©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

PROPERTIES OF MATTER,FLUIDS

Type 1

1. The rotation of the earth about its axis
speeds up such that a man on the equator
becomes weightless. In such a situation, what would be the duration of one day?
A. $2 \pi \sqrt{R / g}$
B. $\frac{1}{2 \pi} \sqrt{R / g}$
C. $2 \pi \sqrt{R g}$
D. $\frac{1}{2 \pi} \sqrt{R g}$

Answer: A
(Watch Video Solution
2. Two identical trains A and B move with equal speeds on parallel tracks along the equator. A moves from east to west and B moves from west to east. Which train will exert greater force on the track?
A. A
B. B
C. They will exert equal force.
D. The mass and the speed of each train
must be known to reach a conclusion.

Answer: A

D Watch Video Solution

3. A small body of superdense material, whose mass is twice the mass of the earth but whose size is very small compared to the size of the earth, starts form rest at a height $H \ll R$ above the earth's surface, and reaches the earth's surface in time t. then t is equal to
A. $\sqrt{2 H / g}$
B. $\sqrt{H / g}$
C. $\sqrt{2 H / 3 g}$
D. $\sqrt{4 H / 3 g}$

Answer: C

D Watch Video Solution
4. The time period of a simple pendulum of infinte length is
A. infinite
B. $2 \pi \sqrt{R / g}$
C. $2 \pi \sqrt{g / R}$
D. $\frac{1}{2 \pi} \sqrt{R / g}$

Answer: B

D View Text Solution

5. The height of the point vertically above the earth's surface, at which acceleration due to gravtiy becomes 1% of its value at the surface is (Radius of the earth $=\mathrm{R}$)
A. $9 R$
B. 10 R
C. 99R
D. 100 R

Answer: A

D Watch Video Solution

6. At what height above the earth's surface is
the acceleration due to gravity 1% less than its
value at the surface ? $[\mathrm{R}=6400 \mathrm{~km}]$
A. 16 km
B. 32 km
C. 64 km
D. $32 \sqrt{ } 2 \mathrm{~km}$

Answer: B

D Watch Video Solution
7. Let the acceleration due to gravity be g_{1} at a height h above the earth's surface g_{2} at a
depth d below the earth's surface. If

$$
g_{1}=g_{2}, h \ll R \text { and } d \ll R \text { then }
$$

A. $h=d$
B. $h=2 d$
C. $2 \mathrm{~h}=\mathrm{d}$
D. it is not possible for g_{1} to be equal to g_{2}

Answer: C

D Watch Video Solution

8. If different planets have the same density but diferent radii then the acceleration due to
gravity (g) on the surface of the planet will depend on its radius (R) as

> A. $g \propto \frac{1}{R^{2}}$
> B. $g \propto \frac{1}{R}$
> C. $g \propto R$
> D. $g \propto R^{2}$

Answer: C

9. P is a point at a distance r from the centre of a spherical shell of mass M and radius a,
where $r<a$. The gravitational potential at P
is

$$
\begin{aligned}
& \text { A. }-\frac{G M}{r} \\
& \text { B. }-\frac{G M}{a} \\
& \text { C. }-G M \frac{r}{a^{2}} \\
& \text { D. }-G M\left(\frac{a-r}{a^{2}}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

10. A particle of mass m is placed inside a spherical shell, away from its centre. The mass of the shell is M.
A. The particle will move towards the centre.
B. The particle will move away from the centre, towards the nearest wall.
C. The particle will move towards the centres if $m<M$, and away from the centre if $m>M$.
D. The particle will remain stationary.

Answer: D

D Watch Video Solution

11. P is a point at a distance r from the centre of a solid sphere of radius a. The gravitational
potential at P is V . IF V is plotted as a function of r, which is the correct curve?

