©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

MOTION OF CHARGED PARTICLES

Others

1. An electron of mass m_{e} initially at rest moves through a certain distance in a uniform
electric field in time t_{1}. A proton of mass m_{p} also initially at rest takes time t_{2} to move through an equal distance in this uniform electric field.Neglecting the effect of gravity, the ratio of t_{2} / t_{1} is nearly equal to
A. 1
B. $\left(m_{P} / m_{e}\right)^{1 / 2}$
C. $\left(\frac{m_{e}}{m_{P}}\right)^{1 / 2}$
D. 1836

Answer: B
2. An electron enters the region between the plates of a parallel plate capacitor at an angle θ to the plates. The plate width is l, the plate
separation is d. The electron follows the path shown just missing the upper plate. Neglect
gravity. Then,

A. $\tan \theta=2 d / l$
B. $\tan \theta=4 d / l$
C. $\tan \theta=8 d / l$
D. The data given is insufficient to find a relation between d, l, θ.

D Watch Video Solution

3. Which of the following statements is correct?
A. A charged particle canbe accelerated by a magnetic field.

B. A charged particle cannot be accelerated

by a magnetic field.
C. The speed of a charged particle can be increased by a uniform magnetic field.
D. The speed of a charged particle can be increaed by a nonuniform magnetic field.

Answer: A

D Watch Video Solution

4. A charged particle begins to move in a magnetic field, initially parallel to the field. The
direction of the field now begins to change, with its magnitude remaining constant
A. The magnitude of the force acting on
the particle will remain constant.
B. The magnitude of the force acting on
the particle will change.
C. The particle will always move parallel to
the field.
D. The speed of the particle will change.
5. A proton moves horizontally towards a vertical conductor carrying a current upwards.

It will be deflected
A. to the left
B. to the right
C. upwards
D. downwards
6. A charged particle moves with velocity
$\vec{v}=a \hat{i}+d \hat{j} \quad$ in \quad a magnetic field
$\vec{B}=A \hat{i}+D \hat{j}$. The force acting on the particle has magnitude F. Then,

$$
\begin{aligned}
& \text { A. } F=0 \text {, if } a D=d A \\
& \text { B. } F=0 \text { if } a D=-d A \\
& \text { C. } F=0 \text {, if } a A=-d D \\
& \text { D. } F \propto\left(a^{2}+b^{2}\right)^{1 / 2} \times\left(A^{2}+D^{2}\right)^{1 / 2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

7. A charged particle moves horizontally without deflection near the earth's surface. In this region
A. only electric field is present
B. only vertical magnetic field is present
C. only horizontal magnetic field is present
D. mutually perpendicular electric and

magnetic fields are present

Answer: A

D View Text Solution

8. Two very long straight parallel wires carry steady currents i and $2 i$ in opposite directions. The distance between the wires is d
. At a certain instant of time a point charge q is at a point equidistant from the two wires in
the plane of the wires. Its instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on t he charge at this instant is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} I q v}{2 \pi d} \\
& \text { B. } \frac{\mu_{0} I q v}{\pi d} \\
& \text { C. } \frac{2 \mu_{0} I q v}{\pi d} \\
& \text { D. zero }
\end{aligned}
$$

Answer: D

9. An electron is ejected from the surface of a long, thick straight conductor carrying a current, initially in a direction perpendicular to the conductor. The electron will
A. ultimately return to the conductor
B. move in a circular path around the conductor
C. gradually move away from the conductor
along a spiral
D. move in a helical path, with the

conductor as the axis

Answer: A

D Watch Video Solution

10. A particle with a specific charge s is fired with a speed v toward a wall at a distance d, perpendicular to the wall. What minimum magnetic field must exist in this region for the particle not to hit the wall?
A. $v / s d$
B. $2 v / s d$
C. $v / 2 s d$
D. $v / 4 s d$

Answer: A

D Watch Video Solution

11. A particle with charge q, moving with a momentum p, enters a uniform magnetic field normally. The magnetic field has magnitude B
and is confined to a region of width d , where
$d<\frac{p}{B q}$, The particle is deflected by an angle q in crossing the field. Then

$$
\begin{aligned}
& \text { A. } \sin \theta=\frac{B Q d}{p} \\
& \text { B. } \sin \theta=\frac{p}{B Q d} \\
& \text { C. } \sin \theta=\frac{B p}{Q d} \\
& \text { D. } \sin \theta=\frac{p d}{B Q}
\end{aligned}
$$

