©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - D MUKHERJEE PHYSICS

(HINGLISH)

SOUND WAVES

Others

1. Two waves travelling in a medium in the x -
$y_{1}=A \sin (\alpha t-\beta x)$
$y_{2}=A \cos \left(\beta x+\alpha t-\frac{\pi}{4}\right)$, where y_{1} and y_{2} are the displacements of the particles of the medium t is time and α and β constants. The two have different :-
A. speeds
B. directions of propagation
C. wavelengths
D. frequencies

Answer: B
2. A sine wave has an amplitude A and wavelength λ. Let V be the wave velocity and v be the maximum velocity of a particle in the medium. Then
A. V cannot be equal to v

$$
\text { B. } V=v, \text { if } A=\lambda / 2 \pi
$$

C. $V=v$, if $A=2 \pi \lambda$
D. $V=v$, if $\lambda=A / \pi$

Answer: B

- Watch Video Solution

3. The equation $y=A \cos ^{2}\left(2 \pi n t-2 \pi \frac{x}{\lambda}\right)$ represents a wave with
A. amplitude a, frequency n and wavelenth λ
B. amplitude a frequency $2 n$ and wavelenth
2λ
C. amplitude $a / 2$, frequency $2 n$ and wavelength λ
D. amplitude $a / 2$, frequency $2 n$ and
wavelenth $\lambda / 2$

Answer: D

D Watch Video Solution

4. The amplitude of a wave disturbance propagating in the positive x-direction is given
by $y=\frac{1}{((1+x))^{2}}$ at time $t=0$ and by $((1+x))^{2}$
$y=\frac{1}{\left[1+(x-1)^{2}\right]} \quad$ at $\quad t=2 \sec$ onds,
x and y are in meters. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is $\mathrm{m} / \mathrm{s}^{\prime}$.
A. 0.5
B. 1
C. 2
D. 4

Answer: A

- Watch Video Solution

5. A wave representing by the equation
$y=a \cos (k x-\omega t)$ is suerposed with another
wave to form a stationary wave such that point $x=0$ is a node. The equation for the other wave is
A. $a \sin (k x+\omega t)$
B. $-a \cos (k x-\omega t)$

$$
\begin{aligned}
& \text { C. }-a \cos (k x+\omega t) \\
& \text { D. }-a \sin (k x-\omega t)
\end{aligned}
$$

Answer: C

- Watch Video Solution

6. A travelling wave in a stretched string is described by the equation
$y=A \sin (k x-\omega t)$ the maximum particle velocity is
A. $A \omega$
B. ω / k
C. $d \omega / d k$
D. x / t

Answer: A

D Watch Video Solution

7. A metal string is fixed between rigid supports. It is initially at negligible tensin. Its

Young modulus is Y, density ρ and coefficient
of thermal expansion is α. If it is now cooled
through a temperature $=t$, transverse waves
will move along it with speed

> A. $Y \sqrt{\alpha t / \rho}$
> B. $\alpha t \sqrt{Y / \rho}$
> C. $\sqrt{Y \alpha t / \rho}$
> D. $t \sqrt{Y \alpha / \rho}$

Answer: C

D Watch Video Solution
8. Two identical strings are stretched at tensions T_{A} and T_{B}. A truning fork is used to
set them in vibration. A vibrates in its
fundamental mode and B in its second harmonic mode.

$$
\begin{aligned}
& \text { A. } T_{A}=2 T_{B} \\
& \text { B. } T_{A}=4 T_{B} \\
& \text { C. } 2 T_{A}=T_{B} \\
& \text { D. } 4 T_{A}=T_{B}
\end{aligned}
$$

9. The tension of a string is inceased by 44%.

If its frequency of vibration is to remain
unchanged its length must be increased by
A. 44%
B. $\sqrt{44} \%$
C. 22%
D. 20%

- Watch Video Solution

10. In a sonometer wire, the tension is maintained by suspending a 50.7 kg mass from
the free end of the wire. The suspended mass has a volume of 0.0075 m 3 . The fundamental frequency of the wire is 260 Hz . If the suspended mass is completely submerged in water, the fundamental frequency will become (take $g=10 \mathrm{~ms}^{-2}$) [
A. 200 Hz
B. 220 Hz
C. 230 Hz
D. $240 H z$