Answer: C
12. A point P lies on the axis of a fixed ring of mass M and radius a, at a distance a from its centre C. A small particle starts from P and reaches C under gravitational attraction only. Its speed at C will be.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 G M}{a}} \\
& \text { B. } \sqrt{\frac{2 G M}{a}\left(1-\frac{1}{\sqrt{ } 2}\right)} \\
& \text { C. } \sqrt{\frac{2 G M}{a}(\sqrt{ } 2-1)} \\
& \text { D. Zero }
\end{aligned}
$$

Answer: B

D Watch Video Solution

13. The escape velocity for a planet is v_{e}. A tunnel is dug along a diameter of the planet and a small body is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be
A. v_{0}
B. $\frac{v_{e}}{}$
$\sqrt{ } 2$
C. $\frac{v_{e}}{2}$
D. zero

Answer: B

- Watch Video Solution

14. If a small part separates from an orbiting satellite, the part will
A. fall to the earth directly
B. move in an spiral and reach the earth
after a few rotations
C. continue to move in the same orbit as
the satellite
D. move farther away from the earth
gradually

Answer: C

D Watch Video Solution
15. A satellite going round the earth in a circular orbit loses some energy due to a collision. Its speed is v and distance from the earth is d.
A. d will increase, v will increase
B. d will increase, v will decrease
C. d will decrease, v will decrease
D. d will decrease, v will increase.

Answer: D

16. The distance of two satellites from the
surface of the earth R and $7 R$. There time periods of rotation are in the ratio
A. $1: 7$
B. 1:8
C. 1: 49
D. $1: 7^{3 / 2}$

Answer: B
17. Inside a satellite orbiting very close to the earth's surface, water does not fall out of a glass when it is inverted. Which of the following is the best explanation for this?
A. The earth does not exert any force on
the watre.
B. The earth's force of attraction on the
water is exactly balanced by the created
by the satellite's motion.
C. The water and the glass have the same
acceleration, equal to g, towards the centre of the earth, and hence there is no relative motion between them.
D. The gravitational attraction between the
glass and the water balances the earth's
attraction on the water.

Answer: C

18. If a metal wire is stretched a little beyond
its elastic limit (or yield point), and released, it will
A. lose its elastic property completely
B. not contract
C. contract, but its final length will be greater than its initial length
D. contract only up to its length at the elastic limit

Answer: C

- Watch Video Solution

19. A metal wire of length L , area of crosssection A and Young's modulus Y behaves as a spring of spring constant k .
A. $k=Y A / L$
B. $k=2 Y A / L$
C. $k=Y A / 2 L$
D. $k=Y L / A$

Answer: A

D Watch Video Solution

20. One end of a long metallic wire of length
(L) is tied to the ceiling. The other end is tied to a massless spring of spring constant . (K.A) mass (m) hangs freely from the free end of the spring. The area of cross- section and the

Young's modulus of the wire are (A) and (Y) respectively. If the mass is slightly pulled down
and released, it will oscillate with a time period (T) equal to :

> A. $2 \pi \sqrt{m / k}$
> B. $2 \pi \sqrt{m(Y A+k L) / Y A k}$
> C. $2 \pi \sqrt{m Y A / k L}$
> D. $2 \pi \sqrt{m L / Y A}$

Answer: B

D Watch Video Solution

21. A cord of mass m length L, area of cross
section A and Young's modulus y is hanging
from a ceiling with the help of a rigid support.
The elogation developed in the wire due to its
own weight is
A. zero
B. $\frac{m g L}{2 A Y}$
C. $\frac{m g L}{A Y}$
D. $\frac{2 m g L}{A Y}$
22. A liquid drop at temperature t, isolated
from its surroundings, breaks into a number of droplets. The temperature of the droplets will be
A. equal to t
B. greater than t
C. less than t

D. either (a), (b) or (c) depending on the

surface tension of the liquid

Answer: C

D Watch Video Solution

23. Two vertical parallel glass plates are partially submerged in water. The distance between the plates is d and the length is l.

Assume that the water between the plates does not reach the upper edges of the plates
and the wetting is complete. The water will
rise to height ($\rho=$ density of water and $\alpha=$
surface tension of water)

$$
\begin{aligned}
& \text { A. } p=p_{0}-\frac{2 S}{d} \\
& \text { B. } p=p_{0}+\frac{2 S}{d} \\
& \text { C. } p=p_{0}-\frac{4 S}{d} \\
& \text { D. } p=p_{0}+\frac{4 S}{d}
\end{aligned}
$$

Answer: A

D Watch Video Solution
24. Prove that if two bubbles of radii r_{1} and
$r_{2}\left(r_{1}<r_{2}\right)$ come in contact with each other
then the radius of curvature of the common
surface $r=\frac{r_{1} r_{2}}{r_{2}-r_{1}}$

$$
\begin{aligned}
& \text { A. } r=\frac{r_{1}+r_{2}}{2} \\
& \text { B. } r=\frac{r_{1} r_{2}}{r_{1}-r_{2}} \\
& \text { C. } r=\frac{r_{1} r_{2}}{r_{1}+r_{2}} \\
& \text { D. } r=\sqrt{r_{1} r_{2}}
\end{aligned}
$$

Answer: B

25.

