©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS
 (HINGLISH)

MODERN PHYSICS

Type 1

1. The peneting power of α, β and γ rediations ,in decreasing order ,are
A. γ, α, β
B. γ, β, α
C. α, β, γ
D. β, γ, α

Answer: b

D Watch Video Solution
2. Identify the correct ascending order of α, β
and γ with reference to their ioninzing power
(I) α-ray (II) γ-ray (III) β-ray
A. γ, α, β
B. γ, β, α
C. α, β, γ
D. β, γ, α

Answer: c

D Watch Video Solution

3. If a beam consisiting of α, β and γ radiation is passed through an electric field perpendicular to the beam, the deflections
suffered by the components, in decreasing ordre are,
A. α, β, γ
B. α, γ, β
C. β, α, γ
D. β, γ, α

Answer: c
(Watch Video Solution
4. In a radioactive serries,$\underset{92}{238} \mathrm{U}$ change to $\underset{82}{206}$ pb though $n_{1} \alpha$-decay processses and $n_{2} \beta-$ decay processes.

$$
\begin{aligned}
& \text { A. } n_{1}=8, n_{2}=8 \\
& \text { B. } n_{1}=6, n_{2}=6 \\
& \text { C. } n_{1}=8, n_{2}=6 \\
& \text { D. } n_{1}=6, n_{2}=8
\end{aligned}
$$

Answer: c

D Watch Video Solution
5. Let u denote one atomic unit .one atom of an element of mass number A has mass exactly equal Au
A. For any value ofA
B. only for $A=1$
C. Only for $\mathrm{A}=12$
D. For any value of A provided the atom is
stable

Answer: c
6. If the nuclear force between two protons, two neutrons and between proton and neutron is denoted by $F_{p p}, F_{n n}$ and $F_{p n}$ respectively, then
A. $F_{1}>F_{2}>F_{3}$
B. $F_{2}>F_{1}>F_{3}$
C. $F_{1}=F_{3}>F_{2}$
D. $F_{1}=F_{2}>F_{3}$

Answer: c

- Watch Video Solution

7. A sample of radioactive material has mass m
, decay constant λ, and molecular weight M.

Avogadro constant $=N_{A}$. The initial activity of the sample is:
A. λm
B. $\frac{\lambda m}{M}$
C. $\frac{\lambda m N_{A}}{M}$
D. $m N_{A} e^{\lambda}$

Answer: c

D Watch Video Solution

8. In the previous question, the activity of the sample after time t will be
A. $\left(\frac{m N_{A}}{M}\right) e^{\lambda t}$
B. $\left(\frac{m N_{A} \lambda}{M}\right) e^{\lambda t}$
C. $\left(\frac{m N_{A}}{M \lambda}\right) e^{\lambda t}$

$$
\text { D. } \frac{m}{\lambda}\left(1-e^{-\lambda t}\right)
$$

Answer: b

- Watch Video Solution

9. The activity of a sample of radioactive material A_{1} at time t_{1} and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. Its mean life is T.
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $\frac{A_{1}-A_{2}}{t_{2}-t_{1}}=\mathrm{constant}$

$$
\text { C. } A_{2}=A_{1} e^{\left(t_{1}-t_{2} / T\right)}
$$

$$
\text { D. } A_{2}=A_{1} e^{\left(t_{2} / T t_{2}\right)}
$$

Answer: c

D Watch Video Solution

10. Let T be the mean life of a radioactive
sample. 75% of the active nuclei present in th
sample initially will deacy in time
A. 2 T
B. $\frac{1}{2}(\operatorname{In} 2) T$
C. 4 T
D. $2(\operatorname{In} 2) T$

Answer: d

- Watch Video Solution

11. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life ?
A. 37%
B. 50%
C. 63%
D. 69.3%

Answer: c

D Watch Video Solution

12. In a sample of radioactive material, what fraction of initial number of active nuclei will
remain undistintegrated after half of a halfOlife of the sample?

