©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DHANPAT RAI \& CO PHYSICS

(HINGLISH)

Kinetic Theory of gases

Exercise

1. State and explain Boyle's law. Represent the
law graphically.

Watch Video Solution

2. State and explain Charle's law.

D Watch Video Solution

3. State and explain (i) Gay lussac's law and (ii)

Gas equation. Distinguish clearly between R and r for a gas.

- Watch Video Solution

4. State and derive the perfect or ideal gas equation.

- Watch Video Solution

5. Define universal gas constant. Give its SI and CGS units.

D Watch Video Solution

6. Determine the numerical values of R and k_{B}
7. What is an ideal gas? Why do the real gases
show deviations from ideal behaviour? Show these deviations graphically.

D Watch Video Solution

8. Air is filled in a bottle and it is corked at $35^{\circ} C$
. If the cork can come out at 3 atmospheric pressure, then upto what temperature should the bottle be heated to remove the cork ?
9. A narrow uniform glass tube contains air enclosed by 15 cm long thread of mercury. When the tube is vertical with open end uppermost, the air column is 30 cm long. When the tube is inverted, the length of air column becomes 45 cm . Calculate the atmospheric pressure.
10. An open glass tube is immersed in mercury so that a length of 8 cm of the tube projects
above the mercury. The tube is then closed and raised through 44 cm . What length of the tube will be occupied by the air after it has been raised? Given 1 atm $=76 \mathrm{~cm}$ of Hg .

D Watch Video Solution

11. An empty barometric tube 1 m long is lowered vertically (mouth downwards) into a tank of water. What will be the depth above the
water level in the tube, when the water has risen

20 cm inside the tube ? Take atmospheric pressure as 10.4 m column of water.

D Watch Video Solution

12. When a gas filled in a closed vessel is heated through $1^{\circ} C$, its pressure increases by 0.4%.

What is the initial temperature of gas?

D Watch Video Solution
13. Molecular weight of oxygen is 32 . At S.T.P.,
volume of $1 g$ of oxygen is $700 \mathrm{~cm}^{3}$. Find the value of gas constant R.

- Watch Video Solution

14. A $3000 \mathrm{~cm}^{3}$ tank contains oxygen at $20^{\circ} \mathrm{C}$ and the gauge pressure is $2.5 \times 10^{6} \mathrm{~Pa}$. Find the mass of the oxygen in the tank. Take 1 atm $=10^{5} \mathrm{~Pa}$.
15. A vessel of volume $8.0 \times 10^{-3} \mathrm{~m}^{3}$ contains
an ideal gas at $300 K$ and $200 K P a$. Calculate
the amount of the gas (in moles) leaked assuming that the temperature remains constant.

D Watch Video Solution

16. A vessel of volume $1660 \mathrm{~cm}^{3}$ contains 0.1 mole of oxygen and 0.2 mole of nitrogen. If the temperature of the mixture is $300 K$, find its pressure.

- Watch Video Solution

17. A vessel of volume, $V=5.0$ litre contains
$1.4 g$ of nitrogen at a temperature $T=1800 K$.
Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

- Watch Video Solution

18. State the assumptions of the kinetic theory of gases.

- Watch Video Solution

19. On the basis of kinetic theory of gases, explain how does a gas exert pressure?

D Watch Video Solution

20. Derive an expression for pressure exterted by an ideal gas?
21. Show that the average K.E, of a gas molecule is directly proportional to the temprature of the
gas. Hence give the kinetic interpretation of temprature.

D Watch Video Solution

22. Calculate (i) rms velocity and (ii) mean kinetic
energy of one gram molecule of hydrogen at
STP. Given density of hydrogen at STP is $0.09 \mathrm{kgm}^{-3}$.

Watch Video Solution

23. Calculate the rms velocity of molecules of a gas of density 1.5 glitre $^{-1}$ at a pressure of $2 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$.

D Watch Video Solution

24. The r.m.s. velocity of the molecules of a gas at S.T.P. is $485.6 \mathrm{~ms}^{-1}$. Calculate the density of the gas.

- Watch Video Solution

25. Calculate the value of Boltzmann constant
k_{B}, Given $R=8.3 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{mol}-K$ and Avogadro number, $N=6.03 \times 10^{26} / \mathrm{kg}-\mathrm{mol}$.

- Watch Video Solution

26. Kinetic energy of oxygen molecule at $0^{\circ} C$ is
$9.4 \times 10^{-21} \mathrm{~J}$. Calculate Avogadro's number, when $R=8.31 J$ mole $^{-1} K^{-1}$.
27. Calculate the total K.E. of 1 g of nitrogen at $300 K$. Molecule weight of nitrogen $=28$.

- Watch Video Solution

28. Calculate for hydrogen at 27°
(i) KE of one gram mole of the gas
(ii) KE of one gram of the gas
(iii) root mean square velocity of the molecule.

Given, molecule wt. Of hydrogen $=2$.
29. Calculate for hydrogen at 27°
(i) KE of one gram mole of the gas
(ii) KE of one gram of the gas
(iii) root mean square velocity of the molecule.

Given, molecule wt. Of hydrogen $=2$.

D Watch Video Solution

30. Calculate for hydrogen at 27°
(i) KE of one gram mole of the gas
(ii) KE of one gram of the gas
(iii) root mean square velocity of the molecule.

Given, molecule wt. Of hydrogen $=2$.

D Watch Video Solution

31. At what temperature the average value of the kinetic energy of the molecule of a gas will be $1 / 3$ of the average value of kinetic energy at $27^{\circ} C ?$
32. If the temperature of air is increased from
$27^{\circ} \rightarrow 227^{\circ}$, in what ratio will the average kinetic energy of its molecules be increased?

D Watch Video Solution

33. Kinetic theory of gases

D Watch Video Solution

34. Derive Charles's law on the basis of kinetic theory of gases.
35. Derive Gay Lussac's law on the basis of kinetic theory of gases.

D Watch Video Solution

36. Derive perfect gas equation on the basis of kinetic theory of gases.

D Watch Video Solution
37. Derive Avogadro's law on the basis of kinetic theory of gases.

- Watch Video Solution

38. Deduce Graham's law of diffusion from
kinetic theory of gases using experssion for pressure.

- Watch Video Solution

39. Derive Dalton's law of particial pressures on the basis of kinetic theory of gases.

- Watch Video Solution

40. Explain Maxwell distribution of molecular speed with necessary graph.

D Watch Video Solution

41. Define most probable speed, average speed
and root mean square speed of a gas. How are
they related to each other?

D Watch Video Solution

42. The velocities of ten particles in $m s^{-1}$ are $0,2,3,4,4,4,5,5,6,9$. Calculate
(i)average speed and
(ii)rms speed
(iii) most probable speed.
43. The velocities of ten particles in $m s^{-1}$ are
$0,2,3,4,4,4,5,5,6,9$. Calculate
(i)average speed and
(ii)rms speed
(iii) most probable speed.

D Watch Video Solution

44. The velocities of ten molecules of any gas
are \quad given $\quad v, 0,2 v, 4 v, 3 v, 2 v, v, 3 v, 5 v, v$.
Calculate their root mean square velocity.
45. Calculate the rms velocity of the molecules of ammonia at S.T.P. Given molecular weight of ammonia $=17$.

D Watch Video Solution

46. Show that the rms velocity of O_{2} molecule is
$\sqrt{2}$ times that of SO_{2}. Atomic weight of sulphur is 32 and atomic weight of oxygen is 16.
47. Calculate the temperature at which the rms velocity of SO_{2} is the same as that of oxygen at $27^{\circ} C$.

D Watch Video Solution

48. Estimate the temperature at which the oxygen molecules will have the same rms velocity as hydrogen molecules at $150^{\circ} C$.

Molecular weight of oxygen is 32 and that of hydrogen is 2.
49. If root mean sqauare velocity of the molecules of hydrogen at NTP is $1.84 \mathrm{kms}^{-1}$, calculate the rms velocity of oxygen molecules at NTP. Molecular weights of hydrogen and oxygen are 2 and 32 respectively.

D Watch Video Solution

50. The density of carbon dioxide gas at $0^{\circ} C$ and at pressure $1.0 \times 10^{5} \mathrm{Nm}^{-2}$ is $1.98 \mathrm{kgm}^{-3}$.

Find the rms velocity of its molecules at $0^{\circ} C$
and also at $30^{\circ} C$, assuming pressure to be constant.

- Watch Video Solution

51. Find the degrees of monoatomic, diatomic and triatomic gas molecules.

D Watch Video Solution

52. According to the law of equipartition of energy, the energy associated with each degree
of freedom is :

D Watch Video Solution

53. Using the law of equipartition of energy, detemine the values of C_{p}, C_{V} and γ for monoatomic gas.

D Watch Video Solution

54. Using the law of equipartition of energy, detemine the values of C_{p}, C_{V} and γ for
diatomic gas.

D Watch Video Solution

55. Using the law of equipartition of energy, detemine the values of C_{p}, C_{V} and γ for triatomic gas.

D Watch Video Solution
56. Using the law of equipartition of energy, obtain a relation between the degrees of
freedom f and the specific heat ratio γ of a polyatomic gas.

- Watch Video Solution

57. Calculate the total number of degree of freedom for a mole of diatomic gas at STP.

- Watch Video Solution

58. Calculate the number of degrees of freedom in $10 \mathrm{~cm}^{3}$ of O_{2} at N.T.P.
59. Calculate the number of degree of freedom in 15 c.c. Of nitrogen at N.T.P.?

D Watch Video Solution

60. The specific heat of argon at constant
volume is $0.075 \mathrm{kcalkg}^{-1} \mathrm{~K}^{-1}$. Calculate its
atomic weight. Take $R=2$ calmol $^{-1} K^{-1}$.

- Watch Video Solution

61. A certain gas possessess 3 degree of freedom
corresponding to the translational motion and

2 degrees of freedom corresponding to rotational motion. (i) What is the kinetic energy
of translational motion of one such molecule of gas at 300 K ? (ii) If the temperature is raised by
$1^{\circ} C$, what energy must be supplied to the one molecule of the gas. Given Avogadro's number N $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and Boltzmann's constant

$$
k_{B}=1.38 \times 10^{-23} \mathrm{Jmo}^{-1} \mathrm{~K}^{-1}
$$

- Watch Video Solution

62. A certain gas possessess 3 degree of
freedom corresponding to the translational motion and 2 degrees of freedom corresponding to rotational motion. (i) What is the kinetic energy of translational motion of one such molecule of gas at 300 K ? (ii) If the temperature is raised by $1^{\circ} C$, what energy must be supplied to the one molecule of the gas. Given Avogadro's number $\mathrm{N}=$ $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and Boltzmann's constant $k_{B}=1.38 \times 10^{-23} \mathrm{Jmo}^{-1} \mathrm{~K}^{-1}$.
63. How does specific heat of a solid vary with temperature?

- Watch Video Solution

64. What are the different ways of increasing
the number of molecules collisions per unit time against the walls of the vessel containing a gas
65. What is an ideal gas ? Explain its main characteristics.

D Watch Video Solution

66. Why do the gases at low temperature and high pressure show large deviations from ideal behaviour?
67. On reducing the volume of the gas at constant temperature, the pressure of the gas increases. Explain on kinetic theory.

- Watch Video Solution

68. On driving the scooter for a long time, the air pressure in the tyres slightly increases. Why?

D Watch Video Solution

69. When a gas is heated, its temperature increases. Explain it on the basis of kinetic theory of gases.

D Watch Video Solution

70. What type of motion is associated with the molecules of a gas ?

D Watch Video Solution
71. On which factors does the average KE of gas molecules depend : nature of gas, its temperature, its volume?

D Watch Video Solution

72. What do you mean by the r.m.s. speed of the molecules of a gas ? Is r.m.s. speed same as the average speed ?
73. The ratio of vapour densities of two gases at the same temperature is 8:9. Compare the rms velocities of their molecules.

D Watch Video Solution

74. What is the average velocity of the molecules of an ideal gas ?

D Watch Video Solution
75. Given a sample of $1 \mathrm{~cm}^{3}$ of hydrogen and 1 cm^{3} of oxygen both at S.T.P. Which sample has a larger number of molecules?

D Watch Video Solution

76. At what temperature does all molecular motion cease ? Explain.

D Watch Video Solution

77. Molecular motion ceases at zero kelvin.

Explain.