The value V in the bent tube is initially kept
closed. Two soap bubbles A (smaller) and B
(larger) are formed at the two open ends of
the tube. V is now opened, and air can flow freely between the bubbles.
A. There will be no change in the sizes of
the bubbles.
B. The bubbles will become of equal size.
C. A will become smaller and B will become larger.
D. The sizes of the two bubbles will become interchanged.

Answer: C

- Watch Video Solution

26. A liquid of density ρ and coefficient of viscosity η, flows with velocity v through a tube of diameter D. A quantity $R=\frac{\rho v D}{\eta}$ determines whether the flow will be streamlined or turbulent. R has the dimension of
A. velocity
B. acceleration
C. force
D. none of these

Answer: D

D Watch Video Solution

27. A piece of wood floats in water kept in a breaker. IF the beaker moves with a vertical acceleration a, the wood will
A. sink deeper in the liquid if a is upward
B. sink deeper in the liquid if a is
downward, with $a<g$
C. com out more from the liquid if a is downward, with $a<g$
D. remain in the same position relative to the water

Answer: D

D Watch Video Solution

28. The weight of a balloon is W_{1} when empty and W_{2} when filled with air. Both are weighed
in air by the same sensitive spring balance and under identical conditions.
A. $W_{1}=W_{2}$, as the weight of air in the balloon is offset by the force of buoyancy on it.
B. $W_{2}<W_{1}$ due to the force of buoyancy
acting on the filled balloon.
C. $W_{2}>W_{1}$, as the air inside is at a greater pressure and hence hs greater density than the air outside.
D. $W_{2}=W_{1}+$ weight of the air inside it.

Answer: C

D Watch Video Solution

A sealed tank containing a liquid of density ρ moves with a horizontal acceleration a, as
shown in the figure. The difference in pressure between the points A and B is
A. $h \rho g$
B. $l \rho a$
C. $h \rho g-l \rho a$
D. $h \rho g+l \rho a$

Answer: D

(Watch Video Solution
30. A U-tube containing a liquid moves with a horizontal acceleration a along a direction
joining the two vertical limbs. The separation between these limbs is d . The difference in their liquid levels is
A. $a d / g$
B. $2 d a / g$
C. $d a / 2 g$
D. $d \tan (a / g)$

- Watch Video Solution

31. The U-tube shown has a uniform crosssection. A liquid is filled in the two arms up to
heights h_{1} and h_{2}, and then the liquid is allowed to move. Neglect viscosity and surface tension. When the levels equalize in the two
arms, the liquid will

A. be at rest
B. be moving with an acceleration of

$$
g\left(\frac{h_{1}-h_{2}}{h_{1}+h_{2}+h}\right)
$$

C. be moving with a velocity of

$$
\left(h_{1}-h_{2}\right) \sqrt{\frac{g}{2\left(h_{1}+h_{2}+h\right)}}
$$

D. exert a net force to the right on the tube

Answer: C

D View Text Solution

32. The tube shown in figure is of uniform cross-section. Liquid flows through it at a constant speed in the direction shown by
arrows. Then the liquid exerts on the tube is:

A. a net force to the right
B. a net force to the left
C. a clockwise torque
D. an anticlockwise torque
33. Bernoulli's principal (or equation) is a consquence of
A. conservation of energy only
B. conservation of momentum only
C. conservation of angular momentum only
D. more than one of the above

Answer: A

34.

Water coming out of the mouth of a tap and falling vertically in stream line flow forms a tapering column. i.e., the area of cross-section of the liquid column decreases as it moves down which of the following is the most accurate explanation for this-
A. As the water move down, its speed
increases and hence its presence
decreases. It is then compressed by the
atmosphere.
B. Falling water tries to each a terminal
velocity and hence reduces the area of
cross-section to balance upward and
downward forces.
C. The mass of water flowing past any
cross-section must remain constant.

Also, water is almost incompressible.

Hence, the rate of volume flow must remain constant. As this is equal to velocity \times area, the decreases as velocity increases.
D. The surface tension causes the exposed
surface area of the liquid to decrease
continuously.

