© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS
 (HINGLISH)

PRACTICE WORKSHEET 1

Straight Objective Type

1. A converging lens of focal length 20 cm and
diameter 5 cm is cut along the line $A B$. The part
of the lens shown shaded in the diagram is now used to form an image of a point P placed 30 cmaway from it on the line $X Y$. Which id perpendicualr to the plane of the lens.The image of P will be formed.

A. on $X Y$
B. 1 cm below XY

C. 0.5 cm below XY

D. 0.5 cm XY

Answer: C

D Watch Video Solution

2. A hydrogen atom in an excited state emits a photon which has the longest wavelength of the Paschen series. Further emissions from the atom cannot inculde the
A. longest wavelength of the Lyman series
B. second-longest wavelength of the Lyman
series
C. longest wavelength of the Balmer series
D. Second longest wavelength of the

Balmer series

Answer: D

D Watch Video Solution

3. The two ends of a long cylinder containing gas are maintained at different temperatures.

Which of the following quantites will have the same value throughout the cylinder?
A. Pressure
B. Density
C. The ratio of pressure to density
D. the number of molecules per unit
volume

Answer: A

D Watch Video Solution

4. Two conducting spheres of radii r and $3 r$ initially have charges $3 q$ \& q respectively. Their separation is much larger their radii. If they are joined by a conductor of high resistance, the force between them will :
A. increase continuously
B. decrease continuously
C. first increase and then decrease
D. first decrease and then increase

Answer: C

D Watch Video Solution

5. A train of length $l=350 \mathrm{~m}$ starts moving rectilinearly with constant acceleration
$w=3.0 \cdot 10^{-2} m / s^{2}, t=30 s$ after the start
the locomotive headlight is switched on (event
1), and $\tau=60 s$ after that event the tail signal
light is switched on (event 2). Find the distance between these events in the reference frames fixed to be train and to the

Earth. How and at what constant velocity V relative to the Earth must a certain reference
frame K move for the two events to occur in it at the same point?
A. $5 m s^{-1}$ in a direction opposite to the train's motion
B. $10 m s^{-1}$ in a direction opposite to the train's motion

C. $5 m s^{-1}$ in the same direction as the

 train's motionD. $10 m s^{-1}$ in the same direction as the train's motion

Answer: A

D Watch Video Solution

6. The $x z$ plane separates two media A and B
with refractive indices $\mu_{1} \& \mu_{2}$ respectively. A ray of light travels from A to B. Its directions
in the two media are given by the unut vectors, $\quad \vec{r}_{A}=a \hat{i}+b \hat{j} \quad \& \quad \vec{r}_{B} \alpha \hat{i}+\beta \hat{j}$ respectively where $\hat{i} \& \hat{j}$ are unit vectors in the $x \& y$ directions. Then :

$$
\begin{aligned}
& \text { A. } \mu_{1}=\mu_{2} \alpha \\
& \text { B. } \mu_{1} \alpha=\mu_{2} a \\
& \text { C. } \mu_{1} b=\mu_{2} \beta \\
& \text { D. } \mu_{1} \beta=\mu_{2} b
\end{aligned}
$$

Answer: A

7. A thin uniform rod of mass m and length l is

 free to rotate about its upper end. When it is at rest, it receives an impulse J as its lowestpoint, normal to its length immediately after impact.

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{l / g} \\
& \text { B. } 2 \pi \sqrt{2 l / 3 g} \\
& \text { C. } 2 \pi \sqrt{3 l / 2 g} \\
& \text { D. } 2 \pi \sqrt{l / 2 g}
\end{aligned}
$$

Answer: B

- Watch Video Solution

8.

A ray of light ab passing through air enters a
liquid of refractive index μ_{1} at the boundary

XY. In the liquid, the ray is shown as bc. The
angle between $a b$ and $b c$ (angle of deviation)
is δ. The ray then passes through a rectangular salb $A B C D$ of refractive index
$\mu_{2}\left(\mu_{2}>\mu_{1}\right)$ and emerges from the slab as
the ray de. The angle between $X Y$ and $A B$ is θ.