$$
\begin{aligned}
& \text { A. } \frac{1}{4} \\
& \text { B. } \frac{1}{2 \sqrt{2}} \\
& \text { C. } \frac{1}{\sqrt{2}} \\
& \text { D. } \sqrt{2}-1
\end{aligned}
$$

Answer: c

- Watch Video Solution

13. Three fourth of the active decays in a radioactive sample in $3 / 4 \mathrm{sec}$. The half-life of the sample is
A. 1 s
B. $\frac{1}{2} s$
C. $\frac{3}{4} s$
D. $\frac{3}{8} s$

Answer: d

D Watch Video Solution
14. 90% of the active nuclei present in a radioactive sample are found to remain undecyayed after 1 day. The precentage of undecayed nuclei left after two days will be
A. 85%
B. 81%
C. 80%
D. 79%

Answer: b

15. A fraction f_{1} of a radioactive sample decays
in one mean lie and a fraction f_{2} decays in one
half-life
A. $f_{1}>f_{2}$
B. $f_{1}<f_{2}$
C. $f_{1}=f_{2}$
D. May be (a),(b) or (c) depending on the
values oof the mean life and half-life .

Answer: a

D Watch Video Solution

16. A radioactive nuclide can decay simultaneously by two different processes which have decay constant λ_{1} and λ_{2}. The effective decay constant of the nucleide is λ

$$
\begin{aligned}
& \text { А. } \lambda=\lambda_{1}+\lambda_{2} \\
& \text { B. } \lambda=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) \\
& \text { C. } \frac{1}{\lambda}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}
\end{aligned}
$$

D. $\lambda=\sqrt{\lambda_{1} \lambda_{2}}$

Answer: a

D Watch Video Solution

17. A sample of radioactive material is used to
provide desired doses of radiation for medical
purposes. The total time for which the sample
can be used will depend
A. only on the munber ot times radiation is drwn from it
B. only on the intersity of does drqwn from
it
C. on both (a) and (b)
D. neither on (a)nor on(b)

Answer: d

D Watch Video Solution
18. An orbit electron in the ground state of
hydrogen has an angular momentum L_{1}, and an orbital electron in the first orbit in the ground state of lithium (dounle ionised positively) has an angular momentum L_{2}. Then :
A. $L_{1}=L_{2}$
B. $L_{1}=3 L_{2}$
C. $L_{2}=3 L_{1}$
D. $L_{2}=9 L_{1}$

Answer: a

D Watch Video Solution

19. When white light (violet to red) is passed
thouogh hydrogen gas at room temparature, absorption lines will be observed in the
A. Lyman series
B. Balmer series
C. both (a) and(b)
D. neither (a) nor (b)

Answer: d

- Watch Video Solution

20. If radiation of all wavelangths from
ultavoilet to infraed is passed through
hydrogen gas at room temperature , absorption lines will be observed in the
A. Lyman series
B. Balmer series
C. both (a) and(b)

D. neither (a) nor (b)

Answer: a

D View Text Solution

21. A photon of energy 10.2 eV corresponds to
light of wavelength λ_{0}. Due to an electron
transition from $n=2$ to $n=1$ in a hydrogen atom,
light of wavelength λ is emitted. If we take
into account the recoil of the atom when the photon is emitted.
A. $\lambda=\lambda_{0}$
B. $\lambda<\lambda_{0}$
C. $\lambda>\lambda_{0}$
D. the data is not suffcient to reach a
cnclusion

Answer: c
(D) Watch Video Solution
22. White X-rays are called 'white' due to the fact that:
A. they are produced most abunantly in Xray tubes
B.they are electromagnetic waves and
hence have a nature similar to ehite
light
C. thet can be converted to light using
coated screens, and they affect
photographic plates, just like light

D. they havea continuous range of

wavelengths

Answer: d

D Watch Video Solution

23. The mimmum wevelength of X-ray that can
be produced in a Coolisge tube depends on
A. the metal used as the target
B. the intensity of the electron beam striking the target
C. the current flowing though the filament
D. the potential difference between the cathode and the anode