Answer: C

35. A cylindrical drum, open at the top, contains 30 litres of water. It drains out through a small opening at the bottom. 10 litres of water comes out in time t_{1}, the next 10 litres in a further time t_{2} and the last 10 litres in a further time t_{3} Then,

$$
\begin{aligned}
& \text { A. } t_{1}=t_{2}=t_{3} \\
& \text { B. } t_{1}>t_{2}>t_{3} \\
& \text { C. } t_{1}<t_{2}<t_{3}
\end{aligned}
$$

$$
\text { D. } t_{2}>t_{1}=t_{3}
$$

Answer: C

- Watch Video Solution

36. There are two identical small holes on the opposite sides of a tank containing a liquid.

The tank is open at the top. The difference in height between the two holes is h. As the
liquid comes out of the two holes. The tank will experience a net horizontal force

proportional to.

A. $\sqrt{ } h$
B. $h=2 d$
C. $h^{3 / 2}$
D. h^{2}

Answer: B

D Watch Video Solution

Type 2

1. A n object is weighed at the North Pole by a
beam balance and a spring balance, giving
reading of W_{B} and W_{S} respectively. It is again weighed in the same manner at the equator, giving readings of $W_{B}{ }^{\prime}$ and W_{S} ' respectively. Assume that the acceleration due to gravity is
the same everywhere and that the balances are sensitive.
A. $W_{B}=W_{S}$
B. $W_{B}{ }^{\prime}=W_{S}{ }^{\prime}$
C. $W_{B}=W_{B}{ }^{\prime}$
D. $W_{S}{ }^{\prime}<W_{S}$

Answer: A::C::D
(D) View Text Solution
2. Let ω be the angular velocity of the earth's rotation about its axis. Assume that the acceleration due to gravity on the earth's surface has the same value at the equator and
the poles. An object weighed by a spring balance gives the same reading at the equator as at a height h above the poles ($h \ll R$).

The value of h is
A. $\frac{\omega^{2} R^{2}}{g}$
B. $\frac{\omega^{2} R^{2}}{2 g}$
c. $\frac{2 \omega^{2} R^{2}}{g}$
D. $\frac{\sqrt{R g}}{\omega}$

Answer: B

- Watch Video Solution

3. Use the assumptions of the previous question. An object weighed by a spring balance at the equator gives the same reading as a taken at a depth d below the earth's surface at a pole $(d \ll R)$. The value d is

$$
\text { A. } \frac{\omega^{2} R^{2}}{g}
$$

B. $\frac{\omega^{2} R^{2}}{2 g}$
C. $\frac{2 \omega^{2} R^{2}}{g}$
D. $\frac{\sqrt{R g}}{\omega}$

Answer: A

D View Text Solution

4. A double star is a system of two stars of masses m and $2 m$, rotating about their centre of mass only under their mutual gravitational attraction. If r is the separation between these
two stars then their time period of rotation about their centre of mass will be

proportional to

A. $l^{3 / 2}$
B. $l \rho a$
C. $m^{1 / 2}$
D. $m^{-1 / 2}$

Answer: A::D

- Watch Video Solution

5. Three point masses are at the corners of an equilateral traingle of side r. Their separations do not change when the system rotates about the centre of the triangle. For this, the time period of rotation must be proportional to
A. $a^{3 / 2}$
B. a
C. m
D. $m^{-1 / 2}$

D Watch Video Solution

6. For a planet moving around the sun in an elliptical orbit, which of the following quantities remain constant?
A. The total energy of the sun plus planet
system
B. The angular momentum of the planet
about the sun
C. The force of attraction between the two

D. The linear momentum of the planet

Answer: A::B

D View Text Solution

7. The escape velocity for a planet is v_{e}. A particle starts from rest at a large distance
from the planet, reaches the planet only under gravitational attraction, and passes through a smooth tunnel through its centre. Its speed at the centre of the planet will be
A. v_{e}
B. $1.5 v_{e}$
C. $\sqrt{1.5} v_{e}$
D. $2 v_{e}$

Answer: C

- Watch Video Solution

8. The escape velocity for a planet is v_{e}. A particle is projected from its surface with a
speed v. For this particle to move as a satellite around the planet,

$$
\begin{aligned}
& \text { A. } \frac{v_{e}}{2}<v<v_{e} \\
& \text { B. } \frac{v_{e}}{\sqrt{2}}<v<v_{e} \\
& \text { C. } v_{e}<v<\sqrt{ } 2 v_{e} \\
& \text { D. } \frac{v}{\sqrt{ } 2}<v<\frac{v_{e}}{2}
\end{aligned}
$$