The angle between $a b$ and de is
A. δ
B. $\delta+\theta$
C. $\delta+\sin ^{-1}\left(\frac{\mu_{1}}{\mu_{2}}\right)$
D. $\delta+\theta-\sin ^{-1}\left(\frac{\mu_{1}}{\mu_{2}}\right)$

- View Text Solution

9. When unit mass of water boils to become steam at $100^{\circ} C$, it absorbs Q amount of heat.

The densities of water and steam at $100^{\circ} \mathrm{C}$ are ρ_{1} and ρ_{2} respectively and the atmospheric pressure is P_{0}. The increase in internal energy of the water is
A. Q
B. $Q+p_{0}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)$
C. $Q+p_{0}\left(\frac{1}{\rho_{2}}-\frac{1}{\rho_{1}}\right)$

$$
\text { D. } Q-p_{0}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)
$$

Answer: B

- Watch Video Solution

10.

In the figure, the potentiometer wire $A B$ of
length L and resistance $9 r$ is joined to the cell
D fo emf E and internal resistance r. The emf of
the cell C is $E / 2$ and its internal resistance is $2 r$.

The galvanometer G will show no deflection when the length $A J$ is

> A. $\frac{4 L}{9}$
> B. $\frac{5 L}{9}$
> C. $\frac{7 L}{18}$
> D. $\frac{11 L}{18}$

Answer: B
11. A solid sphere rests on a horizontal surface.

A horizontal impulse is applied at height h from centre. The sphere starts rolling just after the application of impulse. The ratio h / r will be

12. In a region of space, a uniform magnetic
field B exists in the y -direction A proton is
fired from the origin, with its initial velocity v making a small angle alpha with the y direction in the yz plane. In the subsequent motion of the proton

A. its x-coordinate can never be positive
B.its x - and z-coordinates cannot both be
zero at the same time
C. its z-coordinate can never be negative
D. its y-coodinate will be proportional to
the squuare time of flight

Answer: A

D Watch Video Solution

13.

Two
bodies A and B have the same surface area
and mass the bodies have absolute
temperatures T_{A} and T_{B} emissivities e_{a} and
e_{b} and specific heat capacities s_{A} and s_{B}. The
intensity, E , of radiation near a given
wavelength is shown plotted against the wavelength λ, of radiation for both the bodies. Which of the following is possible?

$$
\begin{aligned}
& \text { A. } T_{A}=T_{B}, e_{A}=e_{B}, s_{A} \neq s_{B} \\
& \text { B. } T_{A}=T_{B}, e_{A} \neq e_{B}, s_{A}=s_{B} \\
& \text { C. } T_{A} \neq T_{B}, e_{A}=e_{B}, s_{A}=s_{B} \\
& \text { D. } T_{A} \neq T_{B}, e_{A}=e_{B}, s_{A} \neq s_{B}
\end{aligned}
$$

Answer: B

D View Text Solution
14. $A B$ and $C D$ are long staright conductors, distance d apart, carrying a current I. The magnetic field on $B C$ due to the currents in
$A B$ and $C D$

A. $P \propto t$
B. $P \propto \frac{1}{t}$
C. $P \propto \frac{1}{\sqrt{1}}$
D. P is independent of t.

Answer: B

D Watch Video Solution

15. One cubic meter of an ideal gas ia at a pressure at $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and temperature 300 K .

The gas is allowed to expand at constant pressure to twice its volume by supplying
heat. If the change in internal energy in this process is $10^{4} \mathrm{~J}$, then the heat supplied is
A. 10^{15} atm
B. $10^{-10} \mathrm{~atm}$
C. $10^{-5} \mathrm{~atm}$
D. 1 atm

Answer: A

D Watch Video Solution
16. Two particle undergoes $S H M$ along parallel line with the same time period (T) and equal amplitude At a particular instant, one particle is at its extereme position while the other is at its mean position. They move in the same direction .They will cross each other after a further time

A. $T / 8$
B. $3 T / 8$

C. T/6

D. $4 \mathrm{~T} / 3$

Answer: B

D Watch Video Solution

17. In the circuit shown the cells are ideal and of equal emfs, the capacitance of the capacitor is C and the resistance of the resistor is R. X is first joined to Y and then to Z. After a long time, the total heat produced in the resistor
will be

A. equal to the energy finally stored in the
capacitor
B. half the energy finally stored in the
capacitor
C.twice the energy finally stored in the
capacitor
D. Four times the energy finally stored in
the capacitor

Answer: D

D Watch Video Solution

Assertion Reason Type

1. STATEMENT-1: Real images cannot be formed
by reflection of light in a convex mirror.

STATEMENT-2: Parallel rays incident on a convex mirror must diverge after reflection.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement-2 is True,

Statement-2 is not a correct explanation
for Statement-1.
C. Statement-1 is True , Statement-2 is False.
D. Statement-1 is False , Statement-2 is

True.