- Watch Video Solution

78. Why temperature less than OK is not possible?

- Watch Video Solution

79. For an ideal gas, interval energy can only be translational K.E. Why ?

- Watch Video Solution

80. Obtain the dimensional formula for R used in the ideal gas equation, $\mathrm{PV}=\mathrm{RT}$.

D Watch Video Solution

81. A box contains equal number of molecules of
hydrogen and oxygen. If there is a fine hole in
the box, which gas will leak rapidly? Why?
82. If a molecule of krypton is 2.25 times heavier than a molecule of hydrogen, what would be the ratio of their root mean square velocities in a mixture of equal masses of the two gases ?

D Watch Video Solution

83. A sample of an ideal gas occupies a volume V
at pressure P and absolute temperature T. The masss of each molecule is m, then the density of the gas is
84. The volume of vessel A is twice the volume of another vessel B and both of them are filled with the same gas. If the gas in A is at twice the temperature and twice the pressure in comparison to the gas in B, what is the ratio of number of gas molecule in A and B ?

- Watch Video Solution

85. Two gases each at temperature T , volume V and pressure P are mixed such that temperature
of mixture is T and volume is V . What will be the pressure of the mixture?

- Watch Video Solution

86. The total translational kinetic energy of the molecules of a gas having volume V and pressure P is 500 J . What will be the total translational kinetic energy of the molecules of the same gas occupying the suffisame volume V but exerting a pressure 2 P ?
87. Write the equation of state for 16 g of O_{2}.

D Watch Video Solution

88. A gas in a vessel is at the pressure P_{0}. If the masses of all the molecules be made half and
their speeds be made double, then find the resultant pressure.

D Watch Video Solution

89. What is evaporation? State the various
factors which affect evaporation.

D Watch Video Solution

90. Cooking gas cylinders are kept in a lorry moving with uniform speed. Will there be any effect on temperature of the gas?

D Watch Video Solution

91. What is curie temperature ? What happens above Curie temperature ?

- Watch Video Solution

92. Equal amounts of heat are supplied to equal masses of helium and oxygen, kept at the same initial temperature. If $T_{H e}$ and T_{O} denote the increase in temperatures of helium and oxygen, then
93. A gas is filled in a cylinder fitted with a piston at a definite temperature and pressure. Explain on the basis of kinetic theory, the pressure of the gas increases by raising its temperature.

D Watch Video Solution

94. A gas is filled in a cylinder fitted with a piston at a definite temperature and pressure.

Explain on the basis of kinetic theory why on pulling the piston out, the pressure of decreases.

- Watch Video Solution

95. There are N molecules of a gas in a containter. If this number is increased to 2 N , what will be (i) pressure (ii) total energy (iii) rms speed of the gas?

- Watch Video Solution

96. There are N molecules of a gas in a containter. If this number is increased to $2 N$,
what will be (i) pressure (ii) total energy (iii) rms
speed of the gas?

- Watch Video Solution

97. There are N molecules of a gas in a
containter. If this number is increased to 2 N ,
what will be (i) pressure (ii) total energy (iii) rms
speed of the gas?
98. Though the velocity of air molecules is nearly
$0.5 \mathrm{~km} / \mathrm{s}$, yet the smell of scent spreads at a much slower rate. Why ?

D Watch Video Solution

99. Under what conditions do the real gases
obey more strictly the gas equation, PV = RT ?

Explain.
(Watch Video Solution
100. (a) When a molecule (or an elastic ball) hits
a (massive) wall, it rebounds with the same
speed. When a ball hits a massive bat held firmly,
the same thing happens However, when the bat
is moving towards the ball, the ball rebounds
with a different speed. Does the ball move faster
or slower?
(b) When gas in a cylinder is compressed by pushing in a piston. Its temperature rises. Guess
at an explanation of this in terms of kinetic
theory using (a) above
(c) What happens when a compressed gas pushes a piston out and expands. What would
you observe?
(d) Sachin Tendulkar uses a heavy cricket bat while playing. Does it help him in any way?

D Watch Video Solution

101. (a) When a molecule (or an elastic ball) hits
a (massive) wall, it rebounds with the same
speed. When a ball hits a massive bat held firmly,
the same thing happens However, when the bat
is moving towards the ball, the ball rebounds
with a different speed. Does the ball move faster
or slower?
(b) When gas in a cylinder is compressed by pushing in a piston. Its temperature rises. Guess at an explanation of this in terms of kinetic theory using (a) above
(c) What happens when a compressed gas pushes a piston out and expands. What would you observe?
(d) Sachin Tendulkar uses a heavy cricket bat while playing. Does it help him in any way?

- Watch Video Solution

102. What happens when a compressed gas pushes a piston out and expands?

D Watch Video Solution

103. (a) When a molecule (or an elastic ball) hits
a (massive) wall, it rebounds with the same speed. When a ball hits a massive bat held firmly, the same thing happens However, when the bat is moving towards the ball, the ball rebounds with a different speed. Does the ball move faster or slower?
(b) When gas in a cylinder is compressed by pushing in a piston. Its temperature rises. Guess at an explanation of this in terms of kinetic theory using (a) above
(c) What happens when a compressed gas pushes a piston out and expands. What would you observe?
(d) Sachin Tendulkar uses a heavy cricket bat while playing. Does it help him in any way?

- Watch Video Solution

104. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_{0}, while Box contains one mole of helium at temperature $\left(\frac{7}{3}\right) T_{0}$. The boxes are then put into thermal contact with each other, and heat flows between
them until the gasses reach a common final temperature (ignore the heat capacity of boxes).

Then, the final temperature of the gasses, T_{f} in terms of T_{0} is

Watch Video Solution

105. A vessel is filled with a mixture of two different gases. State with reason (i) will the mean K.E. Per molecule of both the gases be equal ?(ii) Will the root mean square velocities of the molecules be equal (iii) will the pressure be equal ?

D Watch Video Solution

106. A vessel is filled with a mixture of two different gases. State with reason (i) will the mean K.E. Per molecule of both the gases be
equal ?(ii) Will the root mean square velocities of the molecules be equal (iii) will the pressure be equal ?

D Watch Video Solution

107. A vessel is filled with a mixture of two
different gases. State with reason (i) will the mean K.E. Per molecule of both the gases be equal ?(ii) Will the root mean square velocities of the molecules be equal (iii) will the pressure be equal ?
108. Two vessels of the same size are at the same temperature. One of them contains 1 g to
H_{2} gas, and the other contains 1 g to N_{2} gas.

Which of the vessels is under greater pressure or and why?

- Watch Video Solution

109. Two vessels of the same volume and filled
with the same gas at the same temperature. If
the pressure of the gas in these vessel be in the
ratio $1: 2$, then state : (i) the ratio of the rms speeds of the molecules, (ii) the ratio of the number of molecules.

D Watch Video Solution

110. Two thermally insulated vessel 1 and 2 are
filled with air at temperature
$\left(T_{1} T_{2}\right)$, volume $\left(V_{1} V_{2}\right)$ and pressure $\left(P_{1} P_{2}\right)$ respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
111. An insulated container containing monoatomic gas of molar mass s is moving with a velocity v_{0}. If the container is suddenly stopped, find the change in temperature.

- Watch Video Solution

112. A cubical box of side 1 meter contains
helium gas (atomic weight 4) at a pressure of $100 \mathrm{~N} / \mathrm{m}^{2}$. During and observation time of 1 second, an atom travelling with the root-mean-
square speed parallel to one of the edges of the
cube, was found to make 500 hits with a particular wall, without any collision with other atoms. Take
$R=\frac{25}{3} J m o \leq-K$ and $k=1.38 \times 10^{-23} J / K$
(a) Evalute the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
(c) Evaluate the total mass of helium gas in the box.

- Watch Video Solution

113. A cubical box of side $1 m$ contains helium
gas (atomic weight 4) at a pressure of $100 \mathrm{~N} / \mathrm{m}^{2}$. During an observation time of 1 sec ond, an atom travelling with the root mean - square speed parallel to one of the edges of the cube, was found to make 500 hits with a particular wall, without any collision with other atoms

Take
$R=\frac{25}{3} j / \mathrm{mol}-K$ and $k=1.38 \times 10^{-23} J / K$
(a) Evaluate the temperature of the gas.
(b) Evaluate the average kinetic energy per
atom.
(c) Evaluate the total mass of helium gas in the box.

D Watch Video Solution

114. A cubical box of side 1 meter contains
helium gas (atomic weight 4) at a pressure of
$100 \mathrm{~N} / \mathrm{m}^{2}$. During and observation time of 1 second, an atom travelling with the root-meansquare speed parallel to one of the edges of the cube, was found to make 500 hits with a particular wall, without any collision with other
atoms.
$R=\frac{25}{3} J m o \leq-K$ and $k=1.38 \times 10^{-23} J / K$
(a) Evalute the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
(c) Evaluate the total mass of helium gas in the box.

D Watch Video Solution

115. The temperature of an ideal gas is increased from 120 K to 480 K . If at 120 K the root mean
square velocity of the gas molecules is v , at 480 K it becomes

D Watch Video Solution

116. In a certain region of space there are only 5 molecules per cm^{3} of gas on an average. The temperature is $3 K$. What is the average pressure of this gas?.
117. Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at $0^{\circ} C$ and a pressure of 76 cm of mercury.

One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at $62^{\circ} C$. What is the new value of
the pressure inside the bulbs? The volume of the connecting tube is negligible.

- Watch Video Solution

118. A vessel of volume $2 \times 10^{-2} m^{3}$ contains a mixture of hydrogen and helium at $47^{\circ} C$ temperature and $4.15 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ Pressure.

The mass of the mixture is $10^{-2} \mathrm{~kg}$. Calculate the masses of hydrogen and helium in the given mixture.

D Watch Video Solution

119. A thin tube, sealed at both ends, is 100 cm
long. If lies horizontally, the middle 10 cm containing mercury and the two equal
containing air at standard atmospheric pressure. If the tube is now turned to a vertical position, by what amount will the mercury be displaced?

D Watch Video Solution

120. Calculate the root mean square speed of smoking practices of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at S.T.P

D Watch Video Solution

121. N molecules each of mass m of gas A and 2
N molecules each of mass $2 m$ of gas B are
contained in the same vessel which is maintined
at a temperature T. The mean square of the
velocity of the molecules of B type is denoted by
v^{2} and the mean square of the x-component of
the velocity of a tye is denoted by ω^{2}. What is the ratio of $\omega^{2} / v^{2}=?$

D Watch Video Solution

122. Find the number of degrees of freedom for
the molecules of a gas for which (a) $C_{p}=37.55$
$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ in the process, PT = constant.

Watch Video Solution

123. Estimate the fraction of molecular volume
to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be $3 \AA$.
124. Molar volume is the volume occupied by 1 mole of any (Ideal) gas at standard temperature and pressure (STP , $0^{\circ} C, 1$ atmospheric pressure). Show that it is 22.4 litres. Take $R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

125. An oxygen cylinder of volume 30 litres has
an initial gauge pressure of 15 atm. And a temperature of $27^{\circ} \mathrm{C}$. After some oxygen is withdrawn from the cylinder, the gauge
pressure drops to 11 atm. And its temperature drops to $17^{\circ} C$. Estimate the mass of oxygen taken out of the cylinder.
($R=8.1 \mathrm{Jmole}^{-1} K^{-1}$, molecular mass of $\left.O_{2}=32 u\right)$.

D Watch Video Solution

126. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from
the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface which is at a temperature of $35^{\circ} C$?

- Watch Video Solution

127. Estimate the total number of molecules inclusive of oxygen, nitrogen, water vapour and other constituents in a room of capacity $30 \mathrm{~m}^{3}$ at a temperature of $30^{\circ} \mathrm{C}$ and 1 atmosphere pressure.

D Watch Video Solution

128. Estimate the average thermal energy of a helium atom at room temperature $\left(27^{\circ} C\right)$.

Boltzmann constant $=1.38 \times 10^{-23} J K^{-1}$

D Watch Video Solution

129. Estimate the average energy of a helium atom at (i) room temperature $\left(27^{\circ} \mathrm{C}\right)$ (ii) the temperature on the surface of the sun $(6000 \mathrm{~K})$
and (iii) the temperature of $10^{7} \mathrm{~K}$. Given

$$
k_{B}=1.38 \times 10^{-23} J \text { molecule }^{-1} K^{-1}
$$

130. Estimate the average energy of a helium atom at (i) room temperature $\left(27^{\circ} \mathrm{C}\right)$ (ii) the temperature on the surface of the sun $(6000 K)$
and (iii) the temperature of $10^{7} \mathrm{~K}$. Given

$$
k_{B}=1.38 \times 10^{-23} J \text { molecule }{ }^{-1} K^{-1}
$$

D Watch Video Solution

131. Three vessel of equal capacity have gases at
the same temperature and pressure. The first
vessel contains neon (monoatomic), the second
contains chlorine (diatomic), and the third
contains uranium hexafluoride (polyatomic). Do the vessels contains equal number of respectice molecules ? Is the root mean square speed of molecules the same in the three cases ? If not, which case is $v_{r m s}$ the largest?