Answer: A
12. Electrons moving with different speeds enter a unifrom magnetic field in a direction perpendicular field. They will move along circular paths.
A. of the same radius
B. with larger radii for the faster electrons
C. with smaller radii for the faster electrons
D. either (b) or (c) depending on the magnitude of the magnetic field

Answer: B

D Watch Video Solution

13. A charged particle entering a magnetic field
from outside in a direction perpendicular to
the field
A. can never complete one rotation inside the field
B. may or may not complete one rotation
in the field dependent on its angle of
entry into the field
C. will always complete exactly half of a rotatioin before leaving the field
D. may follow a helical path depending on
its angle of entry into the field

Answer: A

- Watch Video Solution

14. A particle with charge $+Q$ and mass m enters a magnetic field to magnitude B existing only of the right of the boundary $Y Z$ The direction of the motion of the particle is perpendicular to the direction of B Let $T=2 \pi \frac{m}{Q B}$ The time spent by the particle in
the field will be

А. $T \theta$
B. $2 T \theta$
C. $T\left(\frac{\pi+2 \theta}{2 \pi}\right)$

$$
\text { D. } T\left(\frac{\pi-2 \theta}{2 \pi}\right)
$$

Answer: C

D Watch Video Solution

15. A charged particle moves undeflected in a region of crossed electric and magnetic fields.

If the electric field is switched off, the particle has an initial acceleration a. If the magnetic
field is switched off, instead of electric field, the particle will have an initial acceleration
A. equal to 0
B. $>a$
C. equal to a
D. $<a$

Answer: C

D Watch Video Solution

16. A charged particle begins to move from the origin in a region which has a uniform magnetic field in the x-direction and a uniform
electric field in the y-direction. Its speed is v
when it reaches the point (x, y, z). Then, v will depend
A. only on x
B. only on y
C. on both x and y but not z
D. on x, y and z

Answer: b

D Watch Video Solution
17. A charged particle moving in an electric field
A. must undergo change in velocity
B. must undergo change in speed
C. may not undergo change in velocity
D. may not undergo change in speed

Answer: A::B

D Watch Video Solution
18. A particle having charge to mass ratio 's' starts from rest in a region where the electric
field has constant direction but magnitude varying with time t as $E=E_{0} t$. In time t, it is observed that the particle acquire a velocity v after covering a distance x then
A. $v \propto s$
B. $v \propto \sqrt{s}$
C. $v \propto t$
D. $v \propto t^{2}$

Answer: A::D

D Watch Video Solution

19. In a parallel capacitor the potential difference between the plates is V,A particle of mass m and charge $-Q$ leaves the negative plate and reaches the positive plate at distance d in time t with a momentum p. Then
A. $m^{1 / 2}$
B. $Q^{1 / 2}$
C. $V^{1 / 2}$
D. V

Answer: A::B::C

D Watch Video Solution

20. A uniform electric field E is established between two parallel charged plates as shown in figure. An electron enter the field symmetrically between the plates with a speed u. The length of each plate is I. if the electron
does not stricke any of the plates, find the angle of deviation of the electron as it comes out of the field at the outer end of plates. $\left[\tan ^{-1}\left(\frac{e E l}{\mu^{2}}\right)\right]$

A. E
B. s
C. l^{2}
D. u^{-2}

Answer: A::B::C::D

D Watch Video Solution

21. In which of the following situations will a
charge experience no force?
A. It is stationary in an electric field.
B. It moves parallel to an electric field.
C. It is stationary in a magnetic field.
D. It moves parallel to a magnetic field.

Answer: C::D

D Watch Video Solution

22. When a charged particle moves in an elecltric or a magnetic field, its speed is v and acceleration is a
A. In a magnetic field v is constant if the particle moves in a circular path, and variable if it moves in a helical path.
B. In a magnetic field, v is always constant a may or may not ber zero
C. In an electric field, v can never remain
constant.
D. In a uniform electric field, a must be constant in magnitude and direction.

Answer: B::C::D

D Watch Video Solution

23. A proton moves horizontally towards a vertical conductor with a uniformly distributed positive charge. It will, undergo
A. horizontal deflection
B. vertical deflection
C. no deflection
D. retardation

Answer: C::D

D View Text Solution
24. Two parallel conductors carrying current in
the same direction attract each other, while two parallel beams of electrons moving in the same direction repel each other. Which of the following statement provide part of all of the reason for this ? (Choose the incorrect option)
A. The conductors are electrically neutral
B. The conductors produce magnetic fields
on each other.
C. The electron beams do not produce magnetic fields on each other.
D. The magnetic forces caused by the
electron beams on each other are
weaker than the electrostatic forces
between them.