Answer: B

D View Text Solution
9. If a satellite orbits as close to the earth's
surface as possible,
A. its speed is maximum
B. time period of its rotation minimum
C. the total energy of the earth's plus
satellite' system is minimum
D. the total energy of the 'earth plus
satellite' system is maximum

Answer: A::B::C
10. For a satellite to orbit around the earth, which of the following must be true?
A. lt must be above the equator at some
time.
B. It cannot pass over the poles at any
time.
C. Its height above the surface cannot exceed $36,000 \mathrm{~km}$.
D. Its period of rotation must be

$$
>2 \pi \sqrt{R / g}
$$

Answer: A::D

D Watch Video Solution

11. A satellite close to the earth is in orbit above the equator with a period of rotation of
1.5 hours. If it is above a point P on the equtor at some time, it will be above P again after time
A. 1.5 hours
B. 1.6 hours if it is rotating from west to
east
C. $24 / 17$ hours if it is rotating from west to
east
D. $24 / 17$ hours if it is rotating from east to
west

Answer: B::D

12. A satellite is to be geo-stationary, which of the following are essential conditions?
A. It must always be stationed above the equator.
B. It must rotate from west to east.
C. It must be about $36,000 \mathrm{~km}$ above the
earth.
D. Its orbit must be circular, and not elliptical.

Answer: A::B::C::D

- Watch Video Solution

13. Two small satellies move in a circular orbits
around the earth, at disatnce r and $(r+d r)$
from the centre of the earth. Their time periods of rotation ate T and
$T+d T(\Delta r \ll r, \Delta T \ll T)$. Then
A. $\Delta T=\frac{3}{2} T \frac{\Delta r}{r}$
B. $\Delta T=-\frac{3}{2} T \frac{\Delta r}{r}$
C. $\Delta T=\frac{2}{3} T \frac{\Delta r}{r}$
D. $\Delta T=T \frac{\Delta r}{r}$

Answer: A

D Watch Video Solution

14. Let S be an imaginary closed surface enclosing mass m.Let $d \vec{S}$ be an element of area on S , the direction of $d \vec{S}$ being outward from S . Let \vec{E} be the gravitational intensity at
$d \vec{S}$. We define $\phi=\phi_{s} \vec{E} \cdot d \vec{S}$, the integration being carried out over the entire surface S.
A. $\phi=-G m$
B. $\phi=-4 \pi G m$
C. $\phi=-\frac{G m}{4 \pi}$

D. No relation of the type (a), (b) or (c) can

exist.

Answer: B

15. A small mass m is moved slowly from the surface of the earth to a height h above the surface. The work done (by an external agent) in doing this is
A. $m g h$, for all values of h
B. mgh , for $h \ll R$

$$
\begin{aligned}
& \text { C. } \frac{1}{2} m g R \text { for } \mathrm{h}=\mathrm{R} \\
& \text { D. }-\frac{1}{2} m g R, \text { for } \mathrm{h}=\mathrm{R}
\end{aligned}
$$

Answer: B::C

16. A solid sphere of uniform density and radius 4 units is located with its centre at the origin O of coordinates. Two sphere of equal radii 1 unit, with their centres at $A(-2,0,0)$ and $B(2,0,0)$ respectively, are taken out of the solid leaving behind spherical cavities as shown if
fig Then:

A. The gravitational force due to this object
at the origin is zero.
B. The gravitational force at the point $B(2,0,0)$ is zero.
C. The gravitational potential is the same at all points of the circle $y^{2}+z^{2}=36$.
D. The gravitational potential is the same at all points on the circle $y^{2}+z^{2}=4$

Answer: A::C::D

D Watch Video Solution

17. The magnitude of the gravitational field at distance r_{1} and r_{2} from the centre of a
uniform sphere of radius R and mass M are
F_{1} and F_{2} respectively. Then:

$$
\begin{aligned}
& \text { A. } F_{1} / F_{2}=r_{1} / r_{2} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { B. } F_{1} / F_{2}=r_{2}^{2} / r_{1}^{2} \text {, if } r_{1}>R \text { and } r_{2}>R \\
& \text { C. } F_{1} / F_{2}=r_{1} / r_{2} \text {, if } r_{1}>R \text { and } r_{2}>R \\
& \text { D. } F_{1} / F_{2}=r_{1}^{2} / r_{2}^{2} \text {, if } r_{1}<R \text { and } r_{2}<R
\end{aligned}
$$