D Watch Video Solution

132. Three vessel of equal capacity have gases at the same temperature and pressure. The first
vessel contains neon (monoatomic), the second
contains chlorine (diatomic), and the third contains uranium hexafluoride (polyatomic). Do
the vessels contains equal number of respectice molecules ? Is the root mean square speed of molecules the same in the three cases ? If not, which case is $v_{r m s}$ the largest?

D Watch Video Solution

133. At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the r.m.s. speed of a helium gas atom at $-20^{\circ} C$? (Atomic mass of $\mathrm{Ar}=39.9 \mathrm{u}$, of $\mathrm{He}=4.0 \mathrm{u})$.
134. Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2 atm and temperature
$17^{\circ} C$. Take the radius of a nitrogen molecule to be roughly $1.0 \AA$. Compare the collision time with the time the molecule moves freely between two successive collisions. (Molecular mass of nitrogen $=28.0 \mathrm{u}$).
135. A metre long narrow bore held horizontally
(and close at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom?

D Watch Video Solution

136. From a certain apparatus, the diffusion rate of hydrogen has an average value of $28.7 \mathrm{~cm}^{3} s^{-1}$. The diffusion of another gas under
the same condition is measured to have an average rate of $7.2 \mathrm{~cm}^{3} s^{-1}$. Identify the gas.

D Watch Video Solution

137. Equal molecules of two gases are in thermal equilibrium. If P_{a}, P_{b} and V_{a}, V_{b} are their respective pressures and volumes, then which of the following relation is true?
A. $2 P_{a} V_{a}=P_{a} V_{b}$
B. $P_{a} \neq P_{b}, V_{a}=V_{b}$
C. $P_{a} / V_{a}=P_{b} / V_{b}$

$$
\text { D. } P_{a} V_{a}=P_{b} V_{b}
$$

Answer:

D Watch Video Solution

138. Volume - temperature graph at atmospheric pressure for a monatomic gas (V in m^{3}, T in Celsius) is
A.
B.
C.

Ps
D.

Answer:

- Watch Video Solution

139. If a given mass of a gas occupies a volume $100 \mathrm{~cm}^{3}$ at one atmospheric pressure and a temperature of $100^{\circ} \mathrm{C}$. What will be its volume at 4 atmospheric pressure, the temperature being the same?
A. 100cc
B. 400cc
C. 104cc
D. 2.5 cc
140. If pressure of a gas contained in a closed vessel is increased by 0.4% when heated by $1^{\circ} C$, the initial temperature must be
A. 250 K
B. $250^{\circ} \mathrm{C}$
C. 2500 K
D. $25^{\circ} \mathrm{C}$
141. The equation of state for 5 g of oxygen at a pressure P and temperature T , when occupying a volume V , wll be
A. $P V=(5 / 32) R T$
B. $P V=5 R T$
C. $P V=(5 / 2) R T$
D. $P V=(5 / 16) R T$
142. A 5 g droplet of liquid nitrogen is enclosed in a 50 mL tube which issealed at very low pressure. When the tube is warmed to $35^{\circ} \mathrm{C}$ the nitrogen pressure in the tube is (molecular weight of nitrogen $=28$ and $R=8.3 \mathrm{~J} / \mathrm{mol} \mathrm{K}$)
A. $1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B. $9.13 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
C. $9.13 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
D. $18.26 \mathrm{~N} / \mathrm{m}^{2}$

Answer:

D Watch Video Solution

143. A gas at one atmosphere and having volume 100 ml is mixed with another gas of equal moles at 0.5 atm and having volume 50 ml in flask of one litre, what is the final pressure?
A. 0.5 atm
B. 1 atm
C. 0.75 atm

D. 0.125 atm

Answer:

Watch Video Solution

144. The volume of a gas at $21^{\circ} \mathrm{C}$ temperature and 76.8 mm pressure is 1 L . If the density of the gas is $1.2 \mathrm{~g} / \mathrm{L}$ at NTP, then its mass will he
A. 4 g
B. 4.21 g
C. 1.13 g
```
D. 10 g
```


Answer:

D Watch Video Solution

145. Two gases A and B having the same pressure P , volume V and temperature T are mixed. If mixture has volume and temperature as V and T respectively, then the pressure of the mixture will be
A. P

B. 3P

C. 2 P

D. 4 P

Answer:

D Watch Video Solution

146. A cylinder contained 10 kgof gas at pressure $10^{7} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$. The quantity of gas taken out of cylinder if final pressure is $2.5 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$ is
(Assume temperature of gas is constant)
A. zero
B. 9.5 kg
C. 7.5 kg
D. 14.2 kg

Answer:

D Watch Video Solution

147. Air is filled at $60^{\circ} C$ in a vessel of open mouth. The vessle is heated to a temperature T
so that $1 / 4 t h$ of air escapes. Assuming the
volume of vessel remaining constant, the value of T is
A. $80^{\circ} C$
B. $444^{\circ} \mathrm{C}$
C. $333^{\circ} \mathrm{C}$
D. $171^{\circ} \mathrm{C}$

Answer:

D Watch Video Solution
148. Gas exerts pressure on the walls of the container because the molecules are -
A. gas has weight
B. gas molecules have momentum
C. gas molecules collide with each other
D. gas molecules collide with tire walls of the
container

Answer:

149. The absolute zero is the temperature at which
A. efficiency of engines becomes infinite B. all liquids freeze
C. molecular motion ceases
D. none of these

Answer:

(D)
150. The kinetic energy of 1 g molecule of a gas, at normal temperature and pressure, is
A. $0.56 \times 10^{4} \mathrm{~J}$
B. 2.7×10^{2} J
C. $1.3 \times 10^{2} \mathrm{~J}$
D. $3.4 \times 10^{3} \mathrm{~J}$

Answer:

D Watch Video Solution

151. The temperature is changed from $27^{\circ} \mathrm{C}$ to
$327^{\circ} C$ Find ratio of K.E. of molecules at two temperatures.
A. $3: 2$
B. $2: 3$
C. 1:2
D. $1: 3$

Answer:

152. At which of the following temperatures
would the molecules of a gas have twice the average kinetic energy they have at $20^{\circ} \mathrm{C}$?
A. $40^{\circ} \mathrm{C}$
B. $80^{\circ} \mathrm{C}$
C. $586^{\circ} \mathrm{C}$
D. $313^{\circ} \mathrm{C}$

Answer:

153. The r.m.s. of speed of a group of 7 gas molecules having speed $(6,4,2,0,-2,-4,-6) m / s$ is
A. $1.5 m / s$
B. $3.4 \mathrm{~m} / \mathrm{s}$
C. $9 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer:

154. The respective speeds of five molecules are $1,2,3,4$ and $5 \mathrm{~km} / \mathrm{s}$. The ratio of their rms velocity and the average velocity will be
A. $\sqrt{11}: 3$
B. ${ }^{`} 3: s q r t 11$
C. 1:2
D. $3: 4$

Answer:

155. If the rms velocity of gas is v, then
A. $v^{-2} T=$ constant
B. $v^{-2} / T=$ constant
C. $v T^{-2}=$ constant
D. v is independent of T

Answer:

- Watch Video Solution

156. if average velocity becomes 4 times, then what will be the effect on rms velocity at the temperature?

A. 1.4 times

B. 4 times
C. 3 times

D. 2 times

Answer:

157. The r.m.s. velocity at a temperature is 2
times the r.m.s. velocity at 300 K . What is this
temperature ?
A. 900 K
B. 2400 K
C. 600 K
D. 1200 K

Answer:
158. At room temperature $\left(27^{\circ} C\right)$ the 'rms'
speed of the molecules of a certain diatomic gas
is found to be $1920 \mathrm{~ms}^{-1}$. The gas is
A. H_{2}
B. F_{2}
C. O_{2}
D. $C I_{2}$

Answer:
(Watch Video Solution
159. The temperature of H_{2} at which the rms velocity of its molecules is seven times the rms velocity of the molecules of nitrogen at 300 K is

A. 2100 K

B. 1700 K
C. 1350K
D. 1050 K

Answer:

D Watch Video Solution
160. The gas having average speed four times as that of SO_{2} (molecular mass 64) is
A. He (molecular mass 64)
B. O_{2} (molecular mass 4)
C. H_{2} (molecular mass 32)
D. CH_{4} (molecular mass 16)

Answer:

D Watch Video Solution
161. The temperature of a given mass is increased from $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$. The rms velocity of the molecules increases
A. $\sqrt{2}$ times
B. 2 times
C. $2 \sqrt{2}$ times

D. 4 times

Answer:

162. The ratio of the vapour densities of two gases at the same temperature is $8: 9$. The ratio of the rms velocities of their molecules is
A. $3: 2 \sqrt{2}$
B. $2 \mathrm{sqrt} 2: 3$
C. 9:8
D. 8:9

Answer:

163. What is the degree of freedom in case of a monoatomic gas?
A. 1
B. 3
C. 5
D. none of these

Answer:

164. If a gas has n degrees of freedom ratio of
specific heats of gas is

$$
\begin{aligned}
& \text { A. } \frac{1+n}{2} \\
& \text { B. } 1+\frac{1}{n} \\
& \text { C. } 1+\frac{n}{2} \\
& \text { D. } 1+\frac{2}{n}
\end{aligned}
$$

Answer:

(D) Watch Video Solution
165. If γ be the ratio of specific heats $\left(C_{p} \& C_{v}\right)$
for a perfect gas. Find the number of degrees of
freedom of a molecules of the gas?

$$
\begin{aligned}
& \text { A. } \frac{25}{2}(\gamma-1) \\
& \text { B. } \frac{3 \gamma-1}{2 \gamma-1} \\
& \text { C. } \frac{2}{\gamma-1} \\
& \text { D. } \frac{9}{2}(\gamma-1)
\end{aligned}
$$

Answer:

166. Specific heat at constant volume (C_{V}) and at constant pressure (C_{p}) of an ideal gas have been reported as shown below. Which of the following sets are most reliable ?
A. $C_{V}=5 R, C_{p}=3 R$
B. $C_{V}=3 R, C_{p}=4 R$
C. $C_{V}=5 R, C_{p}=7 R$
D. $C_{V}=3 R, C_{p}=5 R$

Answer:
167. Graph for specific heat at constant volume

for a monoatomic gas

A.
B.
C.

Answer:

D Watch Video Solution

168. The mean kinetic energy of one mole of gas
per degree of
A. $\frac{1}{2} k T$
B. $\frac{3}{2} k T$
C. $\frac{3}{2} R T$
D. $\frac{3}{2} R T$

Answer:

D Watch Video Solution

169. The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies E_{1} and E_{2} respectively. Then
A. $E_{1}=E_{2}$
B. $E_{1}>E_{2}$
C. $E_{1}<E_{2}$
D. E_{1} and E_{2} cannot be compared

Answer:

D Watch Video Solution

170. One mole of monoatomic gas and three moles of diatomic gas are put together in a container. The molar specific heat (in
$J K^{-1} \mathrm{~mol}{ }^{-1}$) at constant volume is ($\mathrm{R}=8.3$
$J K^{-1} \mathrm{~mol}^{-1}$)
A. 18.7
B. 18.9
C. 19.2
D. none of these

Answer:

D Watch Video Solution

171. How much heat energy in joules must be supplied to 14 gms of nitrogen at room temperature to rise its temperature by $40^{\circ} \mathrm{C}$ at
constant pressure? (Mol. Wt. of $N_{2}=28 \mathrm{gm}$,

R=constant)

A. 50 R
B. 60 R
C. 70R
D. 80 R

Answer:
(D) Watch Video Solution
172. A diatomic gas initially at 18° is compressed adiabatically to one- eighth of its original volume. The temperature after compression will b
A. $18^{\circ} C$
B. $395.4^{\circ} \mathrm{C}$
C. $887.4^{\circ} C$
D. $114^{\circ} \mathrm{C}$

Answer:

173. A monoatomic gas is suddenly compressed
to $1 / 8$ of its original volume adiabatically. The pressure of gas will change to :
A. 32
B. $\frac{40}{3}$
C. $\frac{24}{5}$
D. 8

Answer:

-

174. The phenomenon of Brownian motion is taken as an evidence of
A. kinetic theory of matter B. EMT of radiation
C. corpusculaar theory of light
D. photoelectric phenomenon

Answer:

175. The mean free path of collision of gas melecules varies with its diameter (d) of the molecules as

$$
\text { A. } d^{-1}
$$

B. d^{-2}
C. d^{-3}
D. d^{-4}

Answer:

- Watch Video Solution

176. If the pressure in a closed vessel is reduced by drawing out some gas, the mean free path of the molecules
A. is decreased
B. is increased
C. remains unchanged
D. increases or decreases according to the nature of gas

Answer:

177. A gas which obeys the gas laws at all values of temperature and pressure is called \qquad

D Watch Video Solution

178. At ______ pressures and _____ temperatures, some real gases behave like an ideal gas.
179. The graph between pressure P and volume V for a given mass of a gas a fixed temperature T is a \qquad

D Watch Video Solution

180. The gas constant per molecule is called ___ constant and its value in SI is \qquad .

D Watch Video Solution

181. Acoording to the kinetic theory of gases, the temperature at which all molecular motion ceases is called \qquad .

D Watch Video Solution

182. Average straight distance covered between
two successive collision of molecules is
called

D Watch Video Solution
183. The average kinetic energy of a gas molecule is _____ proportional to the absolute temperature of the gas.