Answer: A::B::D

D Watch Video Solution

25.
X, Y and Z are parallel plates. Y is given some positive charge. Two electrons A and B
start form X and Z respectively and reach Y
in times t_{A} and t_{B} respectively.
A. $t_{A}=t_{B}$
B. $t_{A}=\sqrt{2} t_{B}$
C. $2 t_{A}=t_{B}$
D. $t_{A}=2 t_{B}$

Answer: D

D View Text Solution

26. Two particles X and Y with equal charges, after being accelerated throung the same potential difference, enter a region of uniform magnetic field and describe circular paths of
radii R_{1} and R_{2} respectively. The ratio of the mass of X to that of Y is
A. $\left(R_{1} / R_{2}\right)^{1 / 2}$
B. R_{2} / R_{1}
C. $\left(R_{1} / R_{2}\right)^{2}$
D. R_{1} / R_{2}

Answer: C
(Watch Video Solution
27. A proton, a deuteron and an α - particle having the same kinetic energy are moving in circular trajectors in a constant magnetic field.

If r_{p}, r_{d} and r_{α} denote respectively the radii of the trajectories of these particles then

$$
\text { A. } r_{a}=r_{P}=r_{d}
$$

$$
\text { B. } r_{a}>r_{d}>r_{P}
$$

$$
\text { C. } r_{a}=r_{d}>r_{P}
$$

$$
\text { D. } r_{P}=r_{d}=r_{a}
$$

- Watch Video Solution

28. A neutral atom which is stationary at the origin in gravity -free space emits an α particle (A) in the z-direction. The product atom is P. A uniform magnetic field exists in the x-direction. Disregard the electrostatic forces between A and P.
A. A and P will move along circular parths of equal radii.
B. A has greater time period of rotation than P
C. A has greater kinetic energy than P
D. A and P will meet again somewhere in
the $y z$ plane.

Answer: A::C::D

D View Text Solution

29. A particle of charge $+q$ and mass m moving under the influence of a uniform electric field $E \hat{i}$ and uniform magnetic field
$B \hat{k}$ follows a trajectory from $P \rightarrow Q$ as shown in fig. The velocities at P and Q are $v \hat{i}$ and $-2 v \hat{j}$. which of the following statement (s) is/are correct?

A. $E=\frac{3}{4}\left(\frac{m v^{2}}{q a}\right)$
B. The rate of work done by the electric field at P is $\frac{3}{4}\left(\frac{m v^{3}}{a}\right)$
C. The rate of work done by the electric
field at P is 0.
D. The rate of work done by both the fields
at Q is 0

Answer: A::B::D

D Watch Video Solution

30. Two long, thin,parallel conductor are kept
very close to each other, without touching.

One carries a current I, and the other has charge λ per unit length. An electron moving parallel to the conductors is undeflected. Let $C=$ velocity of light.

$$
\begin{aligned}
& \text { A. } v=\frac{\lambda c^{2}}{i} \\
& \text { B. } v=\frac{i}{\lambda} \\
& \text { С. } c=\frac{i}{\lambda}
\end{aligned}
$$

D. The electron may be at any distance from the conductor.

Answer: A::D

D Watch Video Solution

31. A region has uniform electric and magnetic fields along the positive x-direction. An electron is fired from the origin at an angle $\theta\left(<90^{\circ}\right)$ with the x-axis. It will
(i) move along a helical path of increasing
pitch
(ii) move along a helical path of decreasing pitch initially
(iii) return to the $y z$ plane at some time
(iv) come to rest momentarily at some position
A. move along a helical path of increasing pitch
B. move along a helical path of decreasing
pitch initially
C. return to the $y z$ plane at some time

D. come to rest momentarily at some

 position
Answer: B::C

D Watch Video Solution

32. A charged particle P leaves the origin with speed $v=v_{0}$ at some inclination with the x axis. There is a uniform magnetic field B along the x-axis. P strikes a fixed target T on the x -
axis for a minimum value of $B=B_{0}$. P will

also strike T if

$$
\begin{aligned}
& \text { A. } B=2 B_{0}, v=2 v_{0} \\
& \text { B. } B=2 B_{0}, v=v_{0} \\
& \text { C. } B=B_{0}, v=2 v_{0} \\
& \text { D. } B=B_{0} / 2, v=2 v_{0}
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

33. A charged particle is fired at an angle θ to a uniform magnetic field directed along the x axis. During its motionalong a helical path, the particle will
A. never move parallel to the x-axis
B. move parallel to the x-axis once during every rotation for all values of θ
C. move parallel to the x-axis at least once
during every rotation if $\theta=45^{\circ}$

D. never move perpendicular to the x -

direction

Answer: A::D

D Watch Video Solution

34. A rectangular, horizontal conducting frame carries current, flowing clockwise as seen from above,. P is a point vertically above the centre of the frame. The direction of the magnetic field at P due to the current is
A. vertically upwards
B. horizontal, prallel to the loner sides of
the frame
C. vertically downwards

D. horizontal parallel to the diagonal of the

frame

Answer: A
35. Current flows through uniform square frames as shown. In which case is the magnetic field at the centre of the frame not zero?