Answer: D

D Watch Video Solution

11. A string of length 20 cm and linear mass density $0.40 \mathrm{~g} / \mathrm{cm}$ is fixed at both ends and is kept under a tension of $16 N$. A wave pulse is produced at $t=0$ nearj an end as shown in
figure which travels towards the other end.
when will the string have the shape shown in
the figure again? $\left(\in \times 10^{-2} s\right)$

A. $0.05 s$
B. $0.1 s$
C. $0.2 s$
D. $0.4 s \mathrm{~s}$

Answer: B

- Watch Video Solution

12. A string A has double the length, double
the tension, double the diameter and double the density as another string B. Their fundamental frequencies of vibration are n_{A} and n_{B} respectively. The ratio n_{A} / n_{B} is equal to
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4

Answer: A

D Watch Video Solution

13. The extension in a string obeying Hooke's
law is x. The speed of sound in the stretched
string is v. If the extension in the string is increased to $1.5 x$, the speed of sound will be
A. $1.22 v$
B. $0.61 v$
C. $1.5 v$
D. $0.75 v$

Answer: A

D Watch Video Solution

14. A cylinderical tube open at both ends, has a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in
water. The fundamental frequency of air column is now
A. $4 F$
B. $2 F$
C. F
D. $F / 2$

Answer: C
(Watch Video Solution
15. An open pipe is suddenly closed at one end
with the result that the frequency of third
harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental frequency of the open pipe. The fundamental
frequency of the open pipe is
A. 200 Hz
B. 300 Hz
C. 240 Hz
D. 480 Hz

D Watch Video Solution

16. The third overtone of an open organ pipe of length l_{0} has the same frequency as the third overtone of a closed pipe of length l_{c}. The ratio l_{0} / l_{c} is equal to
A. 2
B. $3 / 2$
C. $5 / 3$

D. $8 / 7$

Answer: D

D Watch Video Solution

17. A pipe of lengh $1 m$ is closed at one end.

The velocity sound in air is $300 \mathrm{~m} / \mathrm{s}$. The air column in the pipe will not resonate for sound of frequency
A. 75 Hz
B. 225 Hz
C. 300 Hz
D. 375 Hz

Answer: C

- Watch Video Solution

18. Two closed organ pipes, A and B have the same length. A is wider than B. They resonante in the fundamental mode at frequencies n_{A} and n_{B} respectively.
A. $n_{A}=n_{B}$
B. $n_{A}>n_{B}$
C. $n_{A}<n_{B}$
D. Either (b) or (c) depending on the ratio
of their diameters

Answer: C

- View Text Solution

19. An organ pipe filled with a gas at $27^{\circ} C$ resonates at 400 Hz in its fundamental mode.

If it is filled with the same gas at $90^{\circ} C$, the resonance frequency will be
A. 420 Hz
B. 440 Hz
C. $484 H z$
D. 512 Hz

Answer: B
20. A point source emits sound equally in all directions in a non-absorbing medium. Two points P and Q are at the distance of 9 meters and 25 meters respectively from the source. The ratio of amplitudes of the waves at P and Q is.....
A. $5: 3$
B. $3: 5$
C. $25: 9$

D. $625: 81$

Answer: C

D Watch Video Solution

21. A source of sound is in the shape of a long narrow cylinder radiating sound waves normal to the axis of the cylinder. Two points P and Q are at perpendicular distances of 9 m and 25
m from the axis. The ratio of the amplitudes of
the waves at P and Q is :-
A. $5: 3$
B. $\sqrt{5}: \sqrt{3}$
C. $3: 5$
D. $25: 9$

Answer: A

D Watch Video Solution

22. Two identical sound S_{1} and S_{2} reach at a point P is phase. The resultant loudness at
point P is $n \mathrm{~dB}$ higher than the loudness of S_{1}
the value of n is :
A. 2
B. 3
C. 4
D. 6

Answer: D
(Watch Video Solution
23. Sound of wavelenth λ passes through a

Quicke's tube, which is adjusted to give a maximum intensitiy I_{0}. Through what distance should the sliding tube be moved to give an intensity $I_{0} / 2$?
A. $\lambda / 2$
B. $\lambda / 3$
C. $\lambda / 4$
D. $\lambda / 8$