D Watch Video Solution

184. The temperature of a gas is a measure of the average \qquad of its molecules.

D Watch Video Solution

185. The absolute temperature of a gas is made

4 time its initial value. What will be the change in rms velocity of its molecules?

D Watch Video Solution

186. The ratio of the root mean square speeds of the molecules of an ideal gas at 270 K and 30 K will be \qquad

D Watch Video Solution
187. A gas in a vessel is at the pressure P_{0}. If the masses of all the molecules be made half and their speeds be made double, then find the resultant pressure.

- Watch Video Solution

188. The velocities of three molecules are $3 \mathrm{v}, 4 \mathrm{v}$ and 5 v . Calculate their root mean square velocity.

D Watch Video Solution

189. The mass of a molecule of krypton is 2.25
times the mass of a hydrogen molecule. A mixture of equal masses of these gases is enclosed in a vessel. At any given temperature,
the ratio of the root mean square velocities of krypton and hydrogen gases will be \qquad

- Watch Video Solution

190. The volume of vessel A is twice the volume
of another vessel B and both of them are filled
with the same gas. If the gas in A is at twice the temperature and twice the pressure in
comparison to the gas in B, what is the ratio of number of gas molecule in A and B ?

D Watch Video Solution

191. One mole any gas occupies a volume of at normal temperature and pressure.

D Watch Video Solution

192. The r.m.s. of gas molecules is directly proportional to the square root of its \qquad
inversely proportional to the square root of its

D Watch Video Solution

193. The speed possessed by the maximum number of molecules in a gas is called

D Watch Video Solution

194. The ratio $v_{r m s}: \bar{v}: v_{m p}=$
195. The total number of independent ways in which the particles of the system can absorb energy is called _____ of the system.

D Watch Video Solution

196. A rigid body has a total of degrees of
freedom, ____ for translatory motion and for rotatory motion.
197. The energy associated with each degree of
freedom of a molecule

- Watch Video Solution

198. A diatomic molecule has degree of
freedom at moderate temperature and it has _____ degrees of freedom at high temperature.

- Watch Video Solution

199. A non-linear triatomic molecule has degrees of freedom while a linear triatomic molecule has _______ degrees of freedom.

- Watch Video Solution

200. A surface is hit elastically and normally by n bals per unit time, all the balls having the same mass m , and moving with the same velocity v . then the force acting on surface is
201. Near the room temperature the molar specific heat at constant volume is equal to $\ldots \mathrm{Jol}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

202. Mean free path of a gas molecule proportional to the mass of gas molecule and ______ proportional to the square of the molecular diameter.
203. Two different gases at the same temperature have the same average kinetic energy.
A. True
B.
C.
D.

Answer:

204. The root-mean square speeds of the molecules of different ideal gases, maintained at the same temperature are the same.

A. True

B.
C.
D.

Answer:

205. Although the velocity of air molecule is

 nearly $0.5 \mathrm{~km} / \mathrm{s}$, yet the smell of scent spreads at a much slower rate. Why?A. True
B.
C.
D.

Answer:

206. The rms speed of oxygen molecules at a certain temperature T is v. If the temperature is doubled and oxygen gas dissociates into atomic oxygen, then the rms speed
A. True
B.
C.
D.

Answer:

207. On driving the scooter for a long time, the

air pressure in the tyres slightly increases. Why?
A. True
B.
C.
D.

Answer:

208. Rate of diffusion of a gas is independent of

 the rms speed of its molecules.A. True

B.
C.
D.

Answer:

209. Real gases obey the gas equation : $P V=n R T$ more correctly at low temperature and high pressure.

A. True

B.
C.
D.

Answer:

210. In the upper atmosphere the kinetic temperature of air is of the order of 1000 K , even then one feels severe cold there.
A. True
B.
C.
D.

Answer:

211. Absolute zero degree temperature is not zero energy temperature.
A. True
B.
C.
D.

Answer:

212. On reducing the volume of the gas at constant temperature, the pressure of the gas increases. Explain on kinetic theory.
A. True
B.
C.
D.

Answer:

213. Three vessel of equal capacity have gases at the same temperature and pressure. The first
vessel contains neon (monoatomic), the second contains chlorine (diatomic), and the third
contains uranium hexafluoride (polyatomic). Do
the vessels contains equal number of respectice molecules ? Is the root mean square speed of molecules the same in the three cases ? If not, which case is $v_{r m s}$ the largest?
A. True B.
C.

D.

Answer:

D Watch Video Solution

214. Which of the following pehnomena gives evidence of the molecule motion?

- Watch Video Solution

215. What is an equation of state ? Give an example

- Watch Video Solution

216. At which temperature does all molecular motion cease?

D Watch Video Solution

217. What is the nature of graph between pressure (P) and volume(V)for a given mass of a
gas at a fixed temperature?

D Watch Video Solution

218. What is the nature of graph of P versus $(1 / V)$
for a given mass of gas at constant temperature ?

D Watch Video Solution
219. What is the nature of graph of $P V$ versus P for a given mass of a gas at constant

temperature?

- Watch Video Solution

220. What is the lowest temperature attainable according to Charles' law ?

D Watch Video Solution

221. Who proposed a model for a gas for the kinetic theory of gases?
222. Equation of state of an ideal gas is

D Watch Video Solution

223. What does universal gas constant R signify?

D Watch Video Solution

224. Name the universal gas constant. What is
its value in SI unit ?
225. Does the average K.E. per molecule of the gas depend upon the mass of the molecule?

D Watch Video Solution

226. On which factors does the average KE of gas molecules depend : nature of gas, its temperature, its volume?
227. What is Boltzman's constant? Give its value.

D Watch Video Solution

228. How is the average $K E$ of a gas molecule related to the temperature of the gas?

D Watch Video Solution

229. The absolute temperature of a gas is made

4 time its initial value. What will be the change
in rms velocity of its molecules?

- Watch Video Solution

230. A body of mass ' M ' collides against a wall with a velocity v and retraces its path with the same speed. The change in momentum is (take initial direction of velocity as positive)

- Watch Video Solution

231. At a constant temperature, what is the relation between pressure P and density ρ of gas?

- Watch Video Solution

232. A gas enclosed in a vessel has pressure P, volume V and absolute temperature T , write the formula for number of molecule N of the gas.

D Watch Video Solution

233. What is the value of gas constant in cgs system for 1 gram of helium?
234. The velocities of three molecules are $3 \mathrm{v}, 4 \mathrm{v}$ and 5 v . Calculate their root mean square velocity.

D Watch Video Solution

235. What will be the ratio of the root mean square speeds of the molecules of an ideal gas at 270 K and 30 K ?

D Watch Video Solution

236. A mixture of helium and hydrogen gases is
filled in a vessel at $30^{\circ} \mathrm{C}$. Compare the rms
velocities of molecules of the two gases. Atomic
weights of hydrogen and helium are 1 and 4 respectively.

D Watch Video Solution

237. Two vessels of the same volume and filled
with the same gas at the same temperature. If
the pressure of the gas in these vessel be in the ratio 1:2, then state : (i) the ratio of the rms
speeds of the molecules, (ii) the ratio of the number of molecules.

D Watch Video Solution

238. Two gases A and B each at temperature T. Pressure P and volume V, are mixed. If the mixture be at the same temperature T and its volume also be V , then what should be its pressure ? Explain.

- Watch Video Solution

239. RELATION BETWEEN SPECIFIC HEAT AND

DEGREE OF FREEDOM

D Watch Video Solution

240. The mean transitional kinetic energy of a perfect gas molecule at absolute temperature T is (k is the Boltzmann constant)
241. Name the factors on which degrees of freedom of a gas molecule depend.

D Watch Video Solution

242. State and prove law of equipartition of energy.

D Watch Video Solution

243. Write the values of C_{p} and C_{v} for a monoatomicgas
244. Write any four fundamental postulates of the kinetic theory of an ideal gas.

- Watch Video Solution

245. DEVIATION FROM IDEAL BEHAVIOUR

246. RELATION BETWEEN PRESSURE AND KINETIC

ENERGY

D Watch Video Solution

247. Deduce Graham's law from kinetic gas equation.

D Watch Video Solution

248. The Brownian motion is due to :
249. State four factors on which Brownian motion depends.

D Watch Video Solution
250. What is meant by free path of a gas molecule ? On what factors does the mean free path depend?
251. Dalton's Law of Partial Pressure

D Watch Video Solution

252. At a definit temperature (T), the distribution of speeds is given by the curve. In the curve points A, B and C indicates the speeds corresponding to :

- Watch Video Solution

253. Define most probable speed, average speed and root mean square speed of a gas. How are they related to each other ?

Watch Video Solution
254. Explain the degrees of freedom for
(i) An atom
(ii) A diatomic molecule.
255. Obtain an expression for the pressure of an ideal gas from the kinetic theory of an ideal gas.

- Watch Video Solution

256. Deduce Graham's law from kinetic gas equation.

D Watch Video Solution

257. Define absolute zero temperature?

D Watch Video Solution

258. Obtain the dimensional formula for R used in the ideal gas equation, $\mathrm{PV}=\mathrm{RT}$.

- Watch Video Solution

259. The degrees of freedom of a triatomic gas is
260. According to the law of equipartition of energy, the energy associated with each degree of freedom is :

D Watch Video Solution

261. According to the law of equipartition of energy, internal energy of an ideal gas at a given temperature, is equally distributed in translational and rotational kinetic energies.

Rotational kinetic energy of a monoatomic gas
is zero.

D Watch Video Solution

262. State the law of equipartition of energy.

Using this law, determine the values of Cp, Cv and y

- Watch Video Solution

263. What is meant by free path of a gas molecule ? On what factors does the mean free path depend?

- Watch Video Solution

264. What do you mean by mean free path?

D Watch Video Solution

265. State the postulates of Kinetic Theory of gases. Explain the pressure exerted by an ideal
gas.

D Watch Video Solution

266. It P is the pressure and ρ is the density of a gas, then P and ρ are realted as :

D Watch Video Solution

267. State and explain Boyle's law. Represent the
law graphically.
268. State and explain (i) Gay lussac's law and (ii)

Gas equation. Distinguish clearly between R and r for a gas.

D Watch Video Solution

269. State Gay-Lusaac's law
270. Ideal gas equation strictly obeys gas laws under all conditions of

- Watch Video Solution

271. Calculate number of significant digits in

Avogadro number if Boltzmann's constant and universal gas constant are $1.38 \times 10^{-23} J K^{-1}$ and $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively
272. An ideal gas or a perfect gas is that the such as

D Watch Video Solution

273. A gas which obeys all the assumptions of kinetic theory of gases at all conditions of temperatures and pressures is called
274. Pressure exerted by a gas is due to against.

D Watch Video Solution

275. Average kinetic energy of a gas molecule is

D Watch Video Solution

276. Explain (i) Boyle's law (ii) Charle's law. Why are they not applicable to real gases in all states

- Watch Video Solution

277. Which of the following are true for an element ?
(i) Atomic number $=$ number of protons + number of electrons
(ii) Mass number = number of protons + number of neutrons
(iii) Atomic number $=$ number of protons $=$ number of neutrons
(iv) Atomic number $=$ number of protons $=$ number of electrons

- Watch Video Solution

278. We know that gases which donot react chemically intermix irrepective of their nature.

This is known as diffusion. The law of gravitation does not apply to diffusion which means that lighter gases can more downward while the hevier ones can move upwards.
(i) State Graham's Law of diffusion.
(ii)Give Its mathemartical form.
(iii) What is the value associated with the phenomenon of diffusion of gases?
279. To which of the following gaseous mixture, the Dalton's law of partial pressures will not apply ?