Answer: d

D Watch Video Solution

24. If a potential difference of 20,000 volts is applied across X-ray tube , the cut -off wavelength will be

$$
\begin{aligned}
& \text { А. } 6.21 \times 10^{-10} m \\
& \text { В. } 6.21 \times 10^{-11} m \\
& \text { C. } 6.21 \times 10^{-12} m \\
& \text { D. } 3.1 \times 10^{-11} m
\end{aligned}
$$

Answer: b

- Watch Video Solution

25. If the potential difference applied across a

Collidage tube is increased,
A. the wavelength of the K_{α} line will increase
B. the wavelength of the K_{β} line will
decrease
C. the difference in wavelegth between the
K_{α} and K_{β} lines will decrease
D. none of the above

Answer: d

D Watch Video Solution

26. The K_{α} X-ray emission line of lungsten
accurs at $\lambda=0.021 \mathrm{~nm}$. What is the energy
difference between K and L levels in the atom?
A. 051 MeV
B. 1.2 MeV
C. 59 keV

D. 13.6 eV

Answer: c

D Watch Video Solution

Type 2

1. When a nucleus with atomic number Z and mass number A undergoes a radioactive decay process,
(i) Both Z and A will decrease, if the process is
α decay
(ii) Z will decrease but A will not change, if the process is $\beta^{+}-$decay
(iii) Z will increase but A will not change, if the process is $\beta-$ decay
(iv) Z and a will remain uncharged, if the prices is γ decay
A. both Z and A will decrease , if the process is α decay
B. Z will dcrease but A will not change, if the process is β^{+}decay
C. Z will increase but A will not change , if the process is $B \eta^{-}$decay
D. Z and A will remain unchanged, if the process is γ decay

Answer: a,b,c,d

D Watch Video Solution

2. When the nucleus o fan eletrically neutral atom undergoes a radioactive decay process, it will remain after he decay if the process is
A. an α decay
B. a β^{-}decay
C. a γ decay
D. a k-capture process

Answer: c,d

D Watch Video Solution
3. Which of the following assertions are correct?
(i) A neutron can decay to a proton only inside
a nucleus
(ii) A proton can change to a neutron only inside a nucleus
(iii) An isolated neutron can change into a proton
(iv) An isolated proton can change into a neutron
A. A neutron can decay to aprotion only inside a nucleus .
B. Aproton can change to a neutron only inside a nucleus.
C. An isolated neutron can change into a proton.

D. An isolated proton can change into a neutron.

Answer: b,c

D Watch Video Solution

4. Two identical nuclei A and B of the same radioactive element undergo β^{-}decay. A emits a β^{-}particle and changes to $A^{\prime} . B$
emits a β^{-}particle and then a γ-photon immediately afterwards, and changes to B.
$A . A^{\prime}$ and b have the same atomic and mass
number.
B. A^{\prime} and b^{\prime} have the same atomic munber
but different mass munbers
C. A ' and B ' have different atomic number but the same mass number.
D. A^{\prime} and B^{\prime} ae isotopes.
5. A and B are isotopes. B and C are isobars.

All three are radioactive. Which one of the following is true.
A. A,b and C must belong to the same element.
B. A,B and C may belong to the same element.

C. It is possible that A will change to B

 though a radioactive-decay process.D. It is possible that B will change to C
through a radioactive -decay process.

Answer: d

D Watch Video Solution

6. A nuclide A undergoes α-decay and another nuclides B undergoes β-decay
A. All the α-particles emitted by A will have almost the same speed.
B. The α-particles emitted by A amay have widely different speeds.
C. All the β-particles emitted by B may have widely different speeds. D.