Answer: D
24. Two sources of sound of the same frequency produce sound intensities I and $4 I$ at a point P when used individually. If they are used together such that the sounds from them reach P with a phase differenceof $2 \pi / 3$, the intensity at P will be
A. $2 I$
B. $3 I$
C. $4 I$
D. $5 I$

Answer: B

D Watch Video Solution

25. If the waves of the form
$y=a \sin (\omega t-k x)$ nad $y=a \cos (k x-\omega t)$
are superposed, the resultant wave will have amplitude
A. 0
B. a
C. $\sqrt{2} a$
D. $2 a$

Answer: C

D View Text Solution

26. A racing car moving towards a cliff, sounds
its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If v
is the velocity of sound, then the velocity of the car is
A. $V / \sqrt{2}$
B. $V / 2$
C. $V / 3$
D. $V / 4$

Answer: C
(Watch Video Solution
27. The displacement of a particle in a medium
due to a wave travelling in the x - direction
through the medium is given by
$y=A \sin (\alpha t-\beta x)$, where $t=$ time, and α
and β are constants:
A. The frequency of the wave is α
B. The frequency of the wave is $\alpha /(2 \pi)$
C. The wavelength is $(2 \pi / \beta)$
D. The velocity of the wave is $\frac{\alpha}{\beta}$

- Watch Video Solution

28. A wave is represented by the equation
$y=A \sin \left(10 \pi x+15 \pi t+\frac{\pi}{3}\right)$
where x is in meter and t is in seconds. The expression represents :
A.a waves travelling in the positive x direction with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$
B.a wave travelling in the negative x direction with a velocity of $1.5 \mathrm{~m} / \mathrm{s}$
C. a wave travelling in the negative x direction with a wavelength of $0.2 m$ D. a wave travelling in the positive x direction with a wavelength of $0.2 m$

Answer: B::C::D

D Watch Video Solution

29. For a sine wave passing through a medium, let y be the displacement of a particle, v be its velocity and a be its acceleration :-
A. y, v and a are always in the same phase.
B. y and a are always in opposite phase.
C. Phase different between y and v is $\pi / 2$.
D. Phase different between v and a is $\pi / 2$

Answer: B::C::D

D Watch Video Solution

30. P, Q and R are three particles of a medium
which lie on the x-axis. A sine wave of wavelength λ is travelling through the
medium in the x-direction. P and Q always have
the same speed, while P and R always have the same velocity.

The minimum distance between -
(1) P and Q is λ
(2) P and Q is $\lambda / 2$
(3) P and R is $\lambda / 2$
(4) P and R is λ
A. P and Q is $\lambda / 2$
B. P and Q is λ
C. P and R is $\lambda / 2$

D. P and R is λ

Answer: A::D

D Watch Video Solution

31. A wave is represented by the equation
$y=A \sin 314\left[\frac{t}{0.5 s}-\frac{x}{100 m}\right]$
The frequency is n and the wavelength is λ

$$
\text { A. } n=2 H z
$$

$$
\text { B. } n=100 H z
$$

C. $\lambda=2 m$
D. $\lambda=100 \mathrm{~m}$

Answer: B::C::D

D Watch Video Solution

32. A plane progressive wave of frequency 25

Hz , amplitude $2.5 \times 10^{-5} \mathrm{~m}$ and initial phase
zero moves along the negative x-direction with
a velocity of $300 \mathrm{~m} / \mathrm{s}$. A and B are two points 6 m apart on the line of propagation of the
wave. At any instant the phase different between A and B is ϕ. The maximum difference in the displacements of particle at A and B is
Δ
A. $\phi=\pi$
B. $\phi=0$
C. $\triangle=0$
D. $\triangle=5 \times 10^{-5} m$

Answer: A::D

33. A sound waves passes from a medium A to
a medium B. The velocity of sound in B is
greater than in A. Assume that there is no
absorption or reflection at the boundary. As
the wave moves across the boundary:
A. the frequency of sound will not charge
B. the wavelength will increase
C. the wavelength will increase
D. the intensity of sound will not charge