- Watch Video Solution

280. AVERAGE SPEED

Watch Video Solution
281. The root mean square speed of gas molecules

- Watch Video Solution

282. Most probable speed, average speed and RMS speed are related as -

D Watch Video Solution

283. The relation between rms velocity, $v_{r m s}$ and the most probable velocity, $v_{m p}$, of a gas is
284. What are degrees of freedom?

D Watch Video Solution

285. According to the law of equipartition of energy, the energy associated with each degree of freedom is :

D Watch Video Solution
286. The internal energy of a perfect monoatomic gas is

D Watch Video Solution

287. What is mean free path? Derive an expression for mean free path.

D Watch Video Solution

288. Brownian motion is a/an
289. A vessel contains 1 mole of O_{2} gas (relative molar mass 32) at a temperature T . The pressure of the gas is P. An identical vessel containing one mole of He gas (relative molar mass 4) at temperature 2 T has a pressure of
A. $P / 8$
B. P
C. 2 P
D. 8 P

Answer:

D Watch Video Solution

290. The average translational kinetic energy of
O_{2} (relative molar mass 32) molecules at a particular temperature is 0.048 eV . The translational kinetic energy of N_{2} (relative molar mass 28) molecules in eV at the same temperature is
A. 0.0015

B. 0.003

C. 0.048

D. 0.768

Answer:

D Watch Video Solution

291. The average translational energy and the rms speed of molecules in a sample of oxygen gas at $300 K$ are $6.21 \times 10^{-21} J$ and $484 m / s$,
respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)

A. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~ms}^{-1}$
B. $8.78 \times 10^{-21} \mathrm{~J}, 648 \mathrm{~ms}^{-1}$
C. $6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~ms}^{-1}$
D. $12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~ms}^{-1}$

Answer:

- Watch Video Solution

292. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
A. 4RT
B. 9 RT
C. 11RT
D. 15RT

Answer:

293. The ratio of the speed of sound in nitrogen gas to that in helium gas, at 300 K is
A. $\sqrt{2} / 7$
B. $\sqrt{1} / 7$
C. $(\sqrt{3}) / 5$
D. $(\sqrt{6}) / 5$

Answer:

294. From the following statements, concerning ideal gas at any given temperature T, select the correct one(s)
(1) The coefficient of volume expansion at constant
pressure is same for all ideal gases
(2) In a gaseous mixture, the average translational kinetic
energy of the molecules of each component is
same
(3) The mean free path of molecules increases with the
decrease in pressure
(4) The average translational kinetic energy per molecule
of oxygen gas is 3 KT (K being Boltzmann constant)
A. The co-efficient of volume expansion at
constant pressure is the same for all ideal
gase
B. The average translational kinetic energy
per molecule of oxygen gas is 3 kT , k being

Boltzmann constant
C. The mean-free path of molecules increases
with increases in the pressure
D. In a gaseous mixture, the average translational kinetic energy of the molecules of each component is different.

Answer:

D Watch Video Solution

295. An ideal gas is expanding such that $P T^{2}=$ constant. The coefficient of volume
expansion of Ithe gas is:

> A. $\frac{1}{T}$
> B. $\frac{2}{T}$
> C. $\frac{3}{T}$
> D. $\frac{4}{T}$

Answer:

D Watch Video Solution

296. A real gas behaves like an ideal gas if its
A. Pressure and temperature are both high
B. Pressure is high and temperature is low
C. Pressure and temperature are both low
D. Pressure is low and temperature is high

Answer:

D Watch Video Solution

297. A mixture of 2 moles of helium gas (
$(a \rightarrow$ micmass $)=4 a . m . u)$ and 1 mole of argon gas $((a \rightarrow$ micmacs $)=40 a . m . u)$ is
kept at 300 K in a container. The ratio of the rms
speeds $\left(\frac{v_{r m s}(\text { helium })}{\left(v_{r m s}(\text { argon })\right)}\right.$ is
A. 0.32
B. 0.45
C. 2.24
D. 3.16

Answer:

298. Two moles of ideal helium gas are in a rubber balloon at $30^{\circ} \mathrm{C}$. The balloon is fully expandable and can be assumed to require no energy in its expansion. The temperature of the gas in the balloon is slowly changed to $35^{\circ} C$.

The amount of heat required in raising the temperature is nearly (take R
$=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})$
A. 62 J
B. 104 J
C. 124 J

D. 208 J

Answer:

D Watch Video Solution

299. Two non-reactive monoatomic ideal gases have their atomic masses in the ratio $2: 3$. The ratio of their partial pressures, when enclosed in a vessel kept at a constant temperature, is $4: 3$.

The ratio of their densities is
A. 1: 4

B. $1: 2$

C. $6: 9$
D. $8: 9$

Answer:

D Watch Video Solution

300. At room temperature the rms speed of the molecules of a certain diatomic gas is found to be $1920 \mathrm{~m} / \mathrm{s}$. The gas is
A. H_{2}
B. F_{2}
C. O_{2}
D. $C I_{2}$

Answer:

- Watch Video Solution

301. The temperature of an ideal gas is increased from 120 K to 480 K . If at 120 K the root-mean-squre velocity of the gas molecules is v , at 480K it becomes
A. 4 v
B. 2v
C. $v / 2$
D. $v / 4$

Answer:

D Watch Video Solution

302. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal
monoatomic gas at absolute temperature T. The mass of a molecule is m . Then
A. no molecule can have a speed greater than $\sqrt{2} v_{r m s}$
B. no molecule can have a speed less than
$v_{p} / \sqrt{2}$
C. $v_{p}<\bar{v}<v_{r m s}$
D. the average kinetic energy of a molecule is
$-\frac{3}{4} m v^{2} p$.
303. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300K. The ratio of the average rorational kinetic energy per O_{2} molecules to that per N_{2} molecules is
A. 1:1
B. 1: 2
C. 2:1
D. depends on the moment of inertia of the
two molecules

Answer:

D Watch Video Solution

304. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is
A. $2 / 5$
B. $3 / 5$
C. $3 / 7$
D. $5 / 7$

Answer:

D Watch Video Solution

305. If one mole of a monatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole of a diatomic gas
$\left(\gamma=\frac{7}{5}\right)$, the value of gamma for mixture is
A. 1.35
B. 1.4
C. 1.5

D. 1.75

Answer:

D Watch Video Solution

306. A given quantity of a ideal gas is at pressure P and absolute temperature T. The isothermal bulk modulus of the gas is
A. $\frac{2}{3} P$
B. P
C. $\frac{3}{2} P$
D. $2 P$

Answer:

D Watch Video Solution

307. Three closed vessels A, B and C are at the same temperature T and contain gases which obey the Maxwellian distribution of velocities.

Vessel A contains only O_{2}, B only N_{2} and C a mixture of equal quantities of O_{2} and N_{2}. If the
average speed of the O_{2} molecules in vessel A is V_{1}, that of the N_{2} molecules in vessel B is V_{2}, the average speed of the O_{2} molecules in vessel
C is (where M is the mass of an oxygen molecules)

$$
\begin{aligned}
& \text { A. } \frac{v_{1}+v_{2}}{2} \\
& \text { B. } v_{1} \\
& \text { C. }\left(v_{1} \cdot v_{2}\right)^{\frac{1}{2}} \\
& \text { D. } \sqrt{\frac{3 k T}{M}}
\end{aligned}
$$

Answer:

308. C_{v} and C_{p} denote the molar specific heat
capacities of a gas at constant volume and constant pressure, respectively. Then

A. $C_{p}-C_{v}$ is larger for a diatomic ideal gas

than for a monoatomic ideal gas
B. $C_{p}+C_{v}$ is larger for a diatomic ideal gas
than for a monoatomic ideal gas
C. $C_{p} / / C_{v}$ is larger for a diatomic ideal gas
than for a monoatomic ideal gas

D. $C_{p} . C_{v}$ is larger for a diatomic ideal gas

than for a monoatomic ideal gas

Answer:

D Watch Video Solution

309. A container of fixed volume has a mixture of a one mole of hydrogen and one mole of helium in equilibrium at temperature T . Assuming the gasses are ideal, the correct statement (s) is (are)
A. The average energy per mole of the gas

mixture is $2 R T$

B. The ratio of speed of sound in the gas
mixture to that in helium gas is $\sqrt{\frac{6}{5}}$
C. The ratio of the rms speed of helium
atoms to that of hydrogen molecules is $\frac{1}{2}$
D. The ratio of the rms speed of helium
atoms to that of hydrogen molecules is
$\frac{1}{\sqrt{2}}$

- Watch Video Solution

310. A gas is enclosed in a cylinder with a movable frictionless piston. Its initial thermodynamic state at pressure $P_{i}=10^{5} \mathrm{~Pa}$ and volume $V_{i}=10^{-3} \mathrm{~m}^{3}$ changes to a final state
$P_{f}=(1 / 32) \times 10^{5} \mathrm{~Pa}$ and $V_{f}=8 \times 10^{-3} \mathrm{~m}^{3}$
in an adiabatic quasi-static process, such that
$P^{3} V^{3}=$ cons $\tan t$.
Consider
another
thermodynamic process that brings the system
form the same initial state to the same final
state in two steps: an isobaric expansion at P_{i}
followed by an isochoric (isovolumetric) process
at volume V_{r}. The amount of heat supplied to
the system i the two-step process is
approximately
A. 112 J
B. 294 J
C. 588 J
D. 813 J

Answer:

311. In Fig., a container is shown to have a movable (without friction) piston on top. The container and the piston are all made of perfectly insulating material allowing no heat transfer between outside and inside the container. The container is divided into two
compartments by a rigid partition made of a thermally conducting material that allows slow transfer of heat. the lower compartment of the container is filled with 2 moles of an ideal monoatomic gas at 700 K and the upper
compartment is filled with 2 moles of an ideal
diatomic gas at 400 K . the heat capacities per mole of an ideal monoatomic gas are $C_{v}=\frac{3}{2} R$ and $C_{P}=\frac{5}{2} R$, and those for an ideal diatomic gas are
$C_{v e}=\frac{5}{2} R$ and $C_{P}=\frac{7}{2} R$.
Consider the partition to be rigidly fixed so that
it does not move. when equilibrium is achieved,
the final temperature of the gases will be

A. 550 K
B. 525 K
C. 513 K

D. 490 K

Answer:

D Watch Video Solution

312. In Fig., a container is shown to have a movable (without friction) piston on top. The container and the piston are all made of perfectly insulating material allowing no heat transfer between outside and inside the container. The container is divided into two compartments by a rigid partition made of a
thermally conducting material that allows slow
transfer of heat. the lower compartment of the
container is filled with 2 moles of an ideal monoatomic gas at 700 K and the upper compartment is filled with 2 moles of an ideal diatomic gas at 400 K. the heat capacities per mole of an ideal monoatomic gas are $C_{v}=\frac{3}{2} R$ and $C_{P}=\frac{5}{2} R$, and those for an ideal diatomic gas are $C_{v e}=\frac{5}{2} R$ and $C_{P}=\frac{7}{2} R$.