Answer: C

D Watch Video Solution

2. A tuning fork sounded together with a tuning fork of frequency 256 emits two beats.

On loading the tuning fork of frequency 256,
the number of beats heard are 1 per second. The frequency of tuning fork is
A. Statement-1 is True , Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement-2 is True,

Statement-2 is not a correct explanation
for Statement-1.
C. Statement-1 is True , Statement-2 is

False.

D. Statement-1 is False , Statement-2 is

True.

Answer: D

D Watch Video Solution

3. The Doppler effect is a wave characteristic.

Light and sound are both wave motion. Is there any difference in the Doppler effect in light and sound?
A. Statement-1 is True , Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True , Statement-2 is True,

Statement-2 is not a correct explanation
for Statement-1.
C. Statement-1 is True , Statement-2 is

False.
D. Statement-1 is False , Statement-2 is

True.

Answer: C

D Watch Video Solution

Linked Comprehension Type

1. This section contains a paragraph. Based upon this paragraph, three multiple- choice question (21-23) have to be answered. Each question has four choices (a, b, c and d), out of which only one is correct.

The result obtained in electrostatics using

Gauss's law can in same cases be used to obtain result in gravitational, and vice versa.

This is because both follow the inverse- square law of distance. We use of the following three rules
(1) For charge in electrostatics, the corresponding quantity in gravitation is mass.
(2) Electric intensity of electrostatics corresponds to gravitational intensity, or acceleration due to gravity, in gravitation.
(3)The constant $\quad k=\left(4 \pi \varepsilon_{0}\right)^{-1} \quad$ of
electrostatics corresponds to -G in gravitation.

The gravitation intensity near a thin infinite
sheet wiht mass σ per unit area has the magnitude
A. $4 \pi G \sigma$
B. $(1 / 4 \pi) G \sigma$
C. $2 \pi G \sigma$
D. $2 \pi \sigma / G$

Answer: C

D View Text Solution
2. This section contains a paragraph. Based upon this paragraph, three multiple- choice question (21-23) have to be answered. Each question has four choices (a, b, c and d), out of which only one is correct.

The result obtained in electrostatics using

Gauss's law can in same cases be used to obtain result in gravitational, and vice versa.

This is because both follow the inverse- square law of distance. We use of the following three rules
(1) For charge in electrostatics, the
corresponding quantity in gravitation is mass.
(2) Electric intensity of electrostatics corresponds to gravitational intensity, or acceleration due to gravity, in gravitation.
(3)The constant $k=\left(4 \pi \varepsilon_{0}\right)^{-1} \quad$ of
electrostatics corresponds to -G in gravitation.

The gravitational intensity at a distance r from
a long thread having λ mass per unit length
has the magnitude
A. $\lambda G / r$
B. $2 \lambda G / r$
C. $\lambda G / 2 r$

D. $\lambda G / 2 \pi r$

Answer: A

D View Text Solution

3. This section contains a paragraph. Based upon this paragraph, three multiple- choice question (21-23) have to be answered. Each question has four choices (a, b, c and d), out of which only one is correct.

The result obtained in electrostatics using

Gauss's law can in same cases be used to obtain result in gravitational, and vice versa.

This is because both follow the inverse- square law of distance. We use of the following three rules
(1) For charge in electrostatics, the corresponding quantity in gravitation is mass.
(2) Electric intensity of electrostatics corresponds to gravitational intensity, or acceleration due to gravity, in gravitation.
(3)The constant $\quad k=\left(4 \pi \varepsilon_{0}\right)^{-1} \quad$ of
electrostatics corresponds to -G in gravitation.

The acceleration dut to gravity at the surface
of the earth is g, and at a distance r from the centre of the earth is $g r / R$, where R is the radius of the earth. Inside a uniformly charged sphere of radius R and charge Q, the electric intensity at a distance $\mathrm{r}(r<R)$ from the centre has the magnitude
A. $k Q\left\{1-(r / R)^{2}\right\}$
B. $k Q r / R^{3}$
C. $k Q R / r^{3}$
D. $k Q(R-r) / R^{3}$

- View Text Solution

Matrix Matching Type

1. A beam of white light is incident on glass air interface from glass to air such that green light just suffers total internal reflection. The colors of the light which will come out to air are
