velocity of light in vecuum
is c. The ratio of the magnetic field to the electric field at P is proportional to
A. ω
B. R^{2}
C. $\frac{1}{x}$
D. $\frac{1}{c^{2}}$

Answer: A::B::C::D
46. In the circuit shown, which of the following
statement(s) is/are correct ?

A. When S is open, charge on C_{1} is $36 \mu C$.
B. When S is open, charge on C_{2} is $36 \mu C$.
C. When S is closed, the charges on C_{1} and
C_{2} do not change.

D. When S is closed, charges on both C_{1} and

C_{2} change.

Answer: A::B::D

D Watch Video Solution

47. Two sounds of equal amplitude and
frequencies, n_{1} and n_{2}, reach a point together.
The resultant wave can have which of the following forms (symbols have their usual meanings) ?
A.

$$
y=A \sin \left[\left(\frac{n_{1}-n_{2}}{2}\right) t\right] \sin \left[\left(\frac{n_{1}+n_{2}}{2}\right) t\right]
$$

B.

$$
\begin{aligned}
& \qquad y=A \cos \left[\left(\frac{n_{1}-n_{2}}{2}\right) t\right] \cos \left[\left(\frac{n_{1}+n_{2}}{2}\right) t\right] \\
& \text { C. } y=A \sin \left[\left(n_{1}-n_{2}\right) t\right] \cos \left[\left(n_{1}+n_{2}\right) t\right] \\
& \text { D. } y=A \sin \left[\left(n_{1}-n_{2}\right) t\right] \sin \left[\left(\frac{n_{1}+n_{2}}{2}\right) t\right]
\end{aligned}
$$

Answer: A::B

- Watch Video Solution

48. A particle moving with kinetic energy $3 J$ makes an elastic head-on collision with a stationary particle which has twice its mass.

During the impact :-
A. the minimum kinetic energy of the system is $1 J$
B. the maximum and total energy are conserved at every instant
C. momentum and total energy are
conserved at every instant

D. the ratio of kinetic energy to potential

 energy of the system first decreases and then increasesAnswer: A::B::C::D

- Watch Video Solution

49. A hollow closed conductor of irregular
shape is given some charge . Which of the following statements are correct ?
A. The entire charge will appear on its outer surface.
B. All points on the conductor will have the same potential.
C. All points on its surface will have the same charge density.
D. All points near its surface and outsiede it will have the same electric intensity.
50. A particle moves in the $x y$ plane with a constant acceleration ' g ' in the negativedirection. Its equation of motion is $y=a x-b x^{2}$, where a and b are constants. Which of the following are correct?
A. The x-component of its velocity is constant.
B. At the origin, the y-component of its
velocity is $a \sqrt{\frac{g}{2 b}}$.
C. At the origin, its velocity makes an angle $\tan ^{-1} a$ with the x-axis.
D. The particles moves exactly like a projectile

Answer: A::B::C::D
(D) Watch Video Solution
51. A converging lens of focal length f is placed in front of a fixed oject, at a distance f from it.

The lens is then moved away from the object
with a constant velocity. The velocity of the image will
A. be constant
B. always be directed towards the object
C. pass through a maximum
D. be zero when the distance of the lens
from the object is $2 f$.

Answer: D
52. Two long thin, parallel conductors carrying
equal current in the same direction are fixed parallel to the x-axis one passing through magnetic field due to the two conductors at any point is B Which of the following are correct ?(A) $B=0$ for all points on the x-axis (B)

At all points on the y-axis, excluding the origin,
B has only a zcomponent. (C) At all points on
the z -axis, excluding the origin, B has only an x -
component.

A. $B=0$ for all points on the x-axis
B. At all points on the y-axis. Excluding the
origin, B has only a z- component.
C. At all points on the z-axis. Excluding the
origin, B has only a y- component.
D. B cannot have an x-component.

Answer: A::B::C::D

D Watch Video Solution

53. A thin walled spherical conducting shells S
of radius R is given charge Q,the same amount
of charge is also placed at its centre C. Which of the following statements are correct.
A. On the outer surface of S. The charge
density is $\frac{Q}{2 \pi R^{2}}$.
B. The electric field is zero at all points inside S.
C. At a point just outside S , the electric field is double the field is double the field at point just inside S .

D. At any point inside S, the electric field is

inversley proportional to the square of its
dentance from C.

Answer: A::C::D

54. A man can swim with velocity v relative to water. He has to cross a river of width d flowing with a velocity $u(u>v)$. The distance through which he is carried down stream by the river is x . Which of the following statements is correct?
A. If he crosses the river in minimum time,

$$
x=\frac{d u}{v} .
$$

B. x cannot be less than $\frac{d u}{v}$.
C. For x to be minimum, he has to swim in a
$\frac{\pi}{2}+\sin ^{-1}(v / u)$ with the direction of
the flow of water.
D. x will be maximum if he swims in a
direction making an angle of
$\frac{\pi}{2} 0 \sin ^{-1}(v / u)$ with the direction of the
flow of water.

Answer: A::C

D Watch Video Solution