Now consider the partition to be free to move without friction so that the pressure of gases in both compartments is the same. the total work
done by the gases till the time they achieve equilibrium will be

A. 250 R
B. 200R

C. 100R

D. $-100 R$

Answer:

D Watch Video Solution

313. Two thermally insulated vessel 1 and 2 are filled with air at temperature
$\left(T_{1} T_{2}\right)$, volume $\left(V_{1} V_{2}\right)$ and pressure $\left(P_{1} P_{2}\right)$ respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
A. $T_{1}+T_{2}$

$$
\begin{aligned}
& \text { B. } \frac{T_{1}+T_{2}}{2} \\
& \text { C. } \frac{T_{1}+T_{2}\left(P_{1} V_{1}+P_{2}=V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}} \\
& \text { D. } \frac{T_{1}+T_{2}\left(P_{1} V_{1}+P_{2}=V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}
\end{aligned}
$$

Answer:

D Watch Video Solution

314. An insulated container of gas has two chambers separated by an insulating partition.

One of the chambers has volume V_{1} and
contains ideal gas at pressure P_{1} and
temperature T_{1}. The other chamber has volume
V_{2} and contains ideal gas at pressure P_{2} and temperature T_{2}. If the partition is removed
without doing any work on the gas, the final equilibrium temperature of the gas in the container will be

$$
\begin{aligned}
& \text { A. } \frac{T_{1}+T_{2}\left(P_{1} V_{1}+P_{2}=V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}} \\
& \text { B. } \frac{T_{1}+T_{2}\left(P_{1} V_{1}+P_{2}=V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}} \\
& \text { C. } \frac{\left(P_{1} V_{1} T_{1}\right)+\left(P_{2} V_{2} T_{2}\right)}{\left(P_{1} V_{1}\right)+\left(P_{2} V_{2}\right)} \\
& \text { D. } \frac{\left(P_{1} V_{1} T_{2}\right)+\left(P_{2} V_{2} T_{1}\right)}{\left(P_{1} V_{1}\right)+\left(P_{2} V_{2}\right)}
\end{aligned}
$$

Answer:

D Watch Video Solution

315. Cooking gas container are kept in a lorry moving with uniform speed. The temperature of the gas molecules inside will
A. increase
B. decrease
C. remain the same
D. decreases for some, while increases for others

Answer:

D Watch Video Solution

316. At what temperature is the rms velocity of a hydrogen molecule equal to that of an oxygen molecule at $47^{\circ} C$?
A. -73 K
B. 3 K

C. 20 K

D. 80 K

Answer:

D Watch Video Solution

317. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $4 / 3$
B. 2
C. $5 / 3$
D. $3 / 2$

Answer:

D Watch Video Solution

318. One mole of ideal monoatomic gas $(\gamma=5 / 3)$ is mixed with one mole of diatomic gas $(\gamma=7 / 5)$. What is γ for the mixture? γ

Denotes the ratio of specific heat at constant pressure, to that at constant volume
A. $3 / 2$
B. $23 / 15$
C. $35 / 23$
D. $4 / 3$

Answer:

- Watch Video Solution

319. 1 mole of a gas with $\gamma=7 / 5$ is mixed with 1 mole of a gas with $\gamma=5 / 3$, then the value of γ for the resulting mixture is
A. $7 / 5$
B. $2 / 5$
C. $3 / 2$
D. $12 / 7$

Answer:

320. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. Find γ for the mixture.
A. 1.4
B. 1.54
C. 1.59
D. 1.62

Answer:

321. The work of 146 kJ is performed in order to
compress one kilo mole of a gas adiabatically
and in this process the temperature of the gas
increases by $7^{\circ} C$. The gas is
$\left(R=8.3 \mathrm{ml}^{-1} \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. a mixture of monoatomic and diamtomic
B. monoatomic
C. diamtomic
D. triatomic
322. One kg of a diatomic gas is at pressure of $8 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?
A. $3 \times 10^{4} J$
B. $5 \times 10^{4} J$
C. $6 \times 0^{4} J$
D. $7 \times 10^{4} J$

Answer:

D Watch Video Solution

323. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_{0}, while Box contains one mole of helium at temperature $\left(\frac{7}{3}\right) T_{0}$. The boxes are then put into thermal contact with each other, and heat flows between
them until the gasses reach a common final temperature (ignore the heat capacity of boxes).

Then, the final temperature of the gasses, T_{f} in terms of T_{0} is

$$
\begin{aligned}
& \text { А. } T_{f}=\frac{5}{2} T_{0} \\
& \text { В. } T_{f}=\frac{3}{7} T_{0} \\
& \text { С. } T_{f}=\frac{7}{3} T_{0} \\
& \text { D. } T_{f}=\frac{3}{2} T_{0}
\end{aligned}
$$

Answer:

D Watch Video Solution
324. Three perfect gases at absolute temperature T_{1}, T_{2} and T_{3} are mixed. The masses f molecules are m_{1}, m_{2} and m_{3} and the number of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming no loss of energy, the final temperature of the mixture is

$$
\begin{aligned}
& \text { A. } \frac{T_{1}+T_{2}+T_{3}}{3} \\
& \text { B. }\left(n_{-} 1 T_{-} 1+n_{-} 2 T_{-} 2+n_{-} 3 T_{-} 3\right) /\left(n_{-} 1+n_{-} 2+n_{-} 3\right)^{\prime} \\
& \text { C. } \frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}} \\
& \text { D. } \frac{n_{1}^{2} T_{1}^{2}+n_{2}^{2} T_{2}^{2}+n_{3}^{2} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}
\end{aligned}
$$

Answer:

D Watch Video Solution

325. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and it's suddenly brought to rest. Assuming no heat is lost to the surroundings, Its temperature increases by:
A. $\frac{(\gamma-1)}{2(\gamma+2) R} M v^{2} K$

> B. $\frac{(\gamma-1)}{2 \gamma R} M v^{2} K$
> C. $\frac{\gamma M v^{2}}{2 R} K$
> D. $\frac{(\gamma-1)}{2 R} M v^{2} K$

Answer:

D Watch Video Solution

326. In an ideal gas at temperature T, the average force that a molecule applies on the walls of a closed container depends on $\operatorname{Tas} T^{q}$.

A good estimate for q is :-
A. $\frac{1}{4}$
B. 2
C. $\frac{1}{2}$
D. 1

Answer:

D Watch Video Solution

327. Consider a spherical shell of radius R at temperature T. The black body radiation inside it
can be considered as an ideal gas of photons
with internal energy per unit volume
$u=\frac{U}{V} \propto T^{4}$ and pressure $P=\frac{1}{3}\left(\frac{U}{V}\right)$. If
the shell now undergoes an adiabatic expansion the relation between T and R is :
A. $T \propto e^{-r}$
B. $T \propto e^{-3} r$
C. $T \propto \frac{1}{r}$
D. $T \propto \frac{1}{r^{3}}$

Answer:

328. using euipartion of energy, the specific heat (injkg ${ }^{-1} K^{-1}$ of aluminium at room temperature can be estimated to be (atomic weigh of aluminium=27)
A. 410
B. 25
C. 1850
D. 925

Answer:

329. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increase as V^{q}, where V is the volume of the gas. The value of q
is: $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$
A. $\frac{3 \gamma+5}{6}$
B. (3 gamma-5)/6
C. $\frac{\gamma+1}{2}$
D. $\frac{\gamma-1}{2}$

Answer:

D Watch Video Solution

330. The temperature of an open room of volume $30 m^{3}$ increases from $17^{\circ} \mathrm{C} \rightarrow 27^{\circ} \mathrm{C}$ due to sunshine. The atmospheric pressure in the room remains $1 \times 10^{5} \mathrm{~Pa}$. If n_{i} and n_{f} are the number of molecules in the room before and after heating then n_{f} and n_{i} will be

$$
\text { A. }-1.61 \times 10^{23}
$$

B. 1.38×10^{23}
C. 2.5×10^{25}
D. -2.5×10^{25}

Answer:

- Watch Video Solution

331. The mass of hydrogen molecule is
$3.32 \times 10^{-27} \mathrm{~kg}$. If 10^{23} hydrogen molecules
strick per second at $2 \mathrm{~cm}^{2}$ area of a rigid wall at
an angle of 45° from the normal and rebound
back with a speed of $1000 \mathrm{~ms}^{-1}$, then the pressure exerted on the wall is

A. $2.35 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
B. $4.70 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
C. $2.35 \times 10^{2} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
D. $4.70 \times 10^{2} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

Answer:

D Watch Video Solution

332. According to kinetic theory of gases,
A. inelastic spheres
B. perfectly elastic rigid spheres
C. perfectly elastic non-rigid spheres

D. inelastic non-rigid spheres

333. For Boyle's law to be hold good, the gas
should be
A. perfect and of constant mass and temperature
B. real and of constant mass and temperature
C. perfect and at constant temperature but
variable mass

D. real and at constant temperature but

 variable mass.
Answer:

D Watch Video Solution

334. Statement-1: A real gas behaves as an ideal gas at high temperature and low pressure .

Statement-2: Liquid state of an ideal gas is impossible.
A. low pressure and high temperature

B. low pressure and low temperature

C. high pressure and low temperature
D. high pressure and high temperature

Answer:

D Watch Video Solution

335. A gas in container A is in thermal equilibrium with another gas in container B. Both contain equal masses of the two gases.

Which of the following can be true ?
A. $P_{A}-P_{B}, V_{A}+V_{B}$

$$
\text { B. } P_{A} \neq P_{B}, V_{A}=V_{B}
$$

C. $P_{A} / P_{B}, V_{A} / V_{B}$
D. $P_{A} P_{B}, V_{A} V_{B}$

Answer:

D Watch Video Solution

336. In kinetic theory of gases, a molecule of mass m of an ideal gas collides with a wall of
vessel with velocity v . The change in the linear momentum of the molecule is
A. $2 m v$
B. $m v$
C. $-m v$
D. zero

Answer:

- Watch Video Solution

337. 1 mole of H_{2} gas in contained in a box of volume $V 1.00 \mathrm{~m}^{3}$ at $\mathrm{T}=300 \mathrm{~K}$. The gas is heated to a temperature of $\mathrm{T}=3000 \mathrm{~K}$ and the gas gets converted to a gas of hydrogen atoms. The final pressure would be (considering all gases to be ideal)
A. same as the pressure initially
B. 2 times the pressure initially
C. 10 times the pressure initially
D. 20 times the pressure initially

Answer:

D Watch Video Solution

338. One mole of gas occupies a volume of 200 mL at 100 mm pressure. What is the volume occupied by two mole of gas at 400 mm pressure and at same temperature ?
A. 50 mL
B. 100 mL
C. 200 mL

D. 400 mL

Answer:

Watch Video Solution

339. A balloon is filled at $27^{\circ} C$ and 1 atm pressure by $500 \mathrm{~m}^{3} \mathrm{He} . \mathrm{At}-3^{\circ} \mathrm{C}$ and 0.5 atm pressures, the volume of He-gas contained in balloon will be
A. $700 m^{3}$
B. $900 \mathrm{~m}^{3}$
C. $1000 \mathrm{~m}^{3}$

D. $500 \mathrm{~m}^{3}$

Answer:

D Watch Video Solution

340. The temperature of a gas is raised while its
volume remains constant, the pressure exerted
by the gas on the walls of the container increases because its molecules
A. strike the walls with higher velocities
B. strike the walls with large force
C. strike the walls more frequently
D. are in contact with the walls for a shorter
time

Answer:

D Watch Video Solution

341. A gas is filled in a container at pressure P_{0}.

If the mass of molecules is halved and their rms
speed is doubled, then the resultant pressure would be
A. 4 P
B. 2 P
C. P
D. $\frac{P}{2}$

Answer:

- Watch Video Solution

342. A jar A is filled with a gas characterised by parameters P, V and T and another jar B with a gas with parameters $2 \mathrm{P}, \frac{V}{8}$ and 2 T , where the symbols have their usual meaning. The ratio of the number of molecules of jar A to thosej of jar B is
A. 1:1
B. $1: 2$
C. 2:1
D. $4: 1$

Answer:

D Watch Video Solution

343. The absolute zero is the temperature at which
A. all substances exist in solid state
B. water freezes
C. molecular motion ceases
D. none of these

Answer:

D Watch Video Solution

344. The average kinetic energy of gas molecule at $27^{\circ} C$ is $6.21 \times 10^{-21} \mathrm{~J}$. Its average kinetic energy at $127^{\circ} \mathrm{C}$ will be

$$
\begin{aligned}
& \text { A. } 52.2 \times 10^{-21} J \\
& \text { B. } 5.22 \times 10^{-21} J \\
& \text { C. } 10.35 \times 10^{-21} J \\
& \text { D. } 11.35 \times 10^{-21} J
\end{aligned}
$$

Answer:

- Watch Video Solution

345. When we heat a gas-sample from $27^{\circ} C \rightarrow 327^{\circ} \mathrm{C}$, then the initial average kinetic energy of the molecules was E. What will be the average kinetic energy ?
A. 327 E
B. 300 E
C. 2 E

$$
\text { D. } \sqrt{2} E
$$

Answer:

D Watch Video Solution

346. $v_{r m s}, v_{a v}$ and $v_{m p}$ are root mean square average and most probable speeds of molecules of a gas obeying Maxwellian velocity distribution. Which of the following statements is correct?
A. $v_{r m s}<v_{a v}<v_{m p}$

$$
\begin{aligned}
& \text { B. } v_{r m s}>v_{a v}>v_{m p} \\
& \text { C. } v_{m p}<v_{r m s}<v_{a v} \\
& \text { D. } v_{m p}<v_{r m s}<v_{a v}
\end{aligned}
$$

Answer:

