© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

 (HINGLISH)

 (HINGLISH)}

MISCELLANEOUS QUESTION 3

Missellaneous Qns 3 Pragraph

1. The particle P of mass m is attached to two
light, rigid rods AP and BP of length I each. A
and B are hings on a fixed vertical axis. The system APB can rotate freely about this axis.

The angle $\mathrm{ABP}=$ the angle $B A P=\theta$. The tensions in AP and BP are T_{1} and T_{2} respectively.

When the system is at rest, which of the following is not correct?
A. At P , the direction of T_{1} is from P to A .
B. At P , the direction of T_{2} is from P to B .
C. The rods AP and BP together exert a net force and net torque on $A B$.
D. $T_{1}=T_{2}$.

Answer: D

D Watch Video Solution

2. The particle P of mass m is attached to two
light, rigid rods AP and BP of length I each. A
and B are hings on a fixed vertical axis. The system APB can rotate freely about this axis.

The angle $A B P=$ the angle $B A P=\theta$. The tensions in AP and BP are T_{1} and T_{2} respectively.

When the system is made to rotate about $A B$ with angular velocity ω, which of the following is not correct?
A. T_{1} will always be greater than T_{2}.
B. $T_{1}-T_{2}=m \omega^{2} t$ for small values of ω.
C. T_{2} will become zero for $\omega^{2}=g / l \cos \theta$.
D. The direction of T_{2} will always be from P
to B.

Answer: D

D View Text Solution
3. The particle P of mass m is attached to two
light, rigid rods AP and BP of length I each. A and B are hings on a fixed vertical axis. The system APB can rotate freely about this axis.

The angle $A B P=$ the angle $B A P=\theta$. The tensions in AP and BP are T_{1} and T_{2} respectively.

The system is now rotated by 90° so that must be imparted to P, normal to the plane of the figure, such that it moves in a complete circular path in a vertical plane with $A B$ as the axis?
A. $2 \sqrt{g l \sin \theta}$
B. $2 \sqrt{g l \cos \theta}$
C. $(5 / 2) \sqrt{g l \sin \theta}$
D. None of these

Answer: A

D View Text Solution

4. In a ring $A B C D$ of radius r, the lower half $A B C$
has mass m and the upper half ADC has mass
$2 m$. In both parts, the masses are distributed evenly. The ring is initially at rest on a
horizontal surface, as shown. O is the centre of the ring.

Let C_{1} denote the centre of mass of the section ABC and C_{2} denote the centre of mass of the section ADC . The distance $C_{1} C_{2}$ is equal to
A. r
B. $2 r / 3$
C. $2 \pi r / 5$
D. $4 r / \pi$

Answer: D

D View Text Solution

5. In a ring $A B C D$ of radius r, the lower half $A B C$
has mass m and the upper half ADC has mass
$2 m$. In both parts, the masses are distributed evenly. The ring is initially at rest on a horizontal surface, as shown. O is the centre of
the ring.

The ring is now pushed very slightly and begins to roll on the horizontal surface without slipping. When it has made half a rotation, i.e., B is vertically above D, its angualar velocity ω will be given by (where $\beta=g / \pi r)$
A. $\omega^{2}=3 \beta / 2$
B. $\omega^{2}=4 \beta / 3$
C. $\omega^{2}=8 \beta / 5$
D. $\omega^{2}=9 \beta / 4$

Answer: C

D View Text Solution

6. In a ring $A B C D$ of radius r, the lower half $A B C$ has mass m and the upper half ADC has mass
$2 m$. In both parts, the masses are distributed
evenly. The ring is initially at rest on a horizontal surface, as shown. O is the centre of the ring.

The ring is now folded along the diameter AC, such that the plane of the section $A B C$ is
normal to the plane of the section ADC. (The angle BOD $=90^{\circ}$). It is then placed on a thin,
fixed horizontal wire, ie.e, the diameter AC lies along the wire. The angle made by DO with the vertical will now be
A. $\tan ^{-1}(2 / 3)$
B. $\tan ^{-1}(1 / 2)$
C. 30°
D. 60°

Answer: B
7. A biconvex lens made of material with refractive index n_{2}. The radii of curvatures of its left surface and right surface are R_{1} and
R_{2}. The media on its left and right have refreactive indices n_{1} and n_{3} respectively. The
first and second focal lengths of the lens are respectively f_{1} and f_{2}.