D.

Answer: A

D Watch Video Solution

36. A long, narrow beam of electrons, of uniform cross-section consists of electrons moving with velcity v ($c=$ velocity of light).

The ratio of the electric field to the magnetic field at any point near the beam is
A. v
B. c
C. c^{2} / v
D. v^{2} / v

Answer: A

D Watch Video Solution

37. A long, straight conductor lies along the axis of a ring. Both carry current I. The force on the ring is proportional to
A. I
B. $I^{3 / 2}$
C. I^{2}
D. zero

Answer: A

D View Text Solution
38. Two loops are facing each other as shown in Figure. State whether the loops will attract each other or repel each other if current I_{1} is

A. in all cases
B. only if I is decreasing
C. only if I is decreasing
D. if I is changing

Answer: A

- Watch Video Solution

39. A pair of long, smooth, parallel, horizontal, conducting rails are joined to a cell at one end. There are no external electric or magnetic fields. A metal rod is placed on the rails. The rod will
A. remain stationary
B. move towards the cell

C. move away from the cell

D. oscillate

Answer: A

D Watch Video Solution

40. A flat, rectangular coil, carrying current is placed beside a long, straight conductor carrying current. The two are coplanar. The net force and net torque experienced by the coil are F and τ
A. $F=0, \tau=0$
B. $F \neq 0, \tau=0$
C. $F \neq 0, \tau \neq$
D. $F=0, \tau \neq$

Answer: A

D Watch Video Solution

41. A small bar magnet moves along the axis of
a flat, closed coil. The magnet will attract the
A. only when it moves towards the coil
B. only when it moves away from the coil
C. both a and b
D. only if its south pole is facing the coil

Answer: A

D Watch Video Solution
42.

A coil of self -inductance L and resistance R is connected to a resistance R and a cell of emf
E as shown. The switch is kept closed for a long time and then opened. The heat produced in the coil, after opening the switch is
A. $L E^{2} / 2 R^{2}$
B. $L E^{2} / 4 R^{2}$
C. $L E^{2} / 8 R^{2}$
D. $2 L E^{2} / 3 R^{2}$

Answer: A

D View Text Solution

43. If L and C denote inductance and capacitance then the quantity L / C has the same dimension as
A. time
B. $(\text { time })^{-1}$
C. resistance \times time
D. $(\text { resistance })^{2}$

Answer: A

D View Text Solution
44. A metal ring is placed in a magnetic field,
with its plane \perp to the field. If the
magnitude of the field begins to change, the ring will experience
A. a net force
B. a torque about its axis
C. a torque about a diameter
D. a tension along its length

Answer: A

D Watch Video Solution

45. A metal rod of length l pivoted at is upper end. It is released from a horizontal position.

There is a uniform magnetic field \perp to its plane of rotation. When it becomes vertical, the p.d. across its ends is proportional to
A. $l^{1 / 2}$
B. l
C. $l^{3 / 2}$
D. l^{2}

- Watch Video Solution

46. A thin, straight conductor lies along the axis of a hollow conductor of radius R. The two carry equal currents in the same direction.

The magnetic field B is plotted against the distance r from the axis. Which of the following best represents the resulting curve?

A.

Answer: A

- Watch Video Solution

47. A solenoid is connected to a cell. There is no resistance in the circuit. If the current I
flowing in the circuit is plotted against time t, the slope of the curve $(d I / d t)$ will
A. increase with time
B. decrease with time
C. remain constant

D. be almost infinite

Answer: C

48. In a region of space with mutually perpendicular electric and magnetic fields, a charged particle moves without deflection, with a speed very much smaller tan the speed of light in vacuum (c). The energy densities due to the electric and magnetic fields are u_{E} and u_{B} respectively.

$$
\text { A. } u_{E}=u_{B}
$$

$$
\text { B. } u_{E}<u_{B}
$$

C. $u_{E}>u_{B}$
D. the data is not sufficient to reach a conclusion.

Answer: A

D Watch Video Solution

49. A charged particle passes through a uniform electric field existing between the parallel plates of a capacitor. The length of each plate is l. Its initial velocity is parallel to
the plates. When it emerges from the field, its
deflection from its initial path is δ, and its
angular deflection from its initial directioin θ.