D Watch Video Solution

347. Root mean square speed of the molecules of ideal gas is V . If pressure is increased two times at constant temperature, then the rms speed will become:
A. $\frac{v}{2}$
B. v
C. $2 v$
D. $4 v$

Answer:

D Watch Video Solution

348. The heat required to increase the temperature of 4 moles of a monoatomic ideal gas from 273 K to 473 K at constant volume is
A. 200 R
B. 400 R
C. 800 R
D. 1200 R

Answer:

D Watch Video Solution

349.3 mole of hydrogen is mixed with 1 mole of neon. The molar specific heat at constant pressure is
A. $\frac{9 R}{4}$
B. $\frac{9 R}{2}$
C. $\frac{13 R}{4}$
D. $\frac{13 R}{2}$

Answer:

D Watch Video Solution

350. The ratio of the number of moles of a monoatomic to a polyatomic gas in a mixture of
the two, behaving as an diatomic gas is :

(vibrational modes of freedom is to be ignored)

A. ge 4^{\prime}
B. ≥ 5
C. ≥ 6
D. >6

Answer:

D Watch Video Solution
351. In an adiabatic change, the pressure and temperature of a monoatomic gas are related as
$p \times T^{C}$, where C equals
A. $\frac{2}{5}$
B. $\frac{5}{2}$
C. $\frac{3}{5}$
D. $\frac{5}{3}$

Answer:

352. Two cylinder having $m_{1} g$ and $m_{2} g$ of a gas at pressure P_{1} and P_{2} respectively are put in cummunication with each other, temperature remaining constant. The common pressure reached will be

$$
\begin{aligned}
& \text { A. } \frac{P_{1} P_{2}\left(m_{1}+m_{2}\right)}{\left(P_{2} m_{1}+P_{1} m_{2}\right)} \\
& \text { B. }\left(P_{-} 1 P_{-} 2 m_{-} 1\right) /\left(P_{-} 2 m_{-} 1+P_{-} 1 m_{-} 2\right) \\
& \text { C. } \frac{m_{1} m_{2}\left(P_{1}+P_{2}\right)}{\left(P_{2} m_{1}+P_{1} m_{2}\right)} \\
& \text { D. }\left(m_{-} 1 m_{-} 2 P_{-} 1\right) /\left(P_{-} 2 m_{-} 1+P_{-} 1 m_{-} 2\right)
\end{aligned}
$$

Answer:

353. A closed vessel explodes at 15 atm pressure
if temperature of the vessel is 300 K . At 10 atm pressure, the vessel will explode at the temperature
A. 250 K
B. 420 K
C. 200 K
D. 450 K

Answer:

D Watch Video Solution

354. When an ideal diatomic gas is heated at constant pressure the fraction of the heat energy supplied which increases the internal energy of the gas is .
A. $2 / 5$
B. $3 / 5$
C. $3 / 7$

Answer:

D Watch Video Solution

355. Assertion : For an ideal gas, at constant temperature, the product of the pressure and volume is constant.

Reason : The mean square velocity of the molecules is inversely proportional to mass.
356. Assertion : The root mean sguar and most probable speed of the molecules in a gas are the same

Reason : The Maxwell distribation for the speed of molecules in a gas is symentrical

D Watch Video Solution

357. Assertion : The ratio C_{P} / C_{v} for a diatomic gas is more than that for a monoatomic gas.

Reason : The moleculess of a monoatomic gas
have more degrees of freedom than those of a diatomic gas.

D Watch Video Solution

358. Assertion : The ratio C_{P} / C_{v} is more for helium gas than for hydrogen gas.

Reason : Atomic mass of helium is more than that of hydrogen.
359. Assertion : The melting point of ice decreases with increase of pressure

Reason : Ice contract on melting.

D Watch Video Solution

360. Assertion : In pressure-temperature (P-T) phase diagram of water, the slope of the melting curve is found to be negative.

Reason : Ice contracts on melting to water.
361. Assertion : The molecules of a monatomic gas has three degrees freedom.

Reason : The molecules of a diatomic gas has
five degrees of freedom.

D Watch Video Solution

362. According to the law of equipartition of energy, the energy associated with each degree of freedom is :
363. Free vibrations and forced vibrations.

D Watch Video Solution

364. Assertion : The total translational kinetic
energy of all the molecules of a given mass of an
ideal gas is 1.5 times the product of its pressure and volume.

Reason : The molecules of gas collide with each other and the velocities of the molecules chane due to the collision.
365. Assertion : Air pressure in a car tyre increase during driving.

Reason : Absolute zero temperature is not zero energy temperature.

- Watch Video Solution

366. At constant volume, temperature is increased. Then
A. collisions on walls will be less
B. number of collisions per unit time will

increase

C. collisions will be in straight lines
D. collisions will not change.

Answer:

D Watch Video Solution

367. Three containes of the same volume contain three different gases. The masses of the molecules are m_{1}, m_{2} and m_{3} and the number
of molecules in their respective containers are
N_{1}, N_{2} and N_{3}. The gas pressure in the containers are P_{1}, P_{2} and P_{3} respectively. All the gases are now mixed and put in one of the containers. The pressure P of mixture will be

$$
\begin{aligned}
& \text { A. } P<\left(P_{1}+P_{2}+P_{3}\right) \\
& \text { B. } P=\left(P_{1}+P_{2}+P_{3} \overline{3}\right. \\
& \text { С. } P=P_{1}+P_{2}+P_{3} \\
& \text { D. } P>\left(P_{1}+P_{2}=P_{3}\right)
\end{aligned}
$$

Answer:

368. From the relation $P V=R T$, calculate the
value of the constant R for one gram mole of an
ideal gas (in cal / K)
A. high temperature and high density
B. high temperature and low density
C. low temperature and low density
D. low temperature and high density.
369. The equation of state for 5 g of oxygen at a pressure P and temperature T, when occupying a volume V , will be
A. $P V=5 R T / 32$
B. $P V=5 R T / 16$
C. $P V=5 R T / 2$
D. $P V=5 R T$

Answer:

370. Relation between pressure (P) and average kinetic energy per unit volume of gas (E) is
A. $P=2 E / 3$
B. $P=E / 3$
C. $P=3 E / 2$
D. $P=3 E$

Answer:

D Watch Video Solution
371. At $0 K$, which of the following properties of a gas will be zero?
A. kinetic energy
B. potential energy
C. vibrational energy
D. density.

Answer:

- Watch Video Solution

372. The root mean square velocity of a gas molecule of mass m at a given temperature is proportional to
A. m^{0}
B. m
C. \sqrt{m}
D. $m^{-\left(\frac{1}{2}\right)}$

Answer:

373. The temperature of an ideal gas is increased from $27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The rms speed of its molecules becomes.
A. gets halved
B. gets doubled
C. gets $\sqrt{\frac{927}{27}}$ times the earlier value
D. remains unchanged

Answer:

374. An ant is moving on a plane horizontal surface. The number of degrees of freedom of the ant will be
A. 1
B. 2
C. 3
D. 6

Answer:

375. The number of degres of freedom of

diatomic gas are

A. 2
B. 3
C. 5
D. 6

Answer:

- Watch Video Solution

376. The degrees of freedom of a triatomic gas is
A. 1
B. 2
C. 6
D. 8

Answer:

D Watch Video Solution
377. A polyatomic gas with (n) degress of
freedom has a mean energy per molecule given
by.

$$
\begin{aligned}
& \text { A. } \frac{n k T}{N} \\
& \text { B. } \frac{n k T}{2} N \\
& \text { C. } \frac{n k T}{2} \\
& \text { D. } \frac{3 k T}{2}
\end{aligned}
$$

Answer:

378. The temperature of ozone in a vessel, is raised by $1^{\circ} C$ at constant volume. Part of total heat supplied to the gas may be taken as translational and rotational energies. Their respective shares are
A. $60 \%, 40 \%$
B. $50 \%, 50 \%$
C. 100\%, zero
D. $40 \%, 60 \%$
379. If for a gas $\frac{R}{C_{v}}=0.67$, this gas is made up of molecules, which are :
A. diatomic
B. mixture of diatomic and polyatomic
C. monoatomic

D. polyatomic.

Answer:

380. If γ be the ratio of specific heats $\left(C_{p} \& C_{v}\right)$
for a perfect gas. Find the number of degrees of freedom of a molecules of the gas?

$$
\begin{aligned}
& \text { A. } \frac{25(\gamma-1)}{2} \\
& \text { B. } \frac{9(\gamma-1)}{2}
\end{aligned}
$$

C. '(3gamma-1)/(2gamma-1)
D. $2 /($ gamma-1)

Answer:
381. The value of critical temperature in terms of van der Waals' constants a and b is given by

$$
\begin{aligned}
& \text { А. } T_{c}=\frac{a}{2 R b} \\
& \text { В. } T_{c}=\frac{a}{27 b R} \\
& \text { C. } T_{c}=8 \frac{a}{27 R b} \\
& \text { D. } \frac{27 a}{8 R B}
\end{aligned}
$$

Answer:

382. Two vessel separately contains two ideal
gases A and B at the same temperature, the pressure of A being twice that of B. under such conditions, the density of A is found to be 1.5
times the density of B. the ratio of molecular weight of A and B is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{2}{3} \\
& \text { C. } \frac{3}{4} \\
& \text { D. } 2
\end{aligned}
$$

- Watch Video Solution

383. The ratio of the specific heats $\frac{C_{P}}{C_{V}}=\gamma$ in terms of degrees of freedom (n) is given by:
A. $\left(1+\frac{n}{3}\right)$
B. $\left(1+\frac{2}{n}\right)$
C. $\left(1+\frac{n}{2}\right)$
D. $\left(1+\frac{1}{n}\right)$

Answer:

384. The molar specific heats of an ideal gas at constant pressure and volume arc denoted by
C_{P} and C_{V} respectively. If $\gamma=\frac{C_{P}}{C_{V}}$ and R is the universal gas constant, then C_{V} is equal to

$$
\begin{aligned}
& \text { A. } \frac{1+\gamma}{1-\gamma} \\
& \text { B. } \frac{R}{\gamma-1} \\
& \text { C. } \frac{\gamma-1}{R} \\
& \text { D. } \gamma R
\end{aligned}
$$

385. The amount of heat energy required to raise the temperature of 1 g of Helium at NTP, from $T_{1} \mathrm{~K}$ to $T_{2} \mathrm{~K}$ is:
A. $\frac{3}{8} N_{a} k_{b}\left(T_{2}-T_{1}\right)$
B. $\frac{3}{2} N_{a} k_{b}\left(T_{2}-T_{1}\right)$
C. $\frac{3}{4} N_{a} k_{b}\left(T_{2}-T_{1}\right)$
D. $\frac{3}{4} N_{a} k_{b}\left(\frac{T_{2}}{T_{1}}\right)$

- Watch Video Solution

386. The mean free path of molecules of a gas
(radius r) is inversely proportional to
A. r^{3}
B. r^{2}
C. r
D. \sqrt{r}

Answer:

387. A gas mixture consists of 2 moles of O_{2} and

3 moles of Ar at temperature T. Neglecting all
vibrational modes, the total internal energy of the system is
A. 4 RT
B. 15 RT
C. 9 RT

D. 11 RT

Watch Video Solution

388. The molecules of a given mass of a gas have
rms velocity
$200 \mathrm{~m} / \mathrm{sat} 27^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}_{2}$
pressure. When the temperature and pressure of the gas are respectively
$127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$, the rms velocity of its molecules in $m s^{-1}$ is
A. $100 \sqrt{2}$
B. $\frac{400}{\sqrt{3}}$
C. (100 sqrt 2$) / 2$

D. 100/3

Answer:

D Watch Video Solution

389. One mole of an ideal monatomic gas undergoes a process described by the equation
$P V^{3}=$ constant. The heat capacity of the gas during this process is
A. $2 R$
B. R
C. $\frac{3}{2} R$
D. $\frac{5}{2} R$

Answer:

D Watch Video Solution

390. A fiven sample of an ideal gas occupise a volume V at a pressure p and sbsoulte temperature T.The mass of each molecule of the
gas is m . Which of the following fives the dinsity of the gas?
A. $\frac{P}{k T V}$
B. $m k T$
C. $\frac{P}{k T}$
D. $\frac{P m}{k T}$

Answer:

- Watch Video Solution

391. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmsphere? [Given, mass of oxygen molecule $(\mathrm{m})=2.76 \times 10^{-26} \mathrm{~kg}$, Boltzmann's

$$
\left.k_{B}=1.38 \times 10^{-23} J \cdot K^{-1}\right]
$$

A. $2.508 \times 10^{4} K$
B. $1.254 \times 10^{4} K$
C. $5.016 \times 10^{4} K$
D. $8.360 \times 10^{4} K$

Answer:

D Watch Video Solution

Example

1. A narrow uniform glass tube 80 cm long and
open at both ends is half immersed in mercurry.

Then the top of the tube is closed and it is taken out of mercury. A column of mercury 22 cm long then remains in the tube. What is the
atmospheric pressure?