The ratio, f_{1} / f_{2}, of the two focal lengths is equal to
A. n_{1} / n_{3}

$$
\begin{aligned}
& \text { B. }\left(n_{1}-1\right) /\left(n_{3}-1\right) \\
& \text { C. }\left(n_{1}+1\right) /\left(n_{3}+1\right) \\
& \text { D. }\left(n_{2}-n_{3}\right) /\left(n_{2}-n_{1}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

8. A biconvex lens made of material with refractive index n_{2}. The radii of curvatures of its left surface and right surface are R_{1} and
R_{2}. The media on its left and right have
refreactive indices n_{1} and n_{3} respectively. The
first and second focal lengths of the lens are respectively f_{1} and f_{2}.

Assume that $n_{1}=n_{3}$. Which of the following statements is not correct?
A. $f_{1}=f_{2}$.
B. f_{3} is inversely proportional to $n_{3}-1$.
C. If R_{1} and R_{2} are unequal, the focal
length would depend on the direction in
which light travels through the lens.
D. f_{1} may be negative if $n_{1}>n_{2}$.

Answer: C

D View Text Solution

9. A biconvex lens made of material with refractive index n_{2}. The radii of curvatures of its left surface and right surface are R_{1} and R_{2}. The media on its left and right have refreactive indices n_{1} and n_{3} respectively. The first and second focal lengths of the lens are respectively f_{1} and f_{2}.

Assume that $R_{1}=R_{2}, n_{1} \neq n_{3}$. The ratio, f_{1} / f_{2}, of the two focal lengths is equal to
A. 1
B. n_{1} / n_{3}
C. n_{3} / n_{1}
D. $\left(n_{3}-1\right) /\left(n_{1}-1\right)$

Answer: B
(D) View Text Solution
10. Electrical multimeters, or multitesters, are
widely used by technicians when working with
electrical and electronic circuits. In this
instrument, a single milliammeter connected
through different resistances is used to
measure currents, potential differences and resistance over different ranges.

Current always enters the multimeter at the same terminal, A, and then passes through the milliammeter as well as through other resistances, placed in series with or parallel to it. The choice of the terminal at which current
leaves the instrument decides its role (ammeter, voltemeter, etc.) and its range (maximum current or voltage which it can measure).

The milliammeter shown in the circuit has a coil (or internal) resistance of 0.9ω and gives the full-scale deflection for a current of 10 mA .

If A and B are used as the terminals of the multimeter, i.e., current enters at A and leaves at B, it will function as an ammeter of range
A. 10 A
B. $1 A$
C. 100 mA
D. 10 mA

Answer: B

D View Text Solution

11. Electrical multimeters, or multitesters, are widely used by technicians when working with electrical and electronic circuits. In this
instrument, a single milliammeter connected
through different resistances is used to
measure currents, potential differences and resistance over different ranges.

Current always enters the multimeter at the
same terminal, A, and then passes through the milliammeter as well as through other resistances, placed in series with or parallel to
it. The choice of the terminal at which current
leaves the instrument decides its role
(ammeter, voltemeter, etc.) and its range
(maximum current or voltage which it can measure).

The milliammeter shown in the circuit has a coil (or internal) resistance of 0.9ω and gives the full-scale deflection for a current of $10 m A$.

If A and C are used as the terminals of the multimeter, i.e., current enters at A and leaves at C, it will function as ammeter of range
A. 10 A
B. $1 A$
C. 100 mA

D. 10 mA

Answer: C

- View Text Solution

12. Electrical multimeters, or multitesters, are
widely used by technicians when working with electrical and electronic circuits. In this instrument, a single milliammeter connected through different resistances is used to measure currents, potential differences and
resistance over different ranges.

Current always enters the multimeter at the
same terminal, A, and then passes through the milliammeter as well as through other resistances, placed in series with or parallel to
it. The choice of the terminal at which current leaves the instrument decides its role
(ammeter, voltemeter, etc.) and its range
(maximum current or voltage which it can measure).

The milliammeter shown in the circuit has a coil (or internal) resistance of 0.9ω and gives the full-scale deflection for a current of $10 m A$.

If A and D are used as the terminals of the multimeter, i.e., current eneters at A and leaves at D, it will function as a voltmeter of which range?
A. $1 V$
B. 10 V
C. 100 V

D. It will not function either as a voltmeter

 or as an ammeter or a milliammeter.
Answer: C

D View Text Solution

The figure shows three identical parallel conducting plates X, Y and Z. The separation
between X and Y is $2 d$, and that between Y and
Z is d. The six surfaces of the three plates are
labeled a,b,c,d,e and f, as shown. The key K_{1}
can connect X to ground,and the key K_{2} can
connet Z to ground. Initially, both keys are open. Y has Q charge, X and Z have no charge.