Answer: A::B

D Watch Video Solution

18. An elastic metal rod will change its length

when it
A. falls vertically under its weight
B. is pulled along its length by a force acting at one end
C. rotates about an axis at one end
D. slides on a rough surface

Answer: B::C

19. The wires A and B shown in Fig. are made of the same material and have radii r_{A} and r_{B}, respectively. The block between them has a mass m. When the force F is $m g / 3$, one of
the wires breaks. Then

ШШلШШ

A

m
A. A will break before B if $r_{A}=r_{B}$.
B. A will break before B if $r_{A}<2 r_{B}$.
C. Either a to B may break if $r_{A}=2 r_{B}$.
D. The lengths of A and B must be known
to predict which wire will break.

Answer: A::B::C

D Watch Video Solution

20. A body of mass M is attached to the lower
end of a metal wire, whose upper end is fixed.
The elongation of the wire is l.
A. Loss in gravitational potential energy of

M is Mgl .
B. The elastic potential energy stored in
the wire is Mgl .
C. The elastic potential energy stored in
the wire is $1 / 2 \mathrm{Mgl}$.
D. Heat produced is $1 / 2 \mathrm{Mgl}$.

Answer: A::C::D

- Watch Video Solution

21. A metal wire of length L , area of cross-
section A and young's modulus Y is stretched
by a variable force F such that F is always slightly greater than the elastic forces of resistance in the wire. When the elongation of the wire is l
A. the work done by F is $\frac{Y a l^{2}}{2 L}$
B. the work done by F is $\frac{Y a l^{2}}{L}$
C. the elastic potential energy stored in the
wire is $\frac{Y a l^{2}}{2 L}$
D. no heat is produced during the
elongation

Answer: A::C::D

- Watch Video Solution

22. n drops of a liquid, each with surface energy E . joining to form a single drop
(a). Some energy will be released in the process
(b). Some energy will be absorbed in the process
(c). The energy released or absorbed will be $E\left(n-n^{2 / 3}\right)$
(d). the energy released or absorbed will be $n E\left(2^{2 / 3}-1\right)$
A. Some energy will be released in the process.
B. Some energy will be absorbed in the process.
C. The energy released or absorbed will be

$$
E\left(n-n^{2 / 3}\right)
$$

D. The energy released or absorbed will be

$$
n E\left[2^{2 / 3}-1\right]
$$

Answer: A::C

23. When an air bubble rise from the bottom
of a deep lake to a point just below the water
surface, the pressure of air inside the bubble
A. is greater than the pressure outside it
B. is less than the pressure outside it
C. increases as the bubble moves up
D. decreases as the bubble moves up

Answer: A:D

D Watch Video Solution
24. When a capillary tube is dipped in a liquid, the liquid rises to a height h in the tube. The
free liquid surface inside the tube is
hemispherical in shape. The tube is now pushed down so that the height of the tube outside the liquid is less than h. Then
A. The liquid will come out of the tube like in a small fountain.
B. The liquid will ooze out of the tube slowly.
C. The liquid will fill the tube but not come out of its upper end.
D. The free liquid surface inside the tube
will not be hemispherical.

Answer: C::D
(Watch Video Solution
25. A vertical glass capillary tube, open at both
ends, contains some water. Which of the
following shapes may not be taken by the water in the tube?

Answer: D

- Watch Video Solution

26. A spring balance reads W_{1} when a ball is
suspended from it. A weighing machine reads
W_{2} when a tank of liquid is kept on it. When
the ball is immersed in the liquid, the spring balance reads W_{3} and the weighing machine reads W_{4}. Then, which of the following are not correct?
A. $W_{1}>W_{3}$
B. $W_{1}<W_{3}$
C. $W_{2}<W_{4}$
D. $W_{2}>W_{4}$

Answer: A::C

- Watch Video Solution

27. In the previous question,
A. $W_{1}+W_{2}=W_{3}+W_{4}$
B. $W_{1}+W_{3}=W_{2}+W_{4}$
C. $W_{1}+W_{4}=W_{2}+W_{3}$
D. $W_{1}+W_{2}+W_{3}=W_{4}$

Answer: A

D Watch Video Solution

28.