Answer: A::B::D

- Watch Video Solution

34. In a stationary wave system, all the particles of the medium
A. have zero displacement simultaneously
at some instant
B. have
maximum
simultaneously at some instantate
displacement
C. are at rest simultaneously at some instant
D. sreach maximum velocity simultaneously at some instant

Answer: A::B::C::D

D Watch Video Solution

35. A string of length L is stretched along the x-axis and is rigidly clamped at its two ends. It undergoes transverse vibration. If n an integer,
which of the following relations may represent the shape of the string at any time :-

$$
\begin{aligned}
& \text { A. } y=A \sin \left(\frac{n \pi x}{L}\right) \cos \omega t \\
& \text { B. } y=A \sin \left(\frac{n \pi x}{L}\right) \sin \omega t \\
& \text { C. } y=A \cos \left(\frac{n \pi x}{L}\right) \cos \omega t \\
& \text { D. } y=A \cos \left(\frac{n \pi x}{L}\right) \sin \omega t
\end{aligned}
$$

Answer: A::B

- Watch Video Solution

36. The stationary waves set up on a string have the equation :
$y=(2 m m) \sin \left[\left(6.28 m^{-1}\right) x\right] \cos \omega t$
The stationary wave is created by two identical
waves , of amplitude A each , moving in opposite directions along the string. Then :
A. $A=2 m m$
B. $A=1 \mathrm{~mm}$
C. The smallest length of the string is 50 cm
D. The smallest length of the string is $2 m$

Answer: B::C::D

D Watch Video Solution

37. When a stretched string a length L viberates in its fundamental mode, the sound produced has wavelength $=L / 2$ in air. The velocity of sound in air is V. The velocity of the transverse waves on the string is
A. $V / 4$
B. $V / 2$
C. 2 V
D. 4 V

Answer: D

D Watch Video Solution

38. When a stretched string of length L
vibrating in a particular mode, the distance
between two nodes on the string is l. The sound produced in this mode of vibration
constitutes the $n t h$ overtone of the
fundamental frequency of the string.
A. $L=(n+1) l$
B. $L-(n-1) l$
C. $L=n l$

$$
\text { D. } L=(n+1 / 2) l
$$

Answer: A
(Watch Video Solution
39. A transverse sinusoidal wave of amplitude a, wavelength λ and frequency f is travelling on a stretched string. The maximum speed of any point in the string is $v / 10$, where v is the speed of propagation of the wave. If $a=10^{-3} m$ and $v=10 \mathrm{~ms}^{-1}$, then λ and f are given by

$$
\begin{aligned}
& \text { А. } \lambda=2 \pi \times 10^{-3} m \\
& \text { B. } \lambda=10^{-3} m \\
& \text { C. } f=10^{3} /(2 \pi) H z
\end{aligned}
$$

D. $f=10^{3} \mathrm{~Hz}$

Answer: A::C

D Watch Video Solution

40. A heavy unifrm rope hangs vertically from
the ceiling, with its lower end free. A disturbance on the rope travelling upward from the lower end has a velocyt v at a distance x from the lower end.

$$
\text { A. } v \propto 1 / x
$$

B. $v \propto x$
C. $v \propto \sqrt{x}$
D. $v \propto 1 / \sqrt{x}$

Answer: C

- Watch Video Solution

41. When the open organ pipe resonates in its
fundamental mode then at the centre of the pipe
A. the gas molecule undergo vitrations of maximum amplitude.
B. the gas molecule are at rests
C. the pessure of the gas is constant
D. the pressure of the gas undergoes
maximum variation

Answer: B::D
(Watch Video Solution
42. In as resonance -column experiment, a long
tube, open at the top, is clamped vertically. By
a separate device, water level inside the tube
can be moved up or done. The section of the
tube from the open end to thewater level acts
as a cloed organ pipe. A vibrating tuning fork
is held above the open end, and the water
level is gradually pushed down. The first and
the second resonance occur when the water
level is 24.1 cm and 74.1 cm respectively below
the open end. The diameter of the tube is 2 cm
A. 2 cm
B. 3 cm
C. 4 cm
D. 5 cm