If K_{1} is closed and K_{2} remains open, the charges on the surfaces a, b, c, d, e and f will be respectively.

> A. $0,-Q, Q, 0,0$ and 0
> B. $0,-Q / 2, Q / 2, Q / 2$ and 0
> C. $0,-Q / 3, Q / 3,2 Q / 3,-2 Q / 3$ and 0

$$
\text { D. }-Q / 3, Q / 3,2 Q / 3,-2 Q / 3,-Q / 3
$$

and $Q / 3$

Answer: A

D View Text Solution

The figure shows three identical parallel conducting plates X, Y and Z. The separation
between X and Y is $2 d$, and that between Y and
Z is d. The six surfaces of the three plates are
labeled a,b,c,d,e and f, as shown. The key K_{1}
can connect X to ground,and the key K_{2} can
connet Z to ground. Initially, both keys are open. Y has Q charge, X and Z have no charge.

If K_{2} is closed and K_{1} remains open, the charges on the surfaces a, b, c, d, e and f will be respectivel y

$$
\begin{aligned}
& \text { A. } 0,0,0, Q,-Q \text { and } 0 \\
& \text { B. } 0,-Q / 3, Q / 3,2 Q / 3,-2 Q / 3 \text { and } 0 \\
& \text { C. } 0,-2 Q / 3,2 Q / 3, Q / 3,-Q / 3 \text { and } 0
\end{aligned}
$$

D. $-Q / 3, Q / 3, Q / 3,2 Q / 3,-Q / 3$ and

$Q / 3$

Answer: A

D View Text Solution

The figure shows three identical parallel conducting plates X, Y and Z . The separation
between X and Y is 2d, and that between Y and
Z is d. The six surfaces of the three plates are
labeled a,b,c,d,e and f, as shown. The key K_{1}
can connect X to ground,and the key K_{2} can
connet Z to ground. Initially, both keys are open. Y has Q charge, X and Z have no charge.

If both K_{1} and K_{2} are closed, the charges on
the surfaces a, b, c, d, e and f will be respectively
A. $0, Q,-Q, 0,0$ and 0
B. $0,0,0, Q,-Q$ and 0
C. $0,-2 Q / 3,2 Q / 3, Q / 3,-Q / 3$ and 0

$$
\text { D. } 0,-Q / 3, Q / 3,2 Q / 3,-2 Q / 3 \text { and } 0
$$

Answer: D

D View Text Solution

16.

The diagram shows the basic setup for the production of X-rays. A_{1} and A_{2} are two
ammeters, reading $2.55 A$ and $2.566 A$
respectively. F is a filament which is alos the cathode. The potential difference applied between P and Q is 50000 V . Assume that all X -
rays photons have the maximum possible energy and that one X-ray photon is emitted for every 100 electron incident on the target.

You may assume that the kinetic energy of other electrons reappear as heat in the tube.

The number of X-ray photons produced per second is approximately
A. 10^{12}
B. 10^{15}
C. 10^{18}
D. 10^{21}

Answer: B

D View Text Solution
17.

The diagram shows the basic setup for the production of X-rays. A_{1} and A_{2} are two ammeters, reading $2.55 A$ and $2.566 A$ respectively. F is a filament which is alos the cathode. The potential difference applied between P and Q is 50000 V . Assume that all X rays photons have the maximum possible energy and that one X-ray photon is emitted
for every 100 electron incident on the target.
You may assume that the kinetic energy of other electrons reappear as heat in the tube.

The momentum of each X-ray photon is approximately

$$
\begin{aligned}
& \text { A. } 3 \times 10^{-17} \mathrm{kgms}^{-1} \\
& \text { B. } 3 \times 10^{-20} \mathrm{kgms}^{-1} \\
& \text { C. } 3 \times 10^{-23} \mathrm{kgms}^{-1} \\
& \text { D. } 3 \times 10^{-26} \mathrm{kgms}^{-1}
\end{aligned}
$$

Answer: C

18.

The diagram shows the basic setup for the production of X-rays. A_{1} and A_{2} are two ammeters, reading $2.55 A$ and $2.566 A$ respectively. F is a filament which is alos the cathode. The potential difference applied between P and Q is 50000 V . Assume that all X -
rays photons have the maximum possible energy and that one X-ray photon is emitted for every 100 electron incident on the target.

You may assume that the kinetic energy of other electrons reappear as heat in the tube.

The rate at which heat is produced in the X -ray tube is approximately
A. 10 W
B. 40 W
C. 200 W
D. 800 W

Answer: D

D View Text Solution