Then, θ is equal to
A. δ / l
B. $2 \delta / l$
C. $\delta / 2 l$
D. none of these

Answer: A

50. A particle of mass m and charge q is projected into a region having a perpendicular magnetic, field B. Find the angle of deviation of the particle as it comes out of the magnetic field if th,, width of the region is (b)
(a) $\frac{2 m v}{B q}(b)(m v) /(B q)(c)(m v) /(2 B q)^{\prime}$
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. π

Answer: A

D Watch Video Solution

51. A ring of area A and resistance R is placed
on the axis of a solenoid. The mutual inductance between them is M. When the
current in the solenoid changes at the rate of
I, the magnetic moment of the ring is
A. $A R M I$
B. $A I / R M$
C. $M R I / A$
D. $A M I / R$

Answer: A

D View Text Solution

52. A long straight conductor carries current I.

Assume that every charge carrier in it moves
with the same drift velocity v. An observer moves parllel to the conductor, in the direction of the current, with a constant
velocity $v / 2$. He will observe that the current
flowing in the conductor is
A. $I / 2$
B. I
C. $3 I / 2$
D. Zero

Answer: A
(Watch Video Solution
53. The flux linked with a coil is 0.8 Wb when
$2 A$ current flows thorugh it. If this current begins to increase at the rate of $0.4 \mathrm{~A} / \mathrm{s}$, the emf induced in the coil will be
A. 0.02 V
B. 0.04 V
C. 0.08 V
D. 0.16 V

Answer: A
54. A small flat coil carrying current has magnetic moment μ. It is placed in an external magnetic field B. The maximum potential energy of the system can be
A. $\mu B / 2$
B. μB
C. $\mu B I n 2$
D. $2 \mu B$

Answer: A

D Watch Video Solution

55. An electron moving in a circular orbit of radius r makes n rotation per secound. The magnetic field produced at the centre has magnitude
A. $\mu_{0} \omega e / 2 r$
B. $\mu_{0} \omega e / 2 \pi r$
C. $\mu_{0} \omega e / 4 \pi r$

D. $\mu_{0} \omega^{2} e / 4 \pi r$

Answer: A

- Watch Video Solution

56. A small, flat coil of resitance r is placed at
the centre of a large, closed coil of resistance
R. The coils are coplanar. Their mutual inductance is M. Initially a constant current i
was flowing in the inner coil. If this curent is
suddenly swithced off, what charge will

circulate in the outer coil?

A. $\operatorname{Mir} / R^{2}$
B. $M i R / r^{2}$
C. $M i / R$
D. $M i / r$

Answer: A
(Watch Video Solution
57.

A conductro $A B$ carrying current i is placed vertically above and parallel to a long horizontal conductor $X Y$ carrying current I.

Assume that $A B$ is free to move and that the wires through which currents enter and leave
it do no exert any forces on it. If $A B$ is in equilibrium

$$
\text { A. } i=I
$$

B. i and I must flow in the same direction
C. the equilibrum of $A B$ is usntable
D. if $A B$ is given a small vertical
displacement it will undergo oscillations

Answer: A

D View Text Solution

58. There is a uniform magnetic field B normal to the $x y$ plane. A conductor $A B C$ has length
$A B=l_{1}$, parallel to the x axis, and lengthh
$B C=l_{2}$ parallel to the y-axis. $A B C$ moved in
the $x y$ plane with velocity $v_{x} \hat{i}+v_{y} \hat{j}$. The potential difference between A and C is proportional to
A. $v_{x} l_{1}+v_{y} l_{2}$
B. $v_{x} l_{2}+v_{y} l_{1}$
C. $v_{x} l_{2}-v_{y} l_{1}$
D. $v_{x} l_{1}-v_{y} l_{2}$

Answer: A

59. A long bar magnet moves with constant velocity along the axis of a fixed metal ring. It stars form a large distance from the ring, passes through the ring and then moves away far from the ring. The current i flowing in the ring is plotted against time t. Which of the following best represents the resulting curve?

Answer: A

- View Text Solution

60. In a cell, or accumulatr battery, current
flows inside the cell from the negatilve plate to the positive plate when
A. it drives currents through an external resistance
B.it is being charged from an external
source
C.its emf is being measured by a
potentiometer and the balance position
has been reached.
D. when it is connected to a charged capacitor whose potential diefference is greater than its emf, and its positive and negative plates are connected to the plates of similar polarities of the capacitor.

Answer: A

D Watch Video Solution