Answer: B

D View Text Solution

43. In a mixture of gases, the average number of degrees of freedom per molecule is 6 . the
rms speed of the molecules of the gas is C. the velocity of sound in the gas is
A. $c / \sqrt{2}$
B. $3 c / 4$
C. $2 c / 3$
D. $c / \sqrt{3}$

Answer: C

- Watch Video Solution

44. The velocity of sound in dry air is V_{d}, and in moist air it is V_{m}. The velocities are measured under the same conditions of temperature and pressure. Which of the following statements is fully correct?
A. $V_{d}>V_{m}$ because dry air has lower density than moist air.
B. $V_{d}<V_{m}$ because moist air has lower density than dry air.
C. $V_{d}>V_{m}$ because the bulk modulus of dry air is greater than that of moist air.
D. $V_{d}<V_{m}$ because the bulk modulus of
moist air is greater than that of dry air.

Answer: B

- Watch Video Solution

45. When we hear a sound, we can identify its source from
A. the frequency of the sound
B. the amplitude of the sound
C. the wavelength of the sound
D. the overtones present in the sound

Answer: D

D Watch Video Solution

46. Sounds from two identical sources S_{1} and
S_{2} reach a point P. When the sounds reach directly, and in the same phase, the intensity
at P is I_{0}. The power of S_{1} is now reduced by
64% and the phase difference between S_{1}
and S_{2} is varied continuously. The maximum
and minimum intensities recorded at P are
now $I_{\text {max }}$ and $I_{\text {min }}$
A. $I_{\max }=0.64 I_{0}$
B. $I_{\min }=0.36 I_{0}$
C. $I_{\text {max }} / I_{\text {min }}=16$
D. $I_{\max } / I_{\text {min }}=1.64 / 0.36$

Answer: A::C
47. A vibrating string produces 2 beats per secod when sounded with a turning fork of frequency 256 Hz . Slightly increasing the tension in the string produces 3 beats per second. The initial frequency of the string may have been
A. 253 Hz
B. 254 Hz
C. 258 Hz

D. 259 Hz

Answer: B::C::D

D Watch Video Solution

48. A whistle giving out $450 H_{Z}$ approaches a stationary observer at a speed of $33 \mathrm{~m} / \mathrm{s}$. The frequency heard the observer (in H_{Z}) is (speed of sound $=330 \mathrm{~m} / \mathrm{s}$)
A. 409
B. 429
C. 517
D. 500

Answer: D

- Watch Video Solution

49. A car is moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ towards huge wall. The driver sounds a horn of frequency 165 Hz . If the speed of sound in
air is $335 m / s$, the number of beats heard per second by the driver is
A. 3
B. 4
C. 5
D. 6

Answer: C
(Watch Video Solution
50. A railway engine whistling at a constant frequency moves with a constant speed. It goes past a stationary observer standing beside the railway track. The frequency (n) of the sound heard by the observer is plotted agains time (t). Which of the following best represents the resulting curve?

Answer: D

- Watch Video Solution

51. Two starts P and Q have slightly different
surface temperature T_{P} and T_{Q} respectively,
with $T_{P}>T_{Q}$. Both starts are receding from
the earth with speeds v_{P} and v_{Q} relative to
the earth. The wavelength of light at which
they radiate the maximum energy is found to be the same for both.

$$
\text { A. } v_{P}>v_{Q}
$$

$$
\text { B. } v_{P}<v_{Q}
$$

C. $v_{P}=v_{Q}$ and the size of $Q>$ the sizer of P
D. Nothing can be said regarding v_{P} and v_{Q} from the given data.

Answer: A

D Watch Video Solution

52.

Assume that the sun rotates about an axis
through its centre and perpendicular to the plane of rotatin of the earth about the sun.

The appearange of the sun, from any one pont on the earth, is shown. Light belonging to a
particular spectral line, as received from the points A, B, C and D on the edge of the sun, are analyzed
A. Light from all four points have the same
wavelength.
B. Light from C has greater wavelength
than the light from D.
C. Light from D has greater wavelength
than the light from C.

D. Light from A has the same wavelength

as the lighht from B

Answer: C::D

D Watch Video Solution