D Watch Video Solution

2. A gas at $27^{\circ} \mathrm{C}$ in a cylinder has a volume of 4
litre and pressure $100 \mathrm{Nm}^{-2}$.
(i) Gas is first compressed at constant
temperature so that the pressure is $150 \mathrm{Nm}^{-2}$.

Calculate the change in volume.
(ii) It is then heated at constant volume so that temperature becomes $127^{\circ} \mathrm{C}$. Calculate the new pressure.

D Watch Video Solution

3. A gas at $27^{\circ} \mathrm{C}$ in a cylinder has a volume of 4
litre and pressure $100 \mathrm{Nm}^{-2}$.
(i) Gas is first compressed at constant temperature so that the pressure is $150 \mathrm{Nm}^{-2}$

Calculate the change in volume.
(ii) It is then heated at constant volume so that temperature becomes $127^{\circ} \mathrm{C}$. Calculate the new pressure.

D Watch Video Solution

4. As an air bubble rises from the bottom of a
lake to the surface, its volume is doubled. Find the depth of the lake. Take atmospheric pressure $=76 \mathrm{~cm}$ of Hg .
5. Using the ideal gas equation, determine the value of gas constant R. Given that one gram mole of a gas at S.T.P occupies a volume of 22.4

litres

D Watch Video Solution

6. A balloon partially filled with helium has a
volume of $30 m^{3}$, at the earth's surface, where pressure is 76 cm of (Hg) and temperature is
$27^{\circ} \mathrm{C}$ What will be the increase in volume of gas
if balloon rises to a height, where pressure is
7.6 cm of Hg and temperature is $-54^{\circ} \mathrm{C}$?
7. A vessel contains two non-reactive gases neon
(monoatomic) and oxygen (diatomic). The ratio of their partial pressures is $3: 2$. Estimate the ratio of
(i) number of molecules, and
(ii) mass density of neon and oxygen in the vessel.

Atomic mass of neon $=20.2 \mathrm{u}$, and molecular mass of oxygen $=32.0 \mathrm{u}$.
8. A vessel contains two non-reactive gases neon
(monoatomic) and oxygen (diatomic). The ratio of their partial pressures is $3: 2$. Estimate the ratio of
(i) number of molecules, and
(ii) mass density of neon and oxygen in the vessel.

Atomic mass of neon $=20.2 \mathrm{u}$, and molecular mass of oxygen $=32.0 \mathrm{u}$.
9. A closed container of volume $0.02 \mathrm{~m}^{3}$ contains
a mixture of neon and argon gases at a temperature $27^{\circ} \mathrm{C}$ and pressure $1 \times 10^{5} \mathrm{Nm}^{-1}$

The total mass is 28 and the molar mass of and argon are 20 and 40 respectively find the masses of individual gases in the container assuming then to be ideal .

- Watch Video Solution

10. Calculate the r.m.s. velocity of air molecules at S.T.P. Given density of air at S.T.P. is

$1.296 \mathrm{kgm}^{-3}$.

D Watch Video Solution

11. A vessel is filled with a gas at a pressure of 76 cm of mercury at a certain temperature. The mass of the gas is increased by 50% by introducing more gas in the vessel at the same temperature. Find the resultant pressure of the gas.

- Watch Video Solution

12. Calculate the kinetic energy of one mole of argon at $127^{\circ} \mathrm{C}$. Given,Boltzmann's constant, $k_{B}=1.381 \times 10^{-23} \mathrm{Jmolecular}^{-1} \mathrm{~K}^{-1}$.

Avogardro numbe, $N=6.02 \times 10^{23} \mathrm{~mol}^{-1}$

D Watch Video Solution

13. Calculate the KE per molecule and also rms
velocity of a gas at $127^{\circ} \mathrm{C}$. Given
$k=1.38 \times 10^{-23} J$ molecule ${ }^{-1} K^{-1}$ and mass
of each molecule $=6.4 \times 10^{-27} \mathrm{~kg}$.

Watch Video Solution

14. Calculate the number of molecule in
$2 \times 10^{-6} \mathrm{~m}^{3}$ of a perfect gas at $27^{\circ} \mathrm{C}$ and at a pressure of 0.01 m of mercury. Mean KE of a molecule at
$27^{\circ} C=4 \times 10^{-11} J$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

D Watch Video Solution

15. Calculate the root mean square speed of one gram molecule of hydrogen at S.T.P. Given that
the density of hydrogen at S.T.P. Is $0.09 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{R}=8.31 \mathrm{~J} m o \leq^{-1} K^{-1}$.

- Watch Video Solution

16. (a) Calculate (i) root-mean-square speed and
(ii) the mean energy of 1 mol of hyderogen at

STP given that density of hydrogen is $0.09 \mathrm{~kg} / \mathrm{m}^{3}$. (b) Given that the mass of a molecule of hydergen is $3.34 \times 10^{-27} \mathrm{~kg}$,
calculate Avogadro's number. (c) Calculate Boltmann's constant.
17. Calculate Boltzmann's constent.

D Watch Video Solution

18. At what temperature will the average velocity of oxygen molecules be sufficient so as to escape from the earth ? Escape velocity of earth is $11.0 \mathrm{kms}^{-1}$ and mass of one molecule of oxygen is $5.34 \times 10^{-26} \mathrm{~kg}$. Boltzmann constant $=1.38 \times 10^{-23} \mathrm{~J}$ molecule ${ }^{-1} K^{-1}$.
19. A vessel A contains hydrogen and another vessel B whose volume is twice that of A contains same mass of oxygen at same temperature. Compare
(i) average KE of hydrogen and oxygen molecule.
(ii) root mean square speeds of molecules
(iii) pressure of gases in A and B.

Molecular weight of hydrogen and oxygen are 2 and 32 respectively.

Watch Video Solution

20. A vessel A contains hydrogen and another vessel B whose volume is twice that of A contains same mass of oxygen at same temperature. Compare
(i) average KE of hydrogen and oxygen molecule.
(ii) root mean square speeds of molecules
(iii) pressure of gases in A and B.

Molecular weight of hydrogen and oxygen are 2 and 32 respectively.
21. A vessel A contains hydrogen and another vessel B whose volume is twice that of A contains same mass of oxygen at same temperature. Compare
(i) average KE of hydrogen and oxygen molecule.
(ii) root mean square speeds of molecules
(iii) pressure of gases in A and B.

Molecular weight of hydrogen and oxygen are 2 and 32 respectively.
22. A flask contains argon and chlorine in the ratio $2: 1$ by mass. The temperature of the mixture is $27^{\circ} C$. Obtain the ratio of
(i) average kinetic energy per molecule, and
(ii) root mean square speed of the molecules of two gases.

Atomic mass of argon $=39.9 \mathrm{u}$, Molecular mass of chlorine $=70.9 \mathrm{u}$.

- Watch Video Solution

23. A flask contains argon and chlorine in the ratio $2: 1$ by mass. The temperature of the mixture is $27^{\circ} C$. Obtain the ratio of
(i) average kinetic energy per molecule, and
(ii) root mean square speed of the molecules of two gases.

Atomic mass of argon $=39.9 \mathrm{u}$, Molecular mass of chlorine $=70.9 \mathrm{u}$.

D Watch Video Solution

24. Two perfect monoatomic gases at absolute temperature T_{1} and T_{2} are mixed. There is no loss of energy. Find the temperature of the mixture if the number of moles in the gases are n_{1} and n_{2}.

D Watch Video Solution

25. Four molecules of a gas have speeds $2,4,6$ and $8 \mathrm{kms}^{-1}$ respectively. Calculate their average speed and root mean square speed.
26. If three gas molecules have velocity $0.5,1$ and $2 \mathrm{~km} / \mathrm{s}$ respectively, find the ratio of their root mean square speed and average speed.

D Watch Video Solution

27. Calculate the r.m.s. velocity of oxygen molecule at S.T.P. The molcular weight of oxygen is 32 .
28. The rms velocity of hydrogen at S.T.P is u $m s^{-1}$. If the gas is heated at constant pressure
till its volume is three fold, what will be its final temperature and rms velocity ?

D Watch Video Solution

29. The rms speed of oxygen molecules at a certain temperature is v. If the temperature is doubled and the oxygen gas dissociates into atomic oxygen, the rms speed would be
30. At what temperature is the r.m.s velocity of a hydrogen molecule equal to that of an oxygen molecule at $24^{\circ} C$?

D Watch Video Solution

31. Calculate the temperature at which r.m.s
velocity of gas molecules is double its value at
$27^{\circ} C$, pressure of the gas remaining the same.
32. Calculate the temperature at which rms velocity of a gas is half it's value at $0^{\circ} C$, pressure remaining constant

D Watch Video Solution

33. Uranium has two isotopes of masses 235 and

238 units. If both are present in uranium hexa
fluoride gas, which would have the larger average speed ? If atomic mass of fluorine is 19 units, estimate the percentage difference in speed at any temperature.

- Watch Video Solution

34. The total number of degrees of freedom possessed by the molecules in $1 \mathrm{~cm}^{3}$ of H_{2} gas at temperature 273 K and 1 atm pressure. Will be

- Watch Video Solution

35. Calculate the internal energy of 1 gram of oxygen at NTP.
36. Hydrogen is heated in a vessel to a temperature of $10,000 \mathrm{~K}$. Let each molecule posses an average energy E_{1}. A few molecules escape into the atmosphere at 300 K . Due to collisions, their energy changes to E_{2}. Calculate ratio E_{1} / E_{2}.

D Watch Video Solution

37. The molecular kinetic energy of 1 g of helium (molecular weight 4) at $127^{\circ} \mathrm{C}$ is (Given , R
$\left.=8.31 \mathrm{Jmol}^{-1} K^{-1}\right)$

- Watch Video Solution

38. How many degrees of freedom are associated with 2 gram of helium at NTP ?

Calculate the amount of heat energy required to
raise the temp. Of this amount from
$27^{\circ} C \rightarrow 127^{\circ} C$. Given Boltzmann constant $k_{B}=1.38 \times 10^{-23}$ erg molecule ${ }^{-1} K^{-1}$ and Avogadro's number $=6.02 \times 10^{23}$.
39. Calculate the limiting ratio of the internal energy possessed by helium and hydrogen gases at 10,000K.

D Watch Video Solution

40. A cylinder of fixed capacity 44.8 litres
contains helium gas at standard pressure at
temperature. What is the amount of heat need
to rest that temperature of the gas by
$15.00^{\circ} C ?\left[R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}\right]$
41. One mole of a monoatomic gas is mixed with three moles of a diatomic gas. What is the molecular specific heat of mixture at constant volume? $R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

42. One mole of ideal monoatomic gas $(\gamma=5 / 3)$ is mixed with one mole of diatomic gas $(\gamma=7 / 5)$. What is γ for the mixture? γ

Denotes the ratio of specific heat at constant pressure, to that at constant volume

D Watch Video Solution

43. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. The ratio $\frac{C_{p}}{C_{v}}$ of the mixture is
(D) Watch Video Solution
44. A gaseous mixture enclosed in a vessel
consists of one gram mole of a gas A with
$\gamma=\left(\frac{5}{3}\right)$ and some amount of gas B with
$\gamma=\frac{7}{5}$ at a temperature T .
The gases A and B do not react with each other
and are assumed to be ideal. Find the number of gram moles of the gas B if γ for the gaseous mixture is $\left(\frac{19}{13}\right)$.

D Watch Video Solution

45. The density of water is $1000 \mathrm{kgm}^{-3}$. The density of water vapour at $100^{\circ} \mathrm{C}$ and 1 atmospheric pressure is $0.6 \mathrm{kgm}^{-3}$. The volume of a molecule multiplied by the total number gives what is called, molecular volume. Estimate the ratio (or fraction) of the molecular volume to the total volume occupied by the water
vapour under the above conditions of temperature and pressure.
46. The volume of water molecule is

Take, density of wter is $10^{3} \mathrm{kgm}^{-3}$ and avogadros' number $=610^{23} \mathrm{~mole}^{-1}$)

D Watch Video Solution

47. What is the average distance between atoms
(interatomic distance) in water ?

- Watch Video Solution