Answer: a,d

- Watch Video Solution

7. The decay constant of a radioactive sample is λ. Its half-life is $T_{1 / 2}$ and mean life is T .
A. $T_{1 / 2}=\frac{1}{\lambda}, T=\frac{I n 2}{\lambda}$
B. $T_{1 / 2}=\frac{\operatorname{In} 2}{\lambda}, T=\frac{1}{\lambda}$
C. $T_{1 / 2}=\lambda \mathrm{in} 2, T=\frac{1}{\lambda}$
D. $T_{1 / 2}=\frac{\lambda}{I n 2}, T=\frac{I n 2}{\lambda}$

Answer: b

- Watch Video Solution

8. The count rate from $100 \mathrm{~cm}^{3}$ of a radioactive
liquid is c. Some of this liquid is now discarded. The count rate of the remaining liquid is found to be $c / 10$ after three halflives. The volume of the remaining liquid, in cm^{3}, is
A. 20
B. 40
C. 60
D. 80
9. In Bohr model of the hydrogen atom, let R,v and E represent the radius of the orbit, speed of the electron and the total energy respectively. Which of the following quantities are directly proportional to the quantum number n ?
A. VR
B. RE
C. $\frac{v}{E}$
D. $\frac{R}{E}$

Answer: a,c

D Watch Video Solution

10. Let v_{1} be the frequency of series limit of

Lyman series, v_{2} the frequency of the first line of Lyman series and v_{3} the frequency of series limit of Balmer series. Then which of the following is correct ?

$$
\text { A. } v_{1}-v_{2}=v_{3}
$$

$$
\begin{aligned}
& \text { B. } v_{2}-v_{1}=v_{3} \\
& \text { C. } v_{3}=\frac{1}{2}\left(v_{1}+v_{2}\right) \\
& \text { D. } v_{1}+v_{2}=v_{3}
\end{aligned}
$$

Answer: a

D Watch Video Solution

11. In an e^{-}transition inside a hydrogen atom, orbital angular momentum may change by (h=Planck's constant)
A. h
B. $\frac{h}{\pi}$
C. $\frac{h}{2 \pi}$
D. $\frac{h}{4 \pi}$

Answer: b,c

D Watch Video Solution
12. If a hydrogen atom emit a photon of energy 12.1 eV , its orbital angular momentum changes by ΔL. thenDelta L` equals
A. $1.05 \times 10^{-34} \mathrm{Js}$
B. $2.11 \times 10^{-34} \mathrm{Js}$
C. $3.16 \times 10^{-34} \mathrm{Js}$
D. $4.22 \times 10^{-34} \mathrm{Js}$

Answer: b

D Watch Video Solution
13. An electron with kinetic energy $=\mathrm{E}$ eV collides with a hydrogen atom in the ground state. The collision will be elastic
A. for all values of E
B. for $E<10.2 e V$
C. For $E<13.6 e V$
D. only fore $<3.4 e V$

Answer: d

D Watch Video Solution
14. In an excited state of hydrogen like atom an electron has total energy of $-3.4 e V$. If the
kinetic energy of the electron is E and its deBroglie wavelength is λ, then

$$
\begin{aligned}
& \text { A. } E=6.8 \mathrm{e} V, \lambda \sim 6.6 \times 10^{-10} \mathrm{~m} \\
& \text { B. } E=3.4 \mathrm{e} V, \lambda \sim 6.6 \times 10^{-10} \mathrm{~m} \\
& \text { C. } E=3.4 \mathrm{e} V, \lambda \sim 6.6 \times 10^{-11} \mathrm{~m} \\
& \text { D. } E=6.8 \mathrm{e} V, \lambda \sim 6.6 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

Answer: b

D Watch Video Solution

15. Let the potential energy of the hydrogen
atom in the ground state be zero. Then its
energy in the excited state will be
A. 10.2 eV
B. 13.6 eV
C. $23.8 e V$
D. $27.2 e V$

Answer: a

D Watch Video Solution
16. When a hydrogen atom emits a photon in going from $n=5$ to $n=1$, its recoil speed is almost
A. $10^{-4} \mathrm{~m} / \mathrm{s}$
B. $2 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
C. $4 m / s$
D. $8 \times 10^{2} \mathrm{~m} / \mathrm{s}$