A massless conical flask filled with a liquid is
kepth on t a table in a vacuum the force
exerted by the liquid on the bse of the flask is
W_{1}. Th force exerted by the flask on the table is W_{2}
A. $W_{1}=W_{2}$
B. $W_{1}>W_{2}$
C. $W_{1}<W_{2}$
D. The force exerted by the liquid on the
walls of the flask is $\left(W_{1}-W_{2}\right)$.

Answer: B::D

D Watch Video Solution
29. The vessel shown in the figure has a two sections of areas of cross-section A_{1} and A_{2}. A
liquid of density ρ fills both th sections, up to
a height h in each Neglect atmospheric
pressure. Choose the wrong option.

A. The pressure at the base of the vessel is
$2 h \rho g$.
B. The force exerted by the liquid on the base of the vessel is $2 h \rho g A_{2}$.
C. The weight of the liquid is $<2 h \rho g A_{2}$.
D. The walls of the vessel at the level X
exert a downward force $h \rho g\left(A_{2}-A_{1}\right)$ on the liquid.

Answer: A::B::C::D

- Watch Video Solution

30. A tank, which is open at the top, contains a
liquid up to a height H . A small hole is made in
the side of the tank at a distance y below the liquid surface. The liquid emerging from the hole lands at a distance x from the tank :

A. If y is increased from zero to H, x will first increase and then decrease.
B. x is maximum for $y=H / 2$.
C. The maximum value of x is H.
D. The maximum value of x will depend on
the density of the liquid.

Answer: A::B::C

D Watch Video Solution

31. In the figure, an ideal liquid flows through
the tube, which is of uniform cross section.

The liquid has velocities v_{A} and v_{B}, and
pressures P_{A} and P_{B} at the points A and B,
respectively. Then

A. $v_{A}=v_{B}$
B. $v_{B}>v_{A}$
C. $p_{A}=p_{B}$
D. $p_{B}>p_{A}$

Answer: A::D

Watch Video Solution

32. A liquid flows through a horizontal tube.

The velocities of the liquid in the two sections, which have areas of cross section A_{1} and A_{2} are v_{1} and v_{2} respectively. The difference in the levels of the liquid in the two vertical tubes is h. Then

A. The volume of the liquid flowing through the tube in unit time is $A_{1} v_{1}$.
B. $v_{2}-v_{1}=\sqrt{2 g h}$
C. $v_{2}^{2}-v_{1}^{2}=2 g h$
D. The energy per unit mass of the liquid is
the same in both sections of the tube.

Answer: A::C::D

D Watch Video Solution

33. A liquid of density ρ comes out with a
velocity v from a horizontal tube of area of
cross-section A. The reaction force exerted by
the liquid on the tube is F. Choose the incorrect option.
A. $F \propto v$
B. $F \propto v^{2}$
C. $F \propto A$
D. $F \propto \rho$

- Watch Video Solution

34. A rectangular block of mass m and area of cross-section A floats in a liquid of density ρ. If
it is given a small vertical displacement from equilibrium, it undergoes oscillation with a time period T.
(i) $T \propto \sqrt{m}$
(ii) $T \propto \sqrt{\rho}$
(iii) $T \propto \frac{1}{\sqrt{A}}$
(iv) $T \propto \frac{1}{\sqrt{\rho}}$.
A. $T \propto \sqrt{m}$
B. $T \propto \sqrt{\rho}$
C. $T \propto \frac{1}{\sqrt{A}}$
D. $T \propto \frac{1}{\sqrt{\rho}}$

Answer: A::C::D

D Watch Video Solution

35. A vertical U - tube contains a liquid. The total length of the liquid column inside the tube is 1 . When the liquid is in equilibrium, the
liquid surface in one of the arms of the U-tube is pushed down slightly and released. The entire liquid column will undergo a periodic motion.
A. The motion is not simple harmonic motion.
B. The motion is simple harmonic motion.
C. If it undergoes simple harmonic motion,
the time period will be $2 \pi \sqrt{l / g}$.
D. If it undergoes simple harmonic motion,
the time period will be $2 \pi \sqrt{l / 2 g}$.

Answer: B::D

- Watch Video Solution