Answer: c

D Watch Video Solution
17. The electron in a hydrogen atom makes a transition $n_{1} \rightarrow n_{2}$, where n_{1} and n_{2} are the principle quantum numbers of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. the possible values of n_{1} and n_{2} are

$$
\begin{aligned}
& \text { A. } n_{1}=4, n_{2}=2 \\
& \text { B. } n_{1}=8, n_{2}=2 \\
& \text { C. } n_{1}=8, n_{2}=1
\end{aligned}
$$

$$
\text { D. } n_{1}=6, n_{2}=3
$$

Answer: a,d

D Watch Video Solution

18. A beam of ultraviolet light of all wavelength
passes through hydrogen gas at room
temperature, in the x-direction. Assume that all photons emitted due to electron transitions inside the gas emerge in the y direction. Let A and B denote the lights
emerging from the gas in the x-and y directions respectively.
(i) Some of the incident wavelengths will be absent in A
(ii) Only those wavelengths will be present in B which are absent in A
(iii) B will contain some visible light
(iv) B will contain some infrared light
A. Some of the incident wavelengths will be absent inA
B. Only those wavelengths will be present in B which are absent in A
C. B willcontainSome viible light .
D. B will contain Some infrared light.

Answer: a,c,d

D Watch Video Solution

19. Whenever a hydrogen atom emits a photon in the Balmer series
A. it may emit another photon in the Balmer series
B. it must emit another photon in the

Lyman series
C. the second photon ,if emitted ,will have a wavelength of about 122 nm
D. it may emit a second photon, but the
wavelength of this photon cannot be
predicted

- Watch Video Solution

20. Which of the following pairs constitute very similar rediations?
(i) Hard ultraviolet rays and soft X-rays
(ii) Soft ultraviolet rays and hard X -rays
(iii) Very hard X -rays and low-frequency γ-rays
(iv) Soft X-rays and γ-rays
A. Hard ultraviolet rays and soft X-rays
B. Soft ultraviolet rays and soft X-rays
C. very hard X-rays and low - frequency

$$
\gamma-\text { rays }
$$

D. Doft X-rays and γ - rays

Answer: a,c

D Watch Video Solution

21. Let $\lambda_{\alpha}{ }^{\prime}, \lambda_{\beta}$, and $\lambda^{\prime}{ }_{\alpha}$ denote the
wavelength of the X-ray of the
K_{α}, K_{β}, and L_{α} lines in the characteristic X-
rays for a metal. Then.
A. $\lambda_{\alpha}^{\prime}>\lambda_{\alpha}>\lambda_{\beta}$
B. $\lambda_{\alpha}^{\prime}>\lambda_{\beta}>\lambda_{\alpha}$
C. $\frac{1}{\lambda_{\beta}}=\frac{1}{\lambda_{\alpha}}+\frac{1}{\lambda_{\alpha}^{\prime}}$
D. $\frac{1}{\lambda_{\alpha}}+\frac{1}{\lambda_{\beta}}=\frac{1}{\lambda_{\alpha}^{\prime}}$

Answer: a,c

D Watch Video Solution

22. The potential different across the Coolidge
tube is $20 k V$ and 10 mA current flows
through the voltage supply. Only 0.5% of the
energy carried by the electrons striking the largest is converted into X-ray. The power carried by the X -ray beam is p. Then
A. $0.1 W$
B. $1 W$
C. $2 W$
D. 10 W

Answer: b

D Watch Video Solution
23. When an electron moving at a high speed strikes a metal surface, which of the following are possible?
(i) The entire energy of the electron may be converted into an X-ray photon
(ii) Any fraction of energy of the electron may
be converted into an X-ray photon
(iii) The entire energy of the electron may get converted to heat
(iv) The electron may undergo elastic collision
with the metal surface
A. The entire energy of the electron may be
converted into an X-ray photon .
B. Any fraction of the energy of the
electron may be converted into an X-ray
phopton.
C. The entire energy of the electron may get converted to heat.
D. The electron may undergo elastic
collision with the metal surface.

- Watch Video Solution

24. In Coolidge tube, if f and λ represent the frequency and wavelength of K_{α}-line for a metal of atomic number Z, then identify the statement which represents a straight line
A. V against Z
B. $\frac{1}{v}$ against Z
C. \sqrt{v} against Z
D. v against \sqrt{Z}

Answer: c

- Watch Video Solution

